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Abstract 

The search for a reliable foundation of physical reality has had many setbacks and is slow. Side roads 

were taken that did not lead to the desired goal. This document shows that there is an alternative path 

that leads to a better result. This result can be reproduced in a single sentence. This very short summary 

does need the necessary explanation. The paper provides this explanation. The paper also shows the 

relation between the foundation and several aspects of physics, such as quantum physics, classical 

physics, optics, and cosmology. 
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1 Introduction 

With some arrogance, I dare to say that the most important 

part of the foundations of physical reality is now exposed. Some 

mysteries remain, but these can be clearly described. For me, 

these mysteries exist because my knowledge of mathematics 

does not allow me to explain the origin of these mysteries. It is 

also possible that this mathematics does not yet exist. The 

foundation of physics can be represented in a single sentence 

that reflects the structure and behavior of the observable 

universe. "The universe that manifests itself to researchers is 

one continuous film of the possible coverages of space with 

versions of number systems belonging to the associative 

division rings." 

2 Explanation 

This short description can be explained with the observation 

that humans cannot think and communicate about things 

without providing these things with identification in the form of 

a name or pointer and a short compact description. The curious 

thing is that physical reality can function without these 

limitations. Yet physical reality also appears to have to adhere 

to strict rules and existing structures. The researchers have 

come to know these rules and structures to a large extent, and 

they formulate them in what they call mathematics and physics.  

Several researchers doubt whether people can discover the 

calculation rules that physical reality uses. Your writer does not 

belong to this group. 
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My arrogance is based on my conviction that those with 

education at the level of a bachelor in exact sciences 

mathematics or physics should easily be able to follow the 

argument given here and check it as desired.  With considerably 

less prior knowledge, a large part of the argument is easy to 

follow.  I have done my best to make as many details as possible 

freely accessible. Many treated subjects that are accessible on 

the internet are pointed to by in brackets enumerated URLs. 

Because formulas scare off many readers, they are housed in 

separate places. This applies to the calculation rules, the bra-ket 

procedure of Paul Dirac, and important equations. The formulas 

are placed in a separate chapter. The formulas have already 

been published elsewhere. [1] 
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3 Clarification 

When people focus their research on space, they quickly realize 

that an empty space represents the ultimate nothingness. There 

is nothing in this space to which one could orient oneself. There 

is no center and there are no boundaries. It's not hard to 

imagine that the space could contain many anonymous 

locations. However, for humans, it is not possible to track the 

behavior of these locations without giving them identification 

and a precise description. Locations are point-shaped objects 

that can occupy a position in space. That position differs per 

location. Identification can be achieved by using number 

systems. The values of the elements of the number systems can 

indicate the position of the locations.  

This paper introduces a structure that harbors a system of 

Hilbert spaces that all share the same underlying vector space. 

That system puts number systems in a well-defined 

interrelationship. 
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4 Vector space 

There is still no possibility to point to the position. The pointer 

can consist of a base location and a pointing location connected 

by a direction-line. The vector has a length that can be 

characterized by a simple scalar number. Scientists call this 

pointer a vector and a space in which vectors occur a vector 

space. The vector is fully characterized by its direction-line and 

its length. The integrity of the vector does not change when it is 

shifted parallel. The parallel shift can take place on the 

direction-line but may also take place in another direction. 

Direction-lines can therefore be shifted parallel in the vector 

space. They have no beginning and no end. This immediately 

provides the operation with which two vectors can be added. If 

the base point is shifted from one vector to the pointer of the 

other vector, then the non-overlapping points form a new 

vector called the sum vector. If the direction-lines are different, 

the sum vector can use a new direction-line. 

The two possibilities form a parallelogram in which the sum 

vectors are parallel and have an equal length. 

By multiplying the vector by a scalar, the length is multiplied by 

that scalar. This creates a new vector. When the scalar is 

negative, the base point and the pointer point change function, 

and the vector gets the opposite direction. At the same time, its 

length may change. These simple calculation rules allow vectors 

to pinpoint all locations in the vector space. The section Vector 

arithmetic in the chapter Formulas contains the formulas. 
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4.1 Independent directions 

Vector arithmetic enables a scalar product of two vectors. The 

scalar product can demonstrate the independence of the 

direction-lines of vectors. The scalar product of independent 

vectors is equal to zero.  In this way, in the vector space, several 

mutually independent basic direction-lines can be detected. 

Since direction-lines can be shifted in parallel, the vector space 

can be covered by a raster of direction lines. The raster can 

form a primitive coordinate system. 
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5 Number systems 

5.1 Real numbers 

With their calculation rules, vectors can help to construct 

number systems. As an example, an ongoing addition of a 

starting vector and vectors equal to the starting vector and 

located on the same direction-line yields an ordered series of 

designated locations that collectively represent the natural 

numbers. By using the natural numbers as a label, we can count 

collections of locations. By removing locations from the 

collection, the subtraction procedure is created, and the 

countdown procedure is shown. We meet the number zero on 

the basis point of the original starting vector and then follow 

the negative integers. By adding groups of vectors several 

times, the procedure for multiplying numbers is created. That 

doesn't provide new integers. The reversal of multiplication is 

called division and delivers fractions. These can be new 

numbers. The integer numbers together with the fractions form 

the rational numbers.  

5.2 Phase transitions 

Scholars have shown that there are as many rational numbers 

as there are natural numbers. This means that all rational 

numbers can be labeled with a natural number. This only works 

if both number sets contain an infinite number of elements. The 

transition from finitely many elements to infinitely many 

elements implies a change in state for the set. In the new 

phase, the collection exhibits different behavior. It is not 

possible to achieve this phase transition step-by-step. Also, the 
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way back does not go in a step-by-step way. The terms phase 

and phase transition are not often used in relation to number 

systems. This paper uses these terms to indicate the change of 

the status of the number system. 

 Adding or removing elements does not change the state of the 

infinite set.  The infinite set of well-ordered rational numbers 

fills a large part of the same direction-line. Any location on this 

line can be approached arbitrarily close by a rational number. 

Nevertheless, there are still many locations on this line that 

cannot be designated by rational numbers. We call the numbers 

that these places indicate irrational numbers. Together, the set 

of rational numbers and the set of irrational numbers again 

form a set that can be seen as another phase. The phase 

transition happens again in one go and cannot be achieved 

step-by-step. The new phase of the collection can no longer be 

counted. In this set, all series of converging members end in a 

limit that is a member of the set. The phase transition adds 

several new calculation rules that manage the change of 

cohesive parts of the collection. Mathematicians call these extra 

calculation rules differential calculus. The differential calculus is 

closely related to the calculation rules of the rational numbers. 

The calculation rules can even mix.  Without disturbing 

actuators, nothing will change in the new phase. If something is 

disturbed, then this phase of the collection tends to remove the 

disturbance as quickly as possible by sending away the 

consequences of the disturbance in all possible directions until 

the consequences eventually disappear into infinity. As 
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mentioned, that vanishing area is never reached step by step. 

The result is that the number-covered area expands. The 

differential calculus tells exactly how that happens. On the so 

far considered direction-line the response acts in a single 

dimension. 

The rational numbers treated so far, when multiplied by 

themselves, yield a positive number that is on the direction-line 

of the natural numbers. We call the numbers that behave in this 

way real numbers.  We use this name for all numbers on this 

direction-line and therefore for all phases of the numbers that 

are on this direction-line.  Multiplying by oneself is called 

squaring.  The section Arithmetic of the real numbers contains 

the formulas. 

5.3 Spatial numbers 

There also appear to be systems of numbers that, when 

multiplied by themselves, yield a negative number which is 

located on the direction-line of the real numbers. We call these 

numbers spatial numbers. Often these numbers are called 

imaginary numbers. This name is not used here because the 

qualification imaginary also has completely different meanings. 

The spatial numbers no longer fit on the direction-line of the 

real numbers. They occupy one or three dimensions. This is 

because if spatial numbers fall outside the first spatial 

dimension, the calculation rules of the spatial numbers ensure 

that in addition to the second spatial dimension, a third spatial 

dimension is also filled with spatial numbers. The result of the 

product of two spatial numbers consists of an internal product 
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that provides a real number and an external product that is zero 

or produces a result in a direction that is independent of the 

direction-lines of both factors. The internal product is the 

reason for the negative square. The calculation rules of the 

spatial numbers, therefore, differ from the calculation rules of 

the real numbers. The reaction to a disturbance of the third 

phase of spatial numbers is more spectacular in the three-

dimensional spatial number system than in the one-dimensional 

spatial number system. The section Arithmetic of spatial 

numbers contains the formulas. 

5.4 Division rings 

Nevertheless, real numbers can be added to spatial numbers, 

and spatial numbers can be multiplied by real numbers. This 

creates new number systems. The real numbers, together with 

the one-dimensional spatial numbers, form the two-

dimensional set of what are called complex numbers. The real 

numbers, together with the three-dimensional spatial numbers, 

form the four-dimensional set of what are called quaternions.  

The Mixed Arithmetic section of the chapter Formulas contains 

the corresponding formulas. 

5.5 Confusing calculation rules 

Two vectors can together deliver a scalar product. That scalar 

product is zero or positive and provides for two equal vectors 

the square of the length of the vector. This length is the norm of 

the vector. The almost identical effect of the inner product of 

spatial numbers has led to confusion among many 

mathematicians and physicists so that spatial numbers were 
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sometimes mistaken for vectors. This happened, among other 

things, with the discoverer of the quaternions. This confusion 

led to a public scandal that caused the quaternions to fall into 

oblivion after the sixties of the last century. As we will see, this 

had major consequences for both mathematics and physics.  [2] 

6 History 

Simple fractions were already discovered by the Egyptians 

before Christ. Cantor discovered the second and third phases of 

real numbers around 1870. Cantor did not use the designations 

phase and phase transition. He and others then turn their 

attention to various kinds of infinities of sets. This document 

deals with only two forms of infinity. These are the countable 

infinity of the second phase of numbers and the uncountable 

infinity of the phase of numbers. 

The complex numbers were discovered as early as 1545 by 

Gerolamo Cardano. The quaternions were discovered in 1854 

by Sir William Rowan Hamilton. He formulated his discovery 

using the four basic numbers. One real base number and three 

spatial base numbers. The external product appears in the 

outcome of the product of the first two spatial base numbers.  

Hamilton discovered this formula during a walk with his wife 

over a sandstone bridge in Dublin and out of joy he scratched 

the formula into the wall of the bridge. The rain quickly erased 

the inscription. Hamilton's students immortalized the formula 

on the bridge through a bronze commemorative plaque. [3] 
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7 Set theory 

7.1 Collections in space 

Around the turn of the nineteenth to the twentieth century, a 

group of mathematicians and mathematical physicists led by 

David Hilbert had an intense discussion about set theory. [4] [5] 

This discussion focused mainly on the various forms of infinity 

and countability. A lot of attention was also paid to the phases 

and phase transitions of the collection. For example, there was 

a lot of attention to the continuum hypothesis. [6] 

The discussion ignored the container of the set and also paid no 

attention to the type of objects that formed the set.  For 

physical reality, these choices play a major role. By choosing 

space as a container and locations as elements of the set, the 

number systems used to identify the locations acquire 

additional properties that both human researchers and physical 

reality must consider. These additional properties are the 

symmetries that represent the freedom of choice that is not 

defined by the calculation rules.  As a result, the number 

systems exist in many versions that are distinguished by their 

symmetry. For example, the location of the geometric center of 

the number system can in principle be anywhere in the vector 

space. Also, the arrangement of the numbers along the 

direction-lines in one direction or the opposite direction can 

proceed. Physical reality must adhere to the rules of calculation 

and will use as many symmetry choices as possible. A different 

choice of symmetry yields a different version of the number 
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system. The word symmetry has several different meanings. 

