The Symmetry of N-domain and Hibert's Eighth Problem

Liu Yajun
(South China University of Technology, Guangzhou P.R. China 510640)
E-mail: yajun@scut.edu.cn

Abstract

In this paper, we discuss the symmetry of N-domain and we find that using the symmetry characters of Natural Numbers we can give proofs of the Prime Conjectures: Twins Prime Conjecture, Goldbach Conjecture and Reimann Hypothesis.

Keywords N domain Prime Conjectures

The Symmetry of N-domain

We have
$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers
$\mathrm{n} \sim(1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers excepted 0
$P \sim(2,3,5,7, \ldots \ldots \ldots)$ all the prime numbers
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers
We notice that

$$
\begin{aligned}
& N \sim(0, n) \\
& \mathrm{P} \sim(2, p)
\end{aligned}
$$

Fig.1. N domain as $\mathbf{2 n} \times \mathbf{2 n}$

Fig2. the Symmetry of \mathbf{P} axis

We can define a N domain as $2 \mathrm{n} \times 2 \mathrm{n}$ with the center point of this square is

$$
p 0=<n, n i>\text { and } n \in p
$$

We have a square with the vertexes are

$$
0,2 n i,<2 n, 2 n i>, 2 n
$$

And we can constructure a N, P coordinate system show as on figure.1.:
The N number axis have 3 points :

$$
0,2,2 n
$$

And at the P number axis:
Prime number 2 is the point 2 .
All the odd prime number can be indicated as:

$$
2 p 1 p 0, p 2, p
$$

we can also get

$$
\begin{gathered}
p 1 \rightarrow(n-1) i \\
p 0 \rightarrow n i \\
p 2 \rightarrow(n+1) i \\
\quad p 1, p 2 \in p
\end{gathered}
$$

The proof of Twin Primes Conjecture and Goldbach conjecture

And we can have a clockwise rotation of P axis and $p 0$ as the fixed point show as on
figure 2.
We have

$$
\begin{gathered}
p 0 \rightarrow n \\
p 1 \rightarrow n-1 \\
p 2 \rightarrow n+1 \\
p 2-p 1=<n+1>-<n-1>=2
\end{gathered}
$$

Because we have infinite prime numbers. This mean that we have infinite twin primes in N domain. This is the proof of Twin Primes Conjecture.

$$
p 2+p 1=n+1+n-1=2 n
$$

And $n-1>2 \quad n>3 \quad$ So $2 n>6$
This mean that every even number bigger than six can be divided into two odd prime numbers in N domain. This is the proof of Goldbach conjecture.

The Proof of Riemann Hypothesis.

Riemann Zeta-Function is

$$
\xi(s)=\sum_{n=1} \frac{1}{n^{s}}=\prod \frac{1}{1-p^{s}} \quad(s=a+b i)
$$

Riemann Hypothesis: all the Non-trivial zero-point of Zeta-Function $\operatorname{Re}(s)=1 / 2$.

Figure.3. Riemann Zeta-Function on \mathbf{N} domain
Because

$$
1 / 2=(1 / 2+1 / 2 \cdot i)(1 / 2-1 / 2 \cdot i)
$$

We can get circles with $1 / 2$ and the intersections with the axis are:

$$
Z p 1, Z p 2, Z p 3, Z p 4
$$

All of them on the symmetry of $1 / 2$ points.
We can get circles with $p 0$ and the intersections with the axis are:

$$
1, p 0+\frac{1}{2}, 2, p 0-\frac{1}{2}
$$

We can get circles with $\boldsymbol{p} \mathbf{0} \in \boldsymbol{p}$ and the intersections with the axis are

$$
Z p 1, ~ Z p 2, ~ z p 3, ~ Z p 4
$$

Just show as the figure. 4 .

Figure.4. Zero points with a symmetry of $1 / 2$ point

Fig.5. The symmetry of zero-points on the N-P domain
we have

The $\operatorname{tr}(\mathrm{A})=1 / 2 * \mathrm{~N}$
All the Zero points are on the $\mathbf{1 / 2}$ axis just show as on Figure.5. We think this is the Proof of Riemann Hypothesis.

In fact, we should notice to :

$$
1+\frac{e^{i p \pi}-e^{i 2 n \pi}}{\sum \frac{1}{2^{N}}=2}=0
$$

$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers.
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers.
this equation gives a structure of all N and P and a $1 / 2$ fixed point.