This also occurs in this paper. 
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8 Coordinates 

There are three associative division rings. [7] 

These are the real numbers, the complex numbers, and the 

quaternions. Each of these number systems exists in many 

versions that differ in their symmetry. Recording the symmetry 

is possible with coordinate markers. These markers use the 

location that indicates the value of the number. A Cartesian 

coordinate system records all the selection freedoms of a 

version of a number system.  The record removes the selection 

freedom and helps establish the version of the number 

system.[8] 

The geometric symmetry is created by the limitations imposed 

by the vector space. If number systems are designed without 

these limitations, then the geometric symmetries are not 

encountered. 
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9 Hilbert spaces 

David Hilbert discovered an extension of the concept of vector 

space called Hilbert space by his assistant John von Neumann. 

The Hilbert spaces have the surprising property that they can 

archive elements of the version of the number system used by 

the Hilbert space and then retrieve them in an orderly manner. 

The Hilbert space is often described as a vector space that is 

provided with an internal product. As previously argued, each 

vector space has a scalar product and not an internal product. 

Moreover, it is difficult to imagine that a vector that depicts 

itself via the scalar product yields a complex number or 

quaternion as an eigenvalue. Instead, Paul Dirac has found a 

significantly better procedure for converting a vector space into 

a Hilbert space. This procedure combines covariant ket vectors 

and contravariant bra vectors. These are not real vectors but 

are closely related to them. One problem is that Dirac only 

demonstrated this for the real numbers and the complex 

numbers. There was too little interest in quaternionic Hilbert 

spaces in that period. With a small effort, the procedure can be 

adapted so that it can also be used for quaternions. Hilbert 

spaces can thus work with any of the associative division rings. 

Each Hilbert space chooses a private version of one of these 

number systems. As mentioned, the Hilbert space can archive 

collections of elements of this version and retrieve them in an 

orderly manner. This also applies to the entire chosen version of 

this number system. There is a dedicated operator who 

manages this collection. I call this operator the reference 
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operator. This means that each Hilbert space has a private 

parameter space. This is a countable parameter space.  It also 

means that Hilbert space is characterized by the symmetry of 

the version of the number system.  The first version of the bra-

ket process works with countable number systems and yields 

Hilbert spaces that use a countable number of independent 

base vectors and are therefore called separable. In section 

Dirac’s bra-ket procedure the formulas are treated. 

9.1 Function space 

The private parameter space turns every Hilbert space into a 

function space. Through the functions, Dirac's bra-ket 

procedure defines new operators who manage the target space 

of the sampled function as eigenspace. 

9.2 Quantum logic 

To the surprise of many mathematicians, the set of the closed 

subspaces of Hilbert space appears to have a lattice structure 

that is slightly different from the lattice structure of classical 

logic. Some suggested that this deviation could be the cause of 

the quantum structure of the energy exchange observed in 

small particles and atoms. Therefore, the name quantum logic 

has been assigned to this new lattice.  [9] A more obvious 

explanation is given by differential calculus. Differential calculus 

only comes into effect in the third phase of number systems. 

Function theory and differential calculus describe the third 

phase of number systems. The Arithmetic of changes section 

describes the formulas that govern the third phase of number 

systems. 
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The countable parameter space of the separable Hilbert space 

concerns the first two phases of the number systems, or it is 

uncountable and concerns the untouched third phase. In that 

case, the Hilbert space is no longer separable. The non-

separable Hilbert space provides operators with eigenspaces 

that are uncountable or can manage multiple phases of the 

chosen number system.  The non-separable Hilbert space uses a 

modified version of Paul Dirac's bra-ket procedure in which 

integrals of functions are used instead of sums of series. This 

modified version provides insight into the workings of 

uncertainties and the expectation value of a stochastically 

spread series of numbers. 

9.3 Other features of Hilbert spaces 

By playing with subspaces of the Hilbert space several special features 

will be revealed. Subdividing into subspaces does not prohibit the 

content of the subspace from functionally relating to the content of 

other subspaces. 

9.3.1 Subdividing into Hilbert spaces 

The version of the number system that defines the private parameter 

space can be subdivided into other number systems with a lower 

number of dimensions. For example, for every direction-line in the 

spatial part of a quaternionic number system that crosses the number 0, 

the quaternionic number system contains a complex number system. 

The complex number system contains a real number system. Thus, the 

quaternionic Hilbert space contains complex-number-based Hilbert 

spaces as subspaces. These complex-number-based Hilbert spaces 

contain real-number-based Hilbert spaces as a subspace. These Hilbert 

spaces support their own function space. 
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9.3.2 Subdividing into parameter space and targe space 

When visualizing functions, humans intuitively put the parameter space 

and the target space into separated independent space parts. We will 

share that habit. 

The parameters relate to the target values. In non-separable Hilbert 

spaces, functions usually act in the third phase of the number system. 

However, sampled functions can be represented both in separable and 

non-separable Hilbert spaces. 

The subdivisions require extra dimensions. The vector space possesses 

ample space to harbor these extra dimensions. We call the subspace 

space that contains the target spaces of all functions the common 

target space. In a separable Hilbert space, the common target space can 

be spanned by an orthonormal set of base vectors that each represent a 

target value of one or more functions. 

9.3.2.1 Keeping the relation between parameter value and target value 

In the target space, the original arrangement of locations in parameter 

space can be destroyed. This would occur when oscillations or rotations 

are involved. This endangers the relation between parameter value and 

target value. In the model, this is resolved by embedding other Hilbert 

spaces or clusters of Hilbert spaces into the target space. The 

embedding plots the image of the Hilbert space or the cluster of Hilbert 

spaces into the target space. The embedded Hilbert spaces or Hilbert 

space clusters will implement the oscillations and rotations. The system 

of interacting Hilbert spaces is treated in A system of Hilbert spaces. 

9.3.2.2 The Hilbert Book model 

The Hilbert Book Model applies the real part of the parameter space to 

implement the indicator for the progression of change. It applies the 

common target space to harbor a collection of target spaces of static 

functions that each belong to the values of the corresponding 

progression indicator. We will call the value of the progression indicator 
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a timestamp. This introduces the notion of time into the model. This 

subdivision acts as the functionality of a book in which each page 

represents an instant of the history of the common target space. 

9.3.2.3 Separating the target space into a mirror-symmetric and an anti-mirror-symmetric part 

Along direction-lines on each page of the common target space, the 

mirror-symmetric functions can be represented by superpositions of 

cosine functions. The anti-mirror-symmetric functions can be 

represented by superpositions of sine functions. 

At the geometrical center of the parameter space, the cosine functions 

have a maximum. At the geometrical center of the parameter space, the 

sine functions switch from negative to positive. The anti-mirror-

symmetric target spaces will be placed in a separate subspace. In the 

formulas, this will be indicated by the imaginary factor i . In the Hilbert 

space, this imaginary factor represents a split into another subspace. 

A cosine function can be combined with a sine function that owns the 

same frequency into a complex-number valued exponential function. 

The imaginary factor i  belongs to the direction of that same direction-

line. The resulting complex exponential function has the remarkable 

property that it relates to the partial differential change operator that 

belongs to the selected direction-line. The details are presented in 

section Fourier transform in the formula chapter.  

The sine and cosine functions use spatial frequencies as their 

parameters. This introduces a frequency parameter space parallel to the 

spatial position parameter space. In the realm of the quaternionic 

Hilbert space, the frequency parameter space covers three dimensions. 

The frequency parameter space serves spectral functions that populate 

the common target space. We also call this representation the change 

space. 
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9.3.2.4 Separating the target space into scalar function targets and spatial function targets 

The split into mirror symmetric target space and anti-mirror symmetric 

target space can be done separately for the scalar function targets and 

the spatial function targets. 

9.3.3 Adding change with time 

If also change with time is included in the split into mirror-symmetric 

and anti-mirror-symmetric dependency, then the frequency parameter 

space will cover four dimensions. Fourier series show that the base 

vectors that span the location parameter space all are superpositions of 

the base vectors of the frequency parameter space with all 

Hansvl00##123456n coefficients having the same amplitude. This also 

holds vice-versa. 
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10 Potentials and forces 

In physics, potential energy is the energy held by an object 

because of its position relative to other objects.  

The potential at a location is equal to the work (energy 

transferred) per unit of actuator influence that would be 

needed to move an object to that location from a reference 

location where the value of the potential equals zero. 

We consider the potential to be zero at infinity. Thus, if infinity 

is selected as the reference location, then the potential at a 

considered location is equal to the work (energy transferred) 

per unit of actuator influence that would be needed to move an 

object from infinity to that location. The potential at a location 

represents the reverse action of the combined actuator 

influences that act at that location. 

10.1 Center of influence of actuators 

The influence of similar actuators can superpose. Thus. a 

geometrical center of these influences defines the location of 

the virtual location of a representant of the considered group of 

actuators. 

This virtual representant has a potential that has the potential 

of a point-like actuator of the same influence type. In the 

Hilbert Book Model static actual point-like actuators other than 

charges do not exist because the embedding field tends to 

remove them as quickly as possible. However static virtual 

point-like actuators can be defined. 

https://en.wikipedia.org/wiki/Energy
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10.2 Forces 

The first-order change contains five terms, two scalar terms, 

and three spatial terms. In each of these subgroups, the terms 

can compensate each other. In the group of spatial terms, the 

gradient of the scalar part of the quaternionic field can 

compensate for the time variation of the spatial part of the 

quaternionic field. If the curl of the part of the quaternionic 

field can be neglected, then the gradient of a local potential can 

cause a time variation of a spatial field that describes the 

movement of influenced objects. If these are massive objects, 

then these objects will be accelerated. So, the spatial field will 

represent a force field. 

10.3 Actuators 

The actuators of spherical responses discussed in this paper are 

listed in the table. 

 

Actuator Description Influenced 
objects 

Symbol 

  

Symbol 

  

Actual electric  
charge  

Electric charges that are the sources or 
sinks of electrical fields and cause 
potentials in both the electrical field and 
the dynamic universe field. The influenced 
objects are other electric charges. These 
charges locate at the geometrical centers of 
floating Hilbert spaces. 
 

Other 
electric 
charges 

Q  q  

Virtual electric 
Charge 

Virtual charges that represent a collection 
of electric charges 
 

Other 
electric 
charges 

Q  q  

Isotropic pulse Isotropic pulses that are embeddings of hop 
landings of the state vector of floating 
Hilbert spaces into the dynamic universe 
field. These pulse responses cause spherical 
pulse responses in the form of spherical 
shock fronts. 

Other 
massive 
objects 

M  m  
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Floating Hilbert space Virtual mass that represents a collection of 

isotropic pulses that are generated by a 
floating Hilbert space. 

 

Other 
massive 
objects 

M  m  

Virtual mass Virtual masses that represent a collection of 
masses of floating Hilbert spaces. 

 

Other 
massive 
objects 

M  m  

 

 

Electric fields and gravitational fields differ fundamentally in 

their start and boundary conditions. 

Electric charges can attract or repel each other. 

Masses will always attract each other. 

Spherical pulse responses in the form of spherical shock fronts 

are dark matter objects. 

11 Stochastic processes 

The characteristic function of a stochastic process that resides in the 

change space can control the spread of the location density distribution 

of the produced location swarm that resides in position space. 

The stochastic process consists of a Poisson process that regulates the 

distribution in the real-number-based progression space which is a 

subspace of the quaternionic Hilbert space and a binomial process that 

regulates the distribution in position space. This distribution is 

described by a location density distribution. 

The production of the stochastic process is archived in the eigenspace 

of a dedicated footprint operator that after reordering the timestamps 

stores its eigenvalues in quaternionic storage bins that consists of a real 

number valued timestamp and a three-dimensional spatial number 

value that represents a hop landing location. After sequencing the 
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timestamps in equidistant steps, the hop landing locations represent a 

hopping path of a point-like object. The hopping path regularly 

regenerates a coherent hop landing location swarm. The location 

density distribution describes this swarm. 

If this location density distribution is a Gaussian distribution, then its 

Fourier transform determines exactly the location density distribution 

of the swarm. The Fourier transform is again a Gaussian distribution, 

but it has different characteristics. The Fourier transform of the 

convolution of two functions equals the product of the Fourier 

transforms of the functions. 

The described stochastic process can deliver the actuators that 

generate the pulse responses that may deform the dynamic universe 

field. In some way, an ongoing embedding process must map the 

eigenspace of the footprint operator onto the embedding field. As 

previously argued, the footprint operator's eigenspace corresponds to a 

dynamic footprint vector that defines a location density function and a 

probability amplitude. The footprint vector resides in the underlying 

vector space and has a representation in Hilbert space via the footprint 

operator. The footprint vector acts as the state vector of the separable 

Hilbert space and the probability amplitude corresponds to what 

physicists call the wavefunction of the represented moving particle. 

 

11.1 Optical Transfer Function and Modulation Transfer function 

The stochastic processes that own a characteristic function which is 

described here, are in common use in the qualification of imaging 

quality via the Optical Transfer Function of an imaging process or 

imaging equipment. The Optical Transfer Function is the Fourier 

transform of the Point Spread Function. For spatial locations, the PSF 

acts as a location density distribution. The modulus of the Optical 
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Transfer Function is a symmetric function and is called the Modulation 

Transfer Function. The vertical axis of the MTF shows the energy 

distribution of the spatial spectrum. In the case of light, it is the 

chromatic distribution of the PSF. A central peak in the form of a quick 

decrease of the MTF at low spatial frequencies indicates the existence 

of a veiling glare or halo. It is energy that is less correlated to location. 

The Line Spread Function equals the integral over the Point Spread 

Function in the direction of the line. The Fourier transform of the Line 

Spread Function equals the cut through the center of the Optical 

Transfer Function. The cut is taken perpendicular to the direction of the 

line. The LSF can be a function of the direction of the line. In that case, 

the PSF has a non-isotropic angular distribution. The result of the 

Fourier transform conforms to the convolution of the OTF with the 

Fourier transform of the blade sharp pulse that corresponds to the 

Fourier transform of the integral along the line. 

If the PSF is generated in a dynamic ongoing process, then also a phase 

distribution will occur. The Optical Transfer Function combines the 

Modulation Transfer Function and the Phase Transfer Function. The 

Phase Transfer Function is the argument of the Optical Transfer 

Function. 

A system of Hilbert spaces that share the same underlying vector space 

can perform the job of the imaging platform. In this system, the imaging 

process will be called the embedding process. This explanation still says 

nothing about the essence of the necessary underlying stochastic 

selection process. That remains a mystery. 

The concept of the Optical Transfer Function also makes sense for 

dependence on time. For time dependence the tool is called Fourier 

analysis. Together the two tools perform a four-dimensional spectral 

analysis. 
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11.2 Photons 

Photons are not electromagnetic waves. Instead, photons consists of 

chains of equidistant one-dimensional shock fronts that travel along a 

geodesic. The one-dimensional shock fronts are dark energy objects. 

See the section on differentiation. 

11.3 Light 

Light is a distribution of photons. A beam of light can have an angular 

distribution, a chromatic distribution, and a phase distribution. A 

homogeneous beam of light contains a single frequency and usually a 

narrow angular distribution. 

11.4 Refraction 

Refraction occurs at the borders of transparent media in which 

information transfer occurs with constant speed. The information 

transfer can take place by chains of absorption and reemission cycles. In 

free space nothing exist that absorbs or emits photons, but photons can 

travel through free space [10]. 

Refraction enables the construction of lenses, fiber plates, optical fibers, 

prisms, and mirrors.  

Refraction is covered by a separate part of optics. [11]  

11.5 Holographic imaging 

Transparent optical lenses and tiny apertures can act as Fourier 

transformers. They map distributions of photons in position space into 

distributions in frequency space. These distributions are called 

holograms. [12] Holograms can be captured in photographs. Also, metal 

mirrors imprinted with phase patterns can generate holograms when a 

coherent beam of light is reflected by the imprinted mirror. 

. 
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11.6 Electron optics 

Electron optics concerns the imaging of charged particles by artificially 

constructed electric or magnetic fields, or by electromagnetic fields 

[13][14]. Construction elements are metallic electrodes that are put at a 

given voltage or coils that carry electric currents. 

Radio transmission is a special kind of electron optics. 
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12 Social influences 

The promising discussion about set theory and number systems 

was disrupted by the rise of National Socialism in Hitler's Nazi 

Germany. Key participants in the discussion were threatened or 

had to flee to safer places. Many of them fled to the United 

States of America and were morally obliged to cooperate in the 

fight against Nazism by participating in the development of new 

weapon systems, such as the atomic bomb. Their attention was 

no longer focused on sets and number systems. This effect was 

exacerbated by the success of the complex functional analysis 

with which singularities can be treated. [15]  

Joshua Willard Gibbs and Oliver Heaviside led the physicists in 

the direction of vector analysis. [16] 

As a result, attention to geometric differential theory grew. [17] 

In this way, it was thought that the spatial functions would be 

sufficient to explain physical phenomena. However, this choice 

is at the expense of the relationship with the real functions, 

which is more clearly regulated in quaternionic function theory.  

Many physicists no longer understood the reason why Hilbert 

spaces were brought to their attention.  The complex Hilbert 

spaces became a toy of the mathematicians who developed all 

kinds of fancy complex Hilbert spaces. 
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13 Ongoing investigation 

At CERN in Geneva, sufficiently far from the Nazi sphere of 

influence, a small group continued with quantum logic and   

Hilbert spaces.  My attention to this group was guided to 

quaternionic Hilbert spaces by reading the book "Foundations 

of quantum mechanics", written by Josef M.  Yauch. [18] 

 Due to too few results, this research languished and died out in 

the sixties. 
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14 New insight 

Now we are taking a giant step. This step concerns a significant 

difference in understanding between me and mainstream 

theoretical physics. This difference is prompted by the curious 

short list of properties of the electric charges of the first 

generation of elementary fermions. This list covers charges with 

values -1, -2/3, -1/3, 0, +1/3, +2/3, and +1. This list is included as 

part of the Standard Model of the experimental particle 

physicists who have summarized their main observations in that 

Standard Model.  [19] 

Multiplying with 3 turns the list into a list of integers -3, -2, -1, 0, 

+1, +2, and +3. This is the list of differences between a 

reference symmetry and other symmetries of versions of 

quaternionic number systems, when the coordinate axes are 

confined to be parallel.  

We limit our use of the Standard Model to a subset and exclude 

the bosons and the gluons. We also exclude theoretical theories 

like Quantum Field Theory, Quantum Electro Dynamics, and 

Quantum Chromo Dynamics that were inserted into the 

 



34 
 

Standard Model by opportunistic theoretical physicists that 

spoiled the experimental results with their not-so-well-founded 

theoretical ideas. These theories base om the minimal action 

principle from which a Lagrangian is derived. These concepts 

play in the third phase of number systems. The calculation rules 

and restrictions of the third phase are set in the first and second 

phases. Therefore, these theories cannot explain the existence 

of electric charges and the existence of different types of 

fermions. These theories have no good explanation for the 

existence of the wavefunction and their explanation for the 

existence of conglomerates is questionable. 

The similarity with the symmetries of versions of number 

systems stimulated me. It is not the similarity with the 

symmetries themselves that provides the reason, but instead, 

the differences between the symmetries of the versions of the 

number systems that float with their separable Hilbert space 

and the symmetry of a version of the number system that acts 

as a background platform control the situation. This is what 

happens in a system of separable Hilbert spaces that all apply 

the same underlying vector space. 
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15 A System of Hilbert spaces 

The author calls the system of Hilbert spaces the Hilbert 

repository because it stores all data of a multiverse. Two types 

of systems of Hilbert spaces exist. Both systems contain a 

member that acts as a background platform.  

The first type is a system of separable Hilbert spaces. The 

background platform owns a companion non-separable Hilbert 

space that embeds its separable companion. This companion 

archives a dynamic universe field. The floating separable 

members can harbor an electric charge that locate at their 

geometric center. A dark hole harbors the countable parameter 

space of the separable Hilbert space that acts as the 

background platform. 

The second type is a system of non-separable Hilbert spaces. 

The background platform is a non-separable Hilbert space, that 

archives a dynamic multiverse field. The parameter space of the 

background platform is a continuum and therefore it is not 

contained in a black hole. The floating members of the system 

are the background platforms of systems of separable Hilbert 

spaces that own a companion non-separable Hilbert space that 

embeds its separable partner. The parameter space of the 

separable part of the background platform is contained in a 

dark hole. 

This configuration represents a dynamic multiverse that divides 

part of the underlying vector space into a set of compartments, 

that each supports a dynamic universe. 
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15.1 A System of separable Hilbert spaces 

We limit ourselves to Hilbert spaces that are all derived from 

the same vector space. We choose four mutually independent 

directions in the underlying vector space. The axes of the 

Cartesian coordinate system of the number system shall be 

parallel to one of the chosen direction-lines. This choice, 

therefore, leaves only a small number of different symmetry 

types.  The exact reason why this restriction is enforced is not 

clear. However, it is obvious that the limitation makes it easier 

to compare symmetries and compute symmetry differences. 

To understand the consequences of the limitation, we put the 

symmetries of the remaining versions of the quaternionic 

number system in a table whose lines we arrange with binary 

written hexadecimal rank numbers. We choose one of the 

 

No R G B real Difference charge type Rgb 

0 0 0 0 0 0 0 background  

1 1 0 0 0 1 -1/3 down R 

2 0 1 0 0 1 -1/3 down G 

3 1 1 0 0 2 -2/3 anti-up B 

4 0 0 1 0 1 -1/3 down B 

5 1 0 1 0 2 -2/3 anti-up G 

6 0 1 1 0 2 -2/3 anti-up R 

7 1 1 1 0 3 -3/3 electron  

8 0 0 0 1 0 0 neutrino  

9 1 0 0 1 -1 1/3 anti-down B 

A 0 1 0 1 -1 1/3 anti-down G 

B 1 1 0 1 -2 2/3 up R 

C 0 0 1 1 -1 1/3 anti-down R 

D 1 0 1 1 -2 2/3 up G 

E 0 1 1 1 -2 2/3 up B 

F 1 1 1 1 -3 3/3 positron  

 B G R      
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sixteen remaining versions as a frame of reference platform and 

place this version at the front of the queue. In the table, the 

fitting fermions are mentioned by name. 

You will notice that the anti-attribute raises a conflict between 

symmetries and the electric charges of the Standard Model. The 

reason might be that the anti-attribute is not measurable. 

All these Hilbert spaces are separable and use number systems 

that belong to the first or second phase. 

The remaining system of Hilbert spaces contains a Hilbert space 

that can serve as a background platform.  We assume that the 

reference version acts as background platform. 

The background platform must have an infinite number of 

subspaces. This means that the version of the number system 

chosen by this Hilbert space has an infinite number of elements. 

15.2 A modelling platform 

A system of Hilbert spaces that all share the same underlying 

vector space can act as a modeling platform that not only 

supports dynamic fields that obey quaternionic differential 

equations. The model can in principle capture all phenomena 

that exists in a dynamic universe. 

The system of separable Hilbert spaces applies the structured 

storage capacity of the Hilbert spaces that are members of the 

system. The requirement that all member Hilbert spaces must 

share the same underlying vector space restricts the types of 

Hilbert spaces that can be a member of the system of separable 
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Hilbert spaces. In the chapter about change, we already 

restricted the definition of partial change along the directions of 

the Cartesian coordinate system. It appears that the coordinate 

systems that determine the symmetry type of the members of 

the system of separable Hilbert spaces must have the Cartesian 

coordinate axes in parallel. Possibly this is due to the existence 

of the primitive coordinate system in the underlying parameter 

space. The restriction enables the determination of differences 

in symmetry. Only the sequence along the axis can be freely 

selected up or down. It also means that partial change has a 

systemwide significance. This also means that only a small set of 

symmetry types will be tolerated. One of the Hilbert spaces will 

act as the background platform and its symmetry will act as 

background symmetry. Its natural parameter space will act as 

background parameter space of the system. All other members 

of the system will float with the geometric center of their 

parameter space over the background parameter space. This 

already generates a dynamic system. The symmetry differences 

generate symmetry-related sources or sinks that will be located 

at the geometric center of the natural parameter space of the 

corresponding floating Hilbert space. The sources and sinks 

correspond to symmetry-related charges that generate 

symmetry-related fields. In physics these symmetry-related 

charges are electric charges 

Not the symmetries of the floating Hilbert spaces are important. 

Instead, the differences between the symmetry of the floating 

member and the background symmetry are important for 
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establishing the type of the member Hilbert space. The counts 

of the differences in symmetry restrict to the shortlist -3, -2, -1, 

0, +1, +2, +3. 

The existence of symmetries and symmetry differences can be 

comprehended. The existence of corresponding symmetry-

related charges is counterintuitive. The realization of these 

charges as sources or sinks of symmetry-related fields is not yet 

explained. 

All floating Hilbert spaces are separable. The background Hilbert 

space is an infinite-dimensional separable Hilbert space. It owns 

a non-separable companion Hilbert space that embeds its 

separable partner. 

The system of separable Hilbert spaces supports the containers 

of footprints that can map into the quaternionic fields. The 

vectors that represent the footprint vectors originate in the 

underlying spatial field. They act as state vectors for the Hilbert 

spaces that act as containers for the footprints. The state vector 

represents the vector from the underlying vector space that 

aims at the geometric center of the floating Hilbert space. This 

enables the maps of these state vectors and the corresponding 

footprint in the dynamic universe field. The state vector 

represents a vector from the underlying vector space that tries 

to locate the position of the geometric center of the floating 

platform in the parameter space of the background platform. 

State vectors are special footprint vectors. Together this 

entwined locator installs an ongoing embedding process that 
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acts as an imaging process of the geometric center of the 

floating platform onto the background parameter space. The 

eigenspace of a dedicated operator maps this image into the 

dynamic field that represents the universe.   

In this way, a huge amount of ongoing hopping paths are 

mapped onto the embedding field. Physicists call this dynamic 

field the universe. On the floating platforms, the hopping paths 

are closed. The movement of the floating platforms breaks the 

closure of the images of the hopping paths. 

15.2.1 Conglomerates 

Elementary fermions appear to behave as elementary modules. 

The conglomerates of these elementary modules populate the 

dynamic field that we call our universe. All massive objects, 

except black holes, are conglomerates of elementary fermions. 

All conglomerates of elementary fermions own mass. This 

means that the universe is covered by massive modular 

systems. 

A private stochastic process determines the complete local life 

story of each elementary fermion. That stochastic process is 

controlled in the change space of its private Hilbert space. The 

private stochastic process produces an ongoing hopping path 

and corresponds to a footprint vector that consists of a 

dynamically changing superposition of the reference operator's 

eigenvectors. This is explained in the section of the formula 

chapter that treats the arithmetic of change. Each floating 

platform of the system of separable Hilbert spaces owns a 
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single private footprint vector. The footprint vector acts as the 

state vector of the elementary fermion and the probability 

amplitude corresponds to what physicists call the wavefunction 

of the particle. 

This invites the idea that conglomerates of elementary fermions 

are defined by stochastic processes whose characteristic 

functions are defined in the change space of the background 

platform. In this change space, the characteristic function of a 

stochastic process that defines a conglomerate is a 

superposition of the characteristic functions of the components 

of the conglomerate. The dynamic superposition coefficients 

act as displacement generators. This means that these 

displacement generators define the internal oscillations of the 

components within the conglomerates. It might not hold for 

higher order conglomerates, but it holds for the lower order 

conglomerates. 

Since in change space, the position is not defined, the fact that 

a component belongs to a conglomerate does not restrict the 

distance between the components. This way of defining the 

membership of a conglomerate introduces entanglement. 

Independent of their mutual distance, components of a 

conglomerate must still obey the Pauli exclusion principle. 

15.2.2 Interaction with black holes 

Field excitations cannot enter or leave black holes, but the 

Hilbert spaces that represent elementary fermions may hover 

over the enclosed region of the black hole. So, part of the 
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footprint of the elementary particle may be mapped into the 

region of the black hole. The mass of the black hole attracts 

nearby elementary fermions. Together with the effect of 

hovering this may enable the growth of black holes and the 

merge of approaching black holes. It may also explain the 

merge of a black hole and a dense star. 

15.2.3 Hadrons 

Hadrons can be mesons or baryons. They are conglomerates of 

quarks.  Quarks can only bind via oscillations and via the 

attraction that is induced by their electric charges. Since the 

symmetry of quarks does not differ from the background 

symmetry in an isotropic way, the footprint of quarks does not 

deform the embedding field. So, mass does not help to bind the 

quarks until they reach an isotropic symmetry difference. This 

phenomenon is called color confinement. Hadrons feature 

mass. Thus, these conglomerates are sufficiently isotropic to 

deform the embedding field. Once configured, the mutual 

binding of baryons is very strong. The nuclei of atoms are 

constituted by baryons. 

15.2.4 Atoms 

Compound modules are composite modules for which the 

images of the geometric centers of the platforms of the 

components coincide in the background platform. The charges 

of the platforms of the elementary modules establish the 

primary binding of the corresponding platforms. Physicists and 

chemists call these compound modules atoms or atomic ions. 
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In free compound modules, the geometric symmetry-related 

charges do not take part in the internal oscillations. The targets 

of the private stochastic processes of the elementary modules 

oscillate. This means that the hopping path of the elementary 

module folds around the oscillation path and the hop landing 

location swarm gets smeared along the oscillation path. The 

oscillation path is a solution to the Helmholtz equation. Each 

fermion must use a different oscillation mode. A change of the 

oscillation mode goes together with the emission or absorption 

of a photon. As suggested earlier the emission or absorption of 

a photon involves a switch from the quaternionic Hilbert space 

to a subspace that is represented by a complex-number-based 

Hilbert space. The duration of the switch lasts a full particle 

regeneration cycle. During that cycle, the stochastic mechanism 

does not produce a swarm of hop landing locations that 

produce pulses that generate spherical shock fronts, but 

instead, it produces a one-dimensional string of equidistant 

pulse responses that cause one-dimensional shock fronts. The 

center of emission coincides with the geometrical center of the 

compound module. This ensures that the emitted photon does 

not lose its integrity. All photons will share the same emission 

duration, and that duration will coincide with the regeneration 

cycle of the hop landing location swarm. This is the reason that 

photons obey the Planck-Einstein relation E hv= . Absorption 

cannot be interpreted so easily. It can only be comprehended as 

a time-reversed emission act. Otherwise, the absorption would 

require an incredible aiming precision for the photon. The 
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number of one-dimensional pulses in the string corresponds to 

the step in the energy of the Helmholtz oscillation. 

The type of stochastic process that controls the binding of 

components appears to be responsible for the absorption and 

emission of photons and the change of oscillation modes. If 

photons arrive with too low energy, then the energy is spent on 

the kinetic energy of the common platform. If photons arrive 

with too high energy, then the energy is distributed over the 

available oscillation modes, and the rest is spent on the kinetic 

energy of the common platform, or it escapes into free space. 

The process must somehow archive the modes of the 

components. It can apply the private platform of the 

components for that purpose. Most probably, the current value 

of the dynamic superposition coefficient is stored in the 

eigenspace of a special superposition operator. 

15.2.5 Molecules 

Molecules are conglomerates of compound modules that each 

keep their private geometrical center. However, electron 

oscillations are shared among the compound modules. 

Together with the geometric symmetry-related charges, this 

binds the compound modules into the molecule. 

15.2.6 Earth  

On Earth, conglomerates of molecules can form living species. 

Living species archive essential properties in RNA and DNA 

molecules. 
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15.2.7 Particles and fields 

The floating elements of the system can be interpreted as particles. In 

contrast, the background platform cannot be interpreted as a particle. 

Still, all elements of the system of Hilbert spaces are platforms that 

show similar capabilities and properties. All floating platforms act like 

symmetry-related fields and these fields correspond to symmetry-

related charges. The background platform does not show a symmetry-

related field and a symmetry-related charge. Instead, it acts as a 

universe-wide embedding field that can be deformed by the presence 

of floating members. Mainstream physics considers the Higgs particle 

responsible for the capabilities that this paper assigns to the 

background platform. In this paper the background platform including 

its non-separable companion implements the origin of the gravitational 

potential via the action of spherical shock fronts that are generated by 

actuators that cause isotropic pulses. 

15.3 A System of non-separable Hilbert spaces 

This system shows some similarities with the holographic principle that 

is promoted by some theoretical physicists [20]. However, this 

resemblance is reached without the tools of string theory or quantum 

gravity because in this paper the black hole is supposed to contain a 

countable parameter space that relates to a continuous surrounding 

common target space. The system does not show the recycling universe 

of Sir Roger Penrose.  

The floating members of the system are universes that are relationally 

connected to a private black hole. The corresponding compartment of 

space represents the influence range of this black hole. The countable 

parameter space contained in the black hole relates to the content of 

the compartment.  The borders of the compartments do not act as 

barriers for photons, fermions, atoms, planets, or stars. The background 
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member of the system contains the continuum parameter space of the 

whole multiverse. It relates to all the contained universes 

 Astronomers observe that black holes can merge and that neutron 

stars can collapse into new black holes. These events redistribute the 

compartments. These events cause graphical shock fronts that are 

constituted of a huge number of superposed spherical shock fronts 

which are generated in a small region and in a small period. 

Gravitational wave is a misnomer for these phenomena. 

The parameter space of the multiverse adapts to the changes of the 

covered compartments. 

16 Conclusions 

The Hilbert Book Model applies the system of Hilbert spaces 

that all share the same underlying vector space. The author calls 

this system the Hilbert repository. This approach differs on 

several essential points from the approach that mainstream 

physics follows. Still, an astonishing agreement exists between 

the Standard Model of the elementary fermions that is 

contained in the Stand Model of the experimental particle 

physicists and the system of separable Hilbert spaces.  

In the system of separable Hilbert spaces, spatial coordinate 

axes play an important role. These axes must be systemwide in 

parallel. In spatial continuums, first-order change usually occurs 

along the spatial coordinate axes. In locally spherical symmetric 

conditions change covers all directions. The freedom of choice 

left by spatial arithmetic always occurs along the Cartesian 

coordinate axes.  Possibly this is due to the adaptation to the 
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primitive coordinate system that exists in the underlying 

parameter space. 

In the Hilbert Book Model (HBM), the footprints of all massive 

objects are recurrently regenerated with a high repetition rate 

that corresponds with the duration of the emission of photons.  

Mainstream physics still has not found a suitable explanation 

for dark matter objects and dark energy objects. The HBM 

explains these objects as field excitations that behave as shock 

fronts and are described in detail by solutions of second-order 

quaternionic partial differential equations. The spherical shock 

fronts are the only field excitations that deform the field that 

embeds them. Photons are strings of equidistant one-

dimensional shock-fronts. Black holes are slowly varying objects 

that contain a countable content. Black holes deform their 

continuous surround. 

Elementary fermions are complicated objects that are 

represented by a private quaternionic separable Hilbert space 

that manages the properties of the fermion. These Hilbert 

spaces own a private parameter space and a private symmetry. 

The separable Hilbert spaces float with the geometric center of 

their parameter space over a background parameter space that 

is managed by a background separable Hilbert space. This 

background Hilbert space owns a non-separable Hilbert space 

The non-separable Hilbert space embeds its separable 

companion. The non-separable Hilbert space manages several 

continuums in the eigenspace of a corresponding dedicated 
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operator. One of the continuums is a dynamic field, which 

physicists call universe. The universe field embeds the images of 

the geometric centers of the floating separable Hilbert spaces. 

This map is blurred by stochastic disturbances of the locator 

vector that resides in the underlying vector space and points to 

the geometric center of the floating Hilbert space. Depending 

on the difference in symmetry, the embedding of the image 

may cause a spherical shock response that will temporarily 

deform the universe field. The corresponding shock front moves 

away in all directions until it vanishes at infinity. The content of 

the shock front expands the covered volume of the field. An 

isotropic symmetry difference with the background platform is 

required for the generation of the spherical shock front. Only a 

few fermions feature an isotropic symmetry difference.  

Isolated quarks do not possess the required isotropic symmetry 

difference and will not produce a deformation of the universe. 

However, combined in a hadron such that the combination 

features an isotropic symmetry difference, the hadron can 

cause deformation. This phenomenon is known as color 

confinement. 

The non-separable Hilbert space embeds its separable partner. 

Consequently, the parameter space of the non-separable 

Hilbert space is the parameter space of the separable 

companion Hilbert space where the irrational numbers are 

added to the rational numbers. The result is a continuum. The 

parameter spaces are not affected by deforming actuators. 

However, the continuum eigenspaces of other operators than 
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the reference operator of the non-separable can be vibrated, 

deformed, and expanded. 

Symmetry-related charges are located at the geometric centers 

of the floating Hilbert spaces. The charges depend on the 

difference in symmetry between the floating platform and the 

background platform. The charges act as sources or sinks of 

corresponding symmetry-related fields. These fields differ 

fundamentally from the universe field. However, both types of 

fields obey the same quaternionic field equations. They differ in 

their start and boundary conditions. 

The archival of the footprint in the floating separable Hilbert 

space enables the independent retrieval of that footprint at a 

later instance. Thus, the footprint can have been generated in 

an episode before the beginning of the flow of time. The 

retrieval can occur as a function of the flow of time and uses 

the archived timestamps for synchronizing the retrieval. This 

means that at the instant of time zero, none of the archived 

footprint data was retrieved. Without deforming actuators, the 

embedding field stays flat. Thus, at the beginning of the flow of 

time, the embedding field was in its maiden state. The function 

that described the universe field was equal to its parameter 

space. Immediately after that instant, the locator landings 

started, distributed randomly over that parameter space, to 

mark the locations of the geometrical centers of the floating 

Hilbert spaces. Depending on the symmetry of the floating 

Hilbert space this resulted in a corresponding spherical shock 
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front. This certainly does not look like the Big Bang that 

mainstream physics promotes. Instead, already at its start, the 

ongoing embedding was a quiet imaging process. 

The background non-separable Hilbert space defines in change 

space the conglomerates of elementary fermions as 

superpositions. For that reason, it applies the characteristic 

functions of the stochastic mechanisms that generate the 

footprints of the elementary fermions. In change space, the 

position is not defined. This is the reason for the existence of 

entanglement. The Pauli exclusion principle works 

independently of the distance between the elements of the 

conglomerate. 

Elementary fermions act like elementary modules. Together 

they constitute all massive objects that occur in the universe. 

The notorious exception is formed by black holes. For the rest, 

the content of the universe is one large modular system that 

produces a huge number and enormous diversity of modular 

subsystems. Atoms, molecules, rocks, planets, stars, galaxies, 

and living species are all examples of modular systems. Every 

human is a modular system. On planet earth, before the arrival 

of humans, modularization happened in a stochastic way. Since 

the arrival of humans, modularization can happen intelligently. 

Computers and robots are excellent examples of this 

development. 

Once the elementary fermions were formed, the rest of the 

content of the universe followed automatically. Modular 
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systems that care for their own community and that take care 

of the modular systems on which they depend have the 

greatest chance to survive. See “A law of nature” in [21].  

Mainstream physics usually bases on the steady action 

principle. The steady action principle does not request a 

recurrent regeneration of the objects that occur in the universe. 

It does not request that conglomerates be generated in a 

modular way. It also does not oppress the strange reaction of 

continuums to disruptions by actuators. 

Forces require a point of engagement. Fields do not own a point 

of engagement. For quaternionic functions, the first-order 

change already connects the gradient of a scalar field to the 

time variation of the corresponding spatial part of the field. It 

suffices that the universe field shows a gradient in its scalar part 

and that the spatial part of the field moves uniformly. Thus, a 

gravitational potential raises an acceleration of the moving 

spatial field. Intuition cannot tell you this. But mathematics 

does. 

Finally, the paper introduces the system of non-separable 

Hilbert spaces. This system concerns a multiverse consisting of 

universes that all apply a black hole to archive the private 

parameter space of the background platform of the system of 

separate Hilbert spaces that represents the considered dynamic 

universe. The system of non-separable Hilbert spaces 

corresponds to a coverage of space by compartments that each 

contain a dynamic universe and a private black hole. 
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Astronomers observe that black holes can merge and that neutron stars 

can collapse into new black holes. These events redistribute the 

compartments. 
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17 Formulas 

This chapter applies MathType to formulate equations 

17.1 Physical units 

This chapter applies mathematical formulas that do not contain physical 

units. Physical units represent the adaptation of the considered subject 

to units that experimental physicists use to measure that subject. In 

fact, lightspeed c  is such physical unit because it represents a physical 

unit measured in meters per second. Physicists use the permittivity 

0 1  = for the electrical field. In free space 
1 1 = . Physicists use the 

permeability 
0 1  = for the electrical field. In free space 

1 1 = .  

The two physical units are related via light speed c  [22] [23]. 

 2

0 0

1
c

 
=   (17.1.1) 

17.2 Vector arithmetic 

In this section vectors that reside in a vector space will be indicated 

with boldface and scalars will be indicated with italics. 

The addition of vectors is commutative. It can be done by shifting one of 

the vectors in parallel until it coincides with the alternative point of the 

other vector. Now the two resulting points represent the vector sum. 

The arithmetic of scalars resembles the arithmetic of rational members 

of the real number systems. Vector addition is commutative. The 

addition creates new vectors. 

 + = +v w w v   (17.2.1) 

Vector addition is also associative. 

 ( ) ( )+ + = + +u v w u v w   (17.2.2) 
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Multiplication with a scalar is commutative. This multiplication may 

change the length and thus the integrity of the vector. It may create a 

new vector. 

 a a= =w v v   (17.2.3) 

Multiplication with scalars is distributive for scalars and vectors. 

 
( )

( )

a b a b

a a a

+ = +

+ = +

v v v

v w v w
  (17.2.4) 

Multiplication with negative scalars reverses the direction of the vector. 

In particular   

 ( )1− = −v v   (17.2.5) 

 

Vectors obey a scalar product. However, they do not obey an outer 

product. Otherwise, their arithmetic would be equal to the arithmetic of 

the spatial numbers, and the dimension of the vector space would be 

limited by three. 

17.2.1 Base vectors 

A selected base  iu  is a subset of the vectors that is used to define 

another vector as a superposition of the members of the base. 

 
0

i N

i i

i

v
=

=

= v u   (17.2.6) 

A scalar product ,v w  of two vectors v  and w would be defined in 

terms of the orthonormal base  iu as  

 
0

, ,
i N

i j i j

i

v w
=

=

= v w u u   (17.2.7) 

while 
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 ,i j ij=u u   (17.2.8) 

If the orthonormal base spans the full vector space, then the vector 

space contains N dimensions. N can be infinite. 

The scalar product that is taken over all dimensions generates a metric. 

That metric can establish the length 
a
 of the vectoraas a scalar. The 

scalar product can indicate the length of a vector 

 
2

,

=

=

a a

a a a
  (17.2.9) 

If the scalar product equals zero, then either one of the vectors has zero 

length, or the two vectors live in different dimensions. In that case, the 

vectors are independent. In a N dimensional vector space precisely N  

vectors can be mutually independent.  

The scalar product can be applied to construct a set of coordinate 

markers that together form a coordinate system. 

 

17.3 Arithmetic of real numbers 

We will indicate the real numbers with the suffix ᵣ.  

For real numbers, addition and multiplication are commutative, 

associative, and distributive. 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

+ = +

+ + = + +
  (17.3.1) 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

=

=
  (17.3.2) 

 ( )r r r r r r ra b c a b a c+ = +   (17.3.3) 
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For real numbers, the square is zero or it is positive  

 0r ra a    (17.3.4) 

 

17.4 Arithmetic of spatial numbers 

For spatial numbers, addition and multiplication are 

commutative and associative. 

 
( ) ( )
b a a b

a b c a b c

+ = +

+ + = + +
  (17.4.1) 

The product d of two spatial numbers a and b results in a 

real scalar part 
rd  and a new spatial part d  

 rd d d ab= + =   (17.4.2) 

,rd a b= −  is the inner product of a and b  

For the inner product and the norm a holds 
2

,a a a=  

 , cos( )a b a b =   (17.4.3) 

The angle   between the spatial numbers a and b is measured 

in radians. 

The square of a spatial number equals zero or it is a negative 

real number. 

 , 0aa a a= −    (17.4.4) 

d a b=  is the outer product of a and b  
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The spatial part d is independent of a and independent of 

b . This means that , 0a d = and , 0b d =  

 
sin( )a b a b

a b b a

 =

 = − 
  (17.4.5) 

It is possible to write spatial numbers as superpositions of base 

numbers. For the three-dimensional spatial numbers, this 

means. 

 i j ka a i a j a k

i j k

= + +

=  
  (17.4.6) 

The   sign indicates the chiral choice of the handedness of the 

outer product.  

 

17.5 Mixed arithmetic 

The addition and multiplication of real numbers with spatial numbers 

are commutative.  

 r r

r r

a b b a

a b ba

+ = +

=
  (17.5.1) 

Mixed numbers are indicated without suffixes and caps. In the next 

formula c is a mixed number. 

 
rc c c= +   (17.5.2) 

Quaternionic multiplication obeys the equation  
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( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (17.5.3) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. In this way, the handedness of the product rule is 

treated as a special kind of symmetry. The version must be selected 

before it can be used in calculations. 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (17.5.4) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase   of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 

space, the real parts of quaternions are often interpreted as instances 

of (proper) time, and the spatial parts are often interpreted as spatial 

locations. With these interpretations, the real parts of quaternionic 

functions represent dynamic scalar fields. The spatial parts of 

quaternionic functions represent dynamic spatial fields. These fields are 

often called vector fields. This is a misleading name. Vectors obey 

different arithmetic. 

17.6 Arithmetic of change 

In continuums, all convergent series of numbers end in a limit that is a 

member of that continuum. This fact enables the differentiation of the 

continuum. Differential calculus shows that a continuum can change. 
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The continuum shows astonishing behavior. It has the habit to remove 

deformations. Without disturbing actuators, the continuum stays flat. 

17.6.1 Differentiation 

Along a direction-line, change can be described by a partial differential. 

If in a region of the space coverage inside this direction-line all 

converging series of coordinate markers result in a limit that is a 

coordinate marker, then the partial change of the space coverage along 

the direction of r is defined as the limit  

 
( )

0

( )
lim
r

r r r

r r

  

→

+ −
=


  (17.6.1) 

  

If the region is covered by all its irrational numbers, then this limit 

exists. The existence of the limit is not ensured. If the limit does not 

exist, then the location represents a singular point. It is also possible 

that the surrounding region is covered by a discrete set of point-like 

objects.  

If the spatial part of the neighborhood is isotropic and the limit also 

exists in the real number space, then the total differential change df of 

field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (17.6.2) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Thus, 
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4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (17.6.3) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a spatial part. 

The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first-order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (17.6.4) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia. The partial derivatives in the change operator only 

use parameters that are taken from the natural parameter space. 

 
( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (17.6.5) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have separate physical 

meanings. All basic fields feature this decomposition. The terms may 

represent new fields. 

https://en.wikipedia.org/wiki/Del
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 ,r r r  =  −    (17.6.6) 

r  is a scalar field. 

 
r r   =  +      (17.6.7) 

  is a spatial field. 

f is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

Important properties of the del operator are 

 ( ) 2,     =  =    (17.6.8) 

 ( ), 0   =   (17.6.9) 

 ( ) 0r   =   (17.6.10) 

 ( ) ( ) ( ), ,      =   −     (17.6.11) 

Sometimes parts of the change get new symbols 

 
r rE  = − −   (17.6.12) 

 B =    (17.6.13) 

The formula (17.6.5) does not leave room for gauges. In Maxwell 

equations, the equation (17.6.6) is treated as a gauge. 

 ( ), 0B =   (17.6.14) 

 
r r rE B  = −  − = −   (17.6.15) 
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 ( ) ( ) ( ), , ,r rE   = −  −     (17.6.16) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r =  −   (17.6.17) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (17.6.18) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (17.6.5) and (17.6.18).  

 † * † *

r r r =  =  − =  +  =  +    (17.6.19) 

In the Hilbert space, the quaternionic nabla is a normal operator. The 

operators 

 † † * * ,r r  =  =   =  =   +     (17.6.20) 

are normal operators who are also Hermitian operators. 

The separate operators
r r   and ,   are also Hermitian operators.  

,  is known as the Laplace operator.  

The two operators can also be combined as ,r r=   −    . This is 

the d’Alembert operator.  
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The solutions to , 0r r  +   =  and , 0r r  −   =  differ. These 

two equations offer different solutions and for that reason, they deliver 

different dynamic behavior of the field. The equations control the 

behavior of the embedding field that physicists call their universe. This 

dynamic field exists everywhere in the reach of the parameter space of 

the function. Both equations also control the behavior of the symmetry-

related fields. The homogeneous d’Alembert equation is known as the 

wave equation and offers waves and wave packages as its solutions. 

Both equations offer shock fronts as solutions but only the operators in 

(17.6.20) deliver shock fronts that feature a spin or polarization vector. 

Integration over the time domain turns both equations in the Poisson 

equation and removes the spin or polarization vector. Shock fronts 

require a corresponding actuator and occur only in odd numbers of 

participating dimensions. Spherical shock fronts require an isotropic 

actuator. Otherwise, the shock front does not appear. 

17.6.1.1 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

The dynamic changes in the field are interpreted as field excitations as 

field deformations or field expansions.  

The field excitations that will be discussed here are solutions to 

mentioned second-order partial differential equations. Without a 

corresponding actuator, the field will not react. It appears that spherical 

pulses are the only actuators that deform the field. The field reacts to 

these pulses by quickly removing the deformation by sending the 

deformation away in all directions in the form of shock fronts until 

these fronts vanish at infinity. This follows from the solutions presented 

in (17.6.29) and (17.6.31). 
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One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =   and 
* =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
 

 (17.6.21) 

All other terms vanish. ,   is known as the Laplace operator. 

Integration over the time domain results in the Poisson equation 

 , =    (17.6.22) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the Green’s function
1

4 'q q −
  of the affected field. This 

solution is the spatial Dirac ( )q   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (17.6.23) 

 

( )
( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (17.6.24) 
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This solution corresponds with an ongoing source or sink that exists in 

the field. A point-like stationary spatial pulse cannot start a shock front. 

The stationary spatial point-like object must be a sink or a source. In 

physics, this means that stationary point-like masses do not exist in 

physical reality. 

Change can take place in one spatial dimension or combined in two or 

three spatial dimensions. 

Under the proper conditions, the dynamic pulse response of the field is 

a solution of a special form of the equation (17.6.21).  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (17.6.25) 

Here ( )   is a temporal step function and ( )q  is a spatial Dirac pulse 

response. For the spherical pulse response, the pulse must be isotropic. 

After the instant ' , the equation turns into a homogeneous equation.  

A remarkably simple solution is the shock front in one dimension along 

the line 'q q− . 

 ( )( )' 'f q q c n  = −  −   (17.6.26) 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. Here, the normalized 

spatial number n  can be interpreted as the polarization of the solution. 

We intentionally placed the normalized spatial number n  close to 

speed c. The function f can be a primitive shock front, but it can also be 

a superposition of primitive shock fronts. The single primitive shock-

front solution represents a dark energy object. It represents a quantum 

of energy. 
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In isotropic conditions, we better switch to spherical coordinates. Then 

the equation gets the form 

 

( )

2 2

2 2

2 2

2 2

2

0

r r r

r
r







   
+ + 

   

  
= + = 

  

  (17.6.27) 

 

The second line describes the second-order change of r  in one 

dimension along the radius r. That solution is described above. A 

solution to this equation is 

 ( )r f r c n =    (17.6.28) 

 

The solution of (17.6.27) is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (17.6.29) 

The normalized spatial number n  can be interpreted as the spin of the 

solution.  It might be related to the direction that is selected when the 

quaternion-based Hilbert space is temporarily reduced to a subspace 

that contains a complex-number-based Hilbert space. The spherical 

pulse response acts either as an expanding or as a contracting spherical 

shock front. Over time this pulse response integrates into the green’s 

function. This means that the isotropic pulse injects the volume of the 

green’s function into the field. Subsequently, the front spreads this 

volume over the field. The contracting shock front collects the volume 

of the green’s function and sucks it out of the field. The ± sign in the 
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equation (17.6.25) selects between injection and subtraction. The shock 

front moves away from the pulse that caused the front. Finally, it 

vanishes at infinity. The inserted volume expands the field. 

Spherical shock fronts are dark matter objects. 

Shock fronts only occur in one and three dimensions. A pulse response 

can also occur in two dimensions, but in that case, the pulse response is 

a complicated vibration that looks like the result of a throw of a stone in 

the middle of a pond. 

Equations (17.6.21) and (17.6.22) show that the operators 
2

2




and 

,   are valid second-order partial differential operators. These 

operators combine in the quaternionic equivalent of the wave equation. 

 
2

2
,  



 
= −   = 

 
   (17.6.30) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (17.6.31) 

 ( )( )' 'f q q c  = −  −   (17.6.32) 

These pulse responses do not contain the normed spatial number n . 

Apart from pulse responses, the wave equation offers waves as its 

solutions. 

https://en.wikipedia.org/wiki/Wave_equation
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If locally the field can be split into a time-dependent part ( )T   and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation. 

 
2

2

2
,


  




=   = −


   (17.6.33) 

 ( , ) ( ) ( )q A q T  =    (17.6.34) 

 
2

2

2

1 1
,

T
A

T A





=   = −


   (17.6.35) 

 2, 0A A  + =    (17.6.36) 

 
2

2

2
0

T
T




+ =


   (17.6.37) 

  acts as quantum coupling between(17.6.36) and (17.6.37). 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode.  

During the switch, the quaternionic Hilbert space temporarily switches 

to a complex-number-based Hilbert space that is a subspace of the 

Hilbert space. The switch takes a corresponding interval and during that 

interval, the subspace emits or absorbs a sequence of equidistant one-

dimensional shock fronts. Together, these shock fronts constitute a 

photon. The one-dimensional shock fronts are discussed above. The 

switch of the oscillation mode means that temporarily the oscillation is 

stopped and instead an object is emitted or absorbed that compensates 

for the difference in potential energy. The location-dependent part of 

the field ( )A q  describes the possible oscillation modes of the field and 

depends on boundary conditions. The oscillations have a binding effect. 

They keep moving objects within a bounded region.  

https://en.wikipedia.org/wiki/Helmholtz_equation
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For three-dimensional isotropic spherical conditions, the solutions have 

the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (17.6.38) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics. These solutions play a role in the spectra 

of atomic modules. 

Planar and spherical waves are the simpler wave solutions to 
the equation (17.6.33) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (17.6.39) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (17.6.40) 

A more general solution is a superposition of these basic types. 

Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(17.6.25) and (17.6.30). The equation (17.6.25) has spherical shock-

front solutions with a spin vector that behaves like the spin of 

elementary particles. Obviously, the field only reacts dynamically when 

it gets triggered by corresponding actuators. Pulses may cause shock 

fronts that after the trigger keep traveling. Oscillations of type (17.6.39) 

and (17.6.40) must be triggered by periodic actuators.  

The inhomogeneous pulse-activated equations are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (17.6.41) 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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Without the interaction with actuators, all vibrations and deformations 

of the field keep busy vanishing until the affected field resembles a flat 

field. Only an ongoing stream of actuators can generate a more 

persistently deformed field. This is provided by an ongoing embedding 

of the actuators into the eigenspaces of operators that archive the 

dynamic fields. 

17.6.1.2 Isotropic conditions 

The two shock-front solutions show an interesting property of the 
Laplace operator. In isotropic conditions, the Poisson equation can be 
rewritten as 

 ( )
2 2

2 2

2 1
, r

r r r r r
   

   
=   = + = 

   
   (17.6.42) 

The product ( )r = is a solution of a one-dimensional equation in 

which r plays the variable.  

The same thing holds for all differential equations that contain the 

Laplace operator ,    

So, spherical solutions of the second-order differential equations / r

can be obtained from the solutions ξ of one-dimensional second-order 

differential equations by dividing   by the distance r  to the center. 

It looks as if in isotropic conditions the quaternionic differential calculus 
can be scaled down to complex-number-based differential calculus. This 
already works at local scales. If on larger scales the isotropic condition is 
violated, then the coordinates of the complex-number-based 
abstraction must be adapted to the possibly deformed Cartesian 
coordinates of the quaternionic platform. This makes sense in the 
presence of moderate deformations of the quaternionic field. After 
adaptation, the map of each complex-number-based coordinate line 
becomes a geodesic. 
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These tricks are possible because complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

If the dimension of the quaternionic Hilbert space is reduced to the 
dimension of a subspace that contains a complex-number-based Hilbert 
space, then it might become important whether the selected direction 
involves a polar angle or an azimuth angle. In mathematics, the range of 
the polar angle is twice the range of the azimuth angle. In physics, the 
two ranges are exchanged. 

17.6.2 Enclosure balance equations 
Enclosure balance equations are quaternionic integral equations that describe the balance between the 

inside, the border, and the outside of an enclosure. 

These integral balance equations base on replacing the del operator   with a normed vector n . The 

vector n  is oriented outward and perpendicular to a local part of the closed boundary of the 

enclosed region. 

 n       (17.6.43) 

This approach turns part of the differential continuity equation into a corresponding integral balance 

equation. 

 

 dV n dS  =      (17.6.44) 

n dS    plays the role of a differential surface. n  is perpendicular to that surface. 

This result separates into three parts 

 
,

,

r

r

n

n n n

    

  

 = −  +    

= − +  
  (17.6.45) 

The first part concerns the gradient of the scalar part of the field 

 
r rn       (17.6.46) 

 
r rdV n dS  =      (17.6.47) 
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The divergence is treated in an integral balance equation that is known as the Gauss theorem. It is also 

known as the divergence theorem [24]. 

 , ,n     (17.6.48) 

 , ,dV n dS  =    (17.6.49) 

The curl is treated in a corresponding integrated balance equation 

 n      (17.6.50) 

 dV n dS  =     (17.6.51) 

Equation (17.6.49) and equation (17.6.51) can be combined in the extended theorem 

 dV n dS  =       (17.6.52) 

The method also applies to other partial differential equations. For example 

 
( ) ( ), ,

, ,n n n n

   

 

  =   −     

= −
  (17.6.53) 

 ( )     , ,
V S S

dV dS dS    =   −      

 (17.6.54) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (17.6.55) 

This is known as the Stokes theorem[25] 

The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (17.6.56) 

17.6.2.1 Derivation of physical laws 

The quaternionic equivalents of Ampère's law are [26] 
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r rJ B E J n B E  =     =    (17.6.57) 

 , , ,r

S C S

B n dS B dl J E n dS = = +      (17.6.58) 

The quaternionic equivalents of Faraday's law are [27]: 

 ( ) ( )r r r rB E B n E  =   = −   =   = −  

 (17.6.59) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (17.6.60) 

 ( ) rJ B E v  =   − =   −  =   (17.6.61) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +      (17.6.62) 

The equations (17.6.60) and (17.6.62) enable the derivation of the Lorentz force [28]. 

 
rE B = −   (17.6.63) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +    

 (17.6.64) 

The Leibniz integral equation states [29] 

 

( )
( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
 

 (17.6.65) 

With X B=   and , 0B =   follows 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
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 ( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d

d

d
B n dS B n dS v B dl

d

E dl v B dl

  

 



   


  


=

= − 

= − − 

  

 

 

 (17.6.66) 

The electromotive force (EMF)    equals [30] 

 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (17.6.67) 

 F qE qv B= +    (17.6.68) 

 

17.7 Dirac’bra-ket procedure 

Paul Dirac introduced a handy notation for the relationship that exists 

between the ingredients of a Hilbert space. The bra-ket combination 

provides the opportunity to use complex numbers and quaternions as 

superposition coefficients. The bra-ket combination restricts the applied 

numbers to members of an associative division ring. This reduces the 

choice to real numbers, complex numbers, and quaternions. The bra-ket 

combination selects a private version of that associative division ring. 

First, we focus on separable Hilbert spaces. Inside separable Hilbert 

spaces, the applied sets of numbers are countable. With that restriction, 

the bra-ket combination turns the underlying vector space into a 

separable Hilbert space. 

https://en.wikipedia.org/wiki/Electromotive_force


76 
 

17.7.1 Countable number systems 

Paul Dirac introduced a handy notation for the relationship that exists 

between the ingredients of a Hilbert space. The bra-ket combination 

provides the opportunity to use complex numbers and quaternions as 

superposition coefficients. The bra-ket combination restricts the applied 

numbers to members of an associative division ring. This reduces the 

choice to real numbers, complex numbers, and quaternions. The bra-ket 

combination selects a private version of that associative division ring. 

First, we focus on separable Hilbert spaces. In separable Hilbert spaces, 

the applied sets of numbers are countable. With that restriction, the 

bra-ket combination turns the underlying vector space into a separable 

Hilbert space. 

By selecting a version of the number system, the symmetry of the 

number system is fixed. This section treats the case that the Hilbert 

space applies quaternions to specify the values of bra-ket combinations. 

The format of the formulas that are shown also holds for complex 

numbers and real numbers. The values of bra-ket combinations will be 

used in linear combinations of vectors and as eigenvalues of operators. 

To make this possible, the bra-ket method distinguishes the vectors 

from the underlying vector space into two types of vectors with 

different arithmetic. The two types represent different views of the 

underlying simple vector space. The ket f   is a covariant vector, and 

the bra g   is a contravariant vector. The vectors f and g  reside in the 

underlying vector space. The arithmetic of the ket vectors differs from 

the arithmetic of the bra vectors. The bra-ket combination |f g  has a 

quaternionic value. If the underlying vectors f and g are equal, then the 

bra-ket combination can act as a metric. Since the product of 

quaternions is not commutative, care must be taken with the format of 

the formulas when quaternions are applied.  

https://en.wikipedia.org/wiki/Metric_(mathematics)
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17.7.1.1 Ket vectors 

The addition of ket vectors is commutative and associative. 

 + = + = +f g g f f g   (17.7.1) 

 ( ) ( )+ + = + + = + +f g h f g h f g h   (17.7.2) 

Together with quaternions, a set of ket vectors forms a ket vector 

space. Ket vectors are covariant vectors.  

A quaternion   can be used to construct a covariant linear combination 

with the ket vector f   

  =f f   (17.7.3) 

17.7.1.2 Bra vectors 

For bra vectors hold 

 + = + = +f g g f f g   (17.7.4) 

 ( ) ( )+ + = + + = + +f g h f g h f g h   (17.7.5) 

Bra vectors are contravariant vectors. 

 * =f f   (17.7.6) 

Quaternions can constitute linear combinations with bra vectors. 

A set of bra vectors form the vector space that is adjunct to the vector 

space of ket vectors that are the origins of these maps. If the map 

images the adjunct space onto the original vector space, then the bra 

vectors may be mapped onto the corresponding ket vector. 

17.7.1.3 Bra-ket combination 

For the bra-ket combination holds 

 
*

| |=f g g f   (17.7.7) 
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For quaternionic numbers   and    hold 

 ( )
** *| | | |   = = =f g g f g f f g   (17.7.8) 

 | | =f g f g   (17.7.9) 

 
( )

( )

* *

*

| | |

|

   

 

+ = +

= +

f g f g f g

f g
  (17.7.10) 

This corresponds with (17.7.3) and (17.7.6) 

 * =f f   (17.7.11) 

  =g g   (17.7.12) 

We made a choice. Another possibility would be  =f f  and 
* =g g   

17.7.1.4 Operator construction 

f g  is a constructed operator.  

 ( )
†

=g f f g   (17.7.13) 

The superfix † indicates the adjoint version of the operator. 

 For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 

 |n m nmq q =   (17.7.14) 

Eigenvectors belong to the underlying vector space. Eigenvalues belong 

to the natural parameter space which represents a selected version of 

the applied number system. The bra-ket method enables the definition 

of new operators that are defined by quaternionic functions. 
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  
1

| )| (i i

N

i

i

F q F q q
=

= g h g h   (17.7.15) 

The symbol F is used both for the operator F and the sampled 

quaternionic function ( )F q . This enables the shorthand 

 ( )i i iF q F q q   (17.7.16) 

for operator F . It is evident that for the adjoint operator 

 ( )† *

i i iF q F q q   (17.7.17) 

For reference operatorRholds 

 
i i iq q q=R   (17.7.18) 

If  iq  consists of all rational values of the version of the quaternionic 

number system that Hilbert spaceHapplies then the eigenspace of R

represents the natural parameter space of the separable Hilbert space

H. It is also the parameter space of the function ( )F q that defines the 

natural operator F in the formula (17.7.16). This formula turns the 

separable Hilbert space into a sampled function space. 

17.7.1.5 Expected value 

Any bra vector g  can be written as a linear combination of the bra 

base vectors  iq . 

  
1

i i

N

i

q q
=

= g g   (17.7.19) 

Any ket vector g can be written as a linear combination of the ket base 

vectors  iq . 
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  
1

N

i i

i

q q
=

= g g   (17.7.20) 

The eigenvalues are archived as a combination of a real value and a 

spatial value. These parts take independent dimensions. If the real parts 

are sequenced, then the sequence of eigenvalues represents an 

ongoing hopping path. If this ongoing hopping path recurrently 

regenerates the same hop landing location swarm, then the hop landing 

locations can be summed over the regeneration period in the cells of a 

dense spatial grid. The total sum results in a spatial center location. The 

sums in the cells describe a location density distribution. The center 

location acts as the expected spatial value of the hop landing locations. 

A hop landing location distribution will describe the hop landing 

location swarm. If the swarm covers a larger number of locations, then 

the description by the location density distribution will be more 

accurate. If the results for the grid cells are sampled over a larger part 

of the real numbers, then the describing location density distribution 

approaches a continuous function. 

This means that 
2

i i iq q q=g g g  can take the role of a hop 

landing location distribution.  Here, we only used the spatial parts of the 

eigenvalues.  

The expected spatial value for operator R  and vectorg  is

  
1

i i i

N

i

q q q
=

= = g
g g g gR R   (17.7.21) 

The expected value plays its role in a series of subsequent observations 

or events. After sequencing the timestamps of the samples, the string of 

samples represents an ongoing hopping path. If the vector g  aims at a 

special location inside the parameter space of the Hilbert space, then 

the mechanism that generates the ongoing hopping path recurrently 
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regenerates a hop landing location swarm that is described by a stable 

location density distribution. For large values of N the location density 

distribution approaches a continuous function q qg g , and the 

distribution qg  can be interpreted as a probability amplitude. The 

square of the modulus of this probability amplitude is a probability 

density distribution.  What these continuous functions approximately 

describe are discrete sets. The approach fits better if the number of 

elements in the set is larger and there exists a requirement that the 

coherence of the set is large. If at instant zero the vector g  equals the 

eigenvector that belongs to eigenvalue zero, and the expectation value 

g  also equals zero, then the hop landing locations  iq  will tend to stay 

awhile about the geometrical center of the Hilbert space. If the 

tendency lasts, then the vector g will act as a unique state vector of the 

Hilbert space. 

To give the location density distribution a statistical sense, a stochastic 

selection process must be or have been active. That selection process is 

then represented by a footprint vector g  that varies over time. How

g  varies over time is checked by the characteristic function of the 

selection process. The footprint vector is represented by a vectorg in 

the underlying vector space. The Hilbert space can archive the life 

history of the footprint vector in the form of a cord of quaternionic 

eigenvalues from a dedicated footprint operator. 

The state vector of the Hilbert space is a special footprint vector of the 

Hilbert space. It is the footprint vector that at every instant of time has 

the expectation value of zero. At instant zero the state vector equals 

the eigenvector that belongs to location zero. This still does not say 

everything about the essence of the required underlying stochastic 

selection mechanism. For example, this description does not explain the 
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value and stability of the recurrence rate of the hop landing location 

swarm. It is not clear why the characteristic function of the stochastic 

mechanism is stable. 

17.7.1.6 Operator types 

I  is used to indicate the identity operator. 

For normal operator N  holds † †NN NN= . 

The normed eigenvectors of a normal operator form an orthonormal 

base of the Hilbert space. 

For unitary operator U holds † †UU U U I= =  

For Hermitian operator H holds †H H=  

A normal operator N  has a Hermitian part 
†

2

N N+
 and an anti-

Hermitian part 
†

2

N N−
 

For anti-Hermitian operator A  holds †A A= −  

A Hermitian operator has real eigenvalues. An anti-Hermitian operator 

has spatial eigenvalues. 

The reference operatorR is a normal operator. 

 

17.7.2 Uncountable number systems 

Every infinite-dimensional separable Hilbert space owns a unique non-

separable companion Hilbert space that embeds its separable partner. 

The non-separable Hilbert space allows operators that maintain 

eigenspaces that in every dimension and every spatial direction contain 

closed sets of rational and irrational eigenvalues. These eigenspaces are 
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uncountable and behave as dynamic sticky continuums. These 

continuums can vibrate, deform, and expand. 

Gelfand triple and Rigged Hilbert space are other names for the 

general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with continuum 

eigenspaces, the bra-ket method turns from a summation into an 

integration. 

 ( ) | | q dVdF q F q   g h g h   (17.7.22) 

Here we omitted the enumerating subscripts that were used in the 

countable base of the separable Hilbert space. Instead, the integration 

applies the infinitesimal dVd  that is taken from the continuum in the 

private parameter space.  

The shorthand for the operator F is now  

 ( )F q F q q   (17.7.23) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (17.7.24) 

The function ( )F q  is no longer sampled.  

The reference operator that provides the continuum natural 

parameter space as its eigenspace follows from 

  | q Vdq dq   g h g h   (17.7.25) 

The corresponding shorthand is  

 q q q   (17.7.26) 
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The reference operator is a special kind of defined operator. Via the 

quaternionic functions that specify defined operators, the claim 

becomes clear that every infinite-dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be 

considered to embed its separable companion. 

The reverse bra-ket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

17.7.2.1 Expected spatial value 

Like the situation in the separable Hilbert space, a grid overlay of the 

spatial part of the parameter space is applied to be able to integrate 

over the grid cells. The expected spatial value is averaged over a part of 

the real part of the parameter space. 

In the non-separable Hilbert space, the expected spatial value is defined 

as an average over the spatial part of the parameter space. 

  
0

q dVq q= = g
g g g gR R   (17.7.27) 

The real part of the parameter space is usually held fixed, and the 

integration is done over the spatial part of the parameter space. 

The location density distribution is a continuous function with values 

corresponding to locations in the spatial part of the parameter space. 

 
2

q q q=g g g   (17.7.28) 

Thus, the variable q can be any value in the spatial part of the 

parameter space.  

17.8 Fourier transform 

A cosine function can be combined with a sine function that owns the 

same frequency into a complex-number valued exponential function. 



85 
 

The imaginary factor i  belongs to the direction of that same direction-

line.  

 ( )(2 ) cos(2 ) sin 2 exp( 2 )xp xp i xp i xp    = + =   (17.8.1) 

This sum has the remarkable property that p  resembles the partial 

differential change operator for the direction i of x  

 2i p
x


  


= −   (17.8.2) 

 2i x
p


  


= −   (17.8.3) 

x  and p  are related via a Fourier transform [31].   

In this section, we do not indicate in the exponentials the spatial 

direction number i  with a vector cap. Instead, we use the convention 

that is applied in complex number versions of the exponential function. 

The Fourier transform in a separable complex-number-based Hilbert 

space is given by the relation between ( )x  and ( )xnp  in the sum 

 ( ) ( ) ,2

, , 1 ,( ) x nixp

x n x n x n

n

x p e p p


 


+

=−

= −   (17.8.4) 

In the limit where ( ), 1 , 0x x n x np p p+ = − →  the sum becomes an integral 

 ( ) 2
( ) xixp

x xx p e dp
 



−
=    (17.8.5) 

The reverse Fourier transform runs as 

 ( ) 2
( ) xixp

xp x e dx
 


−

−
=    (17.8.6) 
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In these formulas, the symbol i  represents a normalized spatial number 

part of a complex number. i  corresponds to the spatial direction that 

was selected for constructing the complex-number-based Hilbert space. 

The function 2 xixp
e

 is an eigenfunction of the operator xp i
x


=


 which 

is recognizable as part of the change operator (17.6.3). 

 2 2
2x xixp ixp

xi e p e
x

 


=


  (17.8.7) 

The eigenvalue xp represents the eigenfunction and the eigenvector xp

in the change space. In the same sense, the function 2 xixp
e

−  is an 

eigenfunction of the position operator 
x

i
p


−


and corresponds with the 

eigenvalue x  of that operator. 

 2 2
2x xixp ixp

x

i e xe
p

 − −
− =


  (17.8.8) 

The eigenvalue x represents the eigenfunction and the eigenvector x in 

the position space. 

The Fourier transform of a Dirac delta function is 

 ( ) 2
( ) 1xixp

xp x e dx
 


−

−
= =   (17.8.9) 

The inverse transform tells 

  2
( ) 1 xixp

xx e dp




−
=    (17.8.10) 

 

 ( )1
( )

2
xi x a p

xx a e dp


 −

−
− =    (17.8.11) 
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 2 2
( )x xip a ixp

e x a e dx
 



−
= −   (17.8.12) 

The operator xp i
x


=


 is often called the momentum operator for the 

spatial direction i  of the coordinate x . p differs from the classical 

momentum which is defined as the product of velocity v and mass m . It 

is important to notice that every orthonormal base vector of the 

position space is a superposition of ALL orthonormal base vectors of the 

change space. Further, the norms of the superposition coefficients are 

all equal. Similarly, every orthonormal base vector of the change space 

is a superposition of ALL orthonormal base vectors of the position 

space. Again, the norms of the superposition coefficients are all equal. 

Thus, jumping between different bases completely randomizes the 

landing base vector. 

Fourier transforms convert convolutions of functions into products of 

the Fourier transforms of the functions. 

17.9 Uncertainty principle 

The uncertainty principle states  

 ( )
2

22 2

0 ,0 2

1
( ) ( ) ( ) ( )

16
x x x xx x x dx p p p dp 



 

− −

 
− −  

 
   

 (17.9.1) 

For a Gaussian distribution, the equality sign holds. The Fourier 

transform of a Gaussian distribution is again a Gaussian distribution that 

has a different standard deviation. 

If ( )x  spreads, then ( )xp  shrinks and vice versa. 

17.10 Center of influence of actuators 

The potential ( )V r  describes the effect of a local response to an actual or virtual isotropic point-like 

actuator and reflects the work that must be done by an agent to bring a unit amount of the actuator 

influence from infinity to the considered location. 
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 ( ) /pV r r =    (17.10.1) 

Here 
p  represents the actuator influence.   takes care of adaptation to physical units. r is the 

distance to the location of the point-like actuator.  

A swarm of point-like actual or virtual actuators that superpose their potentials in the potential of a 

single actuator or virtual actuator produces a potential that viewed from a sufficient distance r  has 

shape 

 ( ) /V r r=     (17.10.2) 

Here   represents the actuator influence of the resulting actual or virtual actuator. r is the distance to 

the center of the actuator influence. This formula is valid at sufficiently large values of r  such that the a  

swarm of actuators can be considered as a point-like object. 

In a coherent swarm of actuating objects , 1,2,3,...i n
i

 = , each with static influence
i at 

locations 
ir , the center of actuation R  follows from  

 ( )
1

0
n

i i

i

r R
=

− =  (17.10.3) 

Thus 

 
1

1 n

i i

i

R r
=

=


  (17.10.4) 

Where 

 
1

n

i

i


=

 =   (17.10.5) 

In the following, we will consider an ensemble of actuating objects that own a center of actuation R  and 

a fixed combined actuation influence  as a single virtual actuation object that is located at R . The 

separate actuators 
i may differ because, at the instant of summation, the corresponding influence 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as one unit.  
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17.11 Forces 

The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate for each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (17.11.1) 

Thus 

 , 0r r r  =  −  =  (17.11.2) 

 0r r   =  +    =  (17.11.3) 

These formulas can be interpreted independently. For example, 

according to the equation (17.11.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 

change must together be equal to zero. For our purpose, the curl 

of the spatial field   is expected to be zero. The resulting terms of the 

equation (17.11.3) are 

 0r r  +  =  (17.11.4) 

In the following text plays the role of the spatial field and r  plays the 

role of the scalar potential of the considered object. The spatial part

conforms to the uniform speed of movement of the floating group of 

influenced objects. The main characteristic of this field is that it tries to 

keep its overall change at zero. The author calls   the conservation 

field. 
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At a large distance r , we approximate this potential by using the 

formula 

 ( )r r
r





  (17.11.5) 

The new artificial field ,v
r




 
=  

 
considers a single uniformly moving 

influenced object or a set of influenced objects that move uniformly as 

a normal situation. It is a combination of scalar potential 
r


 and speed 

v . This speed of movement is the relative speed between the floating 

platform and the background platform. At equilibrium this speed is 

uniform. 

If the gradient of 
r


 differs from zero, then the artificial field ,v

r

 
 
 

 

tries to counteract this by changing fieldv  into a field of accelerated 

objects a .   

 
3

r
a v

r r

   
= = − = 

 

 
 (17.11.6) 

In reverse, the accelerated spatial field a acts on actuator influences 

r


that appear in its realm by afflicting a gradient to this potential. 

Thus, if two uniformly moving actuator influences 1  and 2  exist in 

each other’s neighborhood, then any disturbance of the equilibrium will 

cause the force F  

 ( )
( ) ( )1 2 1 2 1 1 2

1 2 1 3 3

1 2 1 2

r r r r
F r r a

r r r r

   −   −
− =  = =

− −
 (17.11.7) 
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The influenced objects own mass and can own electric charge. Electric 

charges only influence electric charges. Massive actuators only 

influence massive objects. 

17.12 Deformation potentials 

 We consider the deformation potential to be zero at infinity. The 

deformation potential at a considered location is equal to the work 

(energy transferred) per unit mass that would be needed to move an 

object from infinity to that location. Isotropic pulses that deform the 

embedding field introduce an extra complication because the pulse 

response is a shock front that quickly fades away. Therefore we 

reinvestigate this kind of potential. 

17.12.1 Center of deformation 

If the actuator is a response to an isotropic pulse, then the deformation 

potential ( )V r  describes the effect of a local response to an isotropic 

point-like actuator and reflects the work that must be done by an agent 

to bring a unit amount of the injected stuff from infinity back to the 

considered location. 

 ( ) /pV r m G r=    (17.12.1) 

Here 
pm  represents the mass that corresponds to the full pulse 

response. G  takes care of adaptation to physical units. r is the distance 

to the location of the pulse.  The pulse response is a spherical shock 

front. 

A stream of these deforming actuators recurrently regenerates a 

coherent swarm of embedding locations in the dynamic universe field. 

Viewed from a sufficient distance r  that swarm generates a potential 

 ( ) /V r MG r=    (17.12.2) 

Here M  represents the mass that corresponds to the considered 

swarm of pulse responses. r is the distance to the center of the 
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deformation. This formula is valid at sufficiently large values of r  such 

that the whole swarm can be considered as a point-like object. 

In a coherent swarm of massive objects , 1,2,3,...p i n
i

= , each with 

static mass
im at locations 

ir , the center of mass R  follows from  

 ( )
1

0
n

i i

i

m r R
=

− =  (17.12.3) 

Thus 

 
1

1 n

i i

i

R m r
M =

=   (17.12.4) 

Where 

 
1

n

i

i

M m
=

=   (17.12.5) 

In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M as a single 

massive object that is located at R . The separate masses 
im may differ 

because, at the instant of summation, the corresponding deformation 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as 

one unit. The problem with the treatise in this paragraph is that in 

physical reality, point-like objects that possess a static mass do not 

exist. Only pulse responses that temporarily deform the field exist. 

Except for black holes, these pulse responses constitute all massive 

objects that exist in the universe. 

17.12.2 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (17.12.3) and (17.12.4). Instead, the 
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deformation potential follows from the convolution of the location 

density distribution and the green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting deformation potential of a Gaussian 

density distribution would be given by 

 
( )

( )
ERF r

g r GM
r

  (17.13.1) 

Where ( )ERF r  is the well-known error function. Here the deformation 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated deformation potential that was 

described above in the equation (17.12.2). As indicated above, the 

convolution only offers an approximation because this computation 

does not account for the influence of the density of the swarm, and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in multiple 

generations. These generations appear to have their mass. For example, 

elementary fermions exist in three generations. The two more massive 

generations usually get the name muon or tau generation. 



94 
 

 

This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the deformation 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the deformation potential   

 ( )
GM

r
r

   (17.13.2) 

Warning: This simplified form shares its shape with the green’s function 

of the deformed field. This does not mean that the green’s function 

owns a mass that equals 
1

GM
G

= . The functions only share the form of 

their tail. 

17.12.3 Rest mass 

The weakness in the definition of the deformation potential is the 

definition of the unit of mass and the fact that shock fronts move with a 

fixed finite speed. Thus, the definition of the deformation potential only 

works properly if the geometric center location of the swarm of injected 

spherical pulses is at rest in the affected embedding field. The 
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consequence is that the mass that follows from the definition of the 

deformation potential is the rest mass of the considered swarm. We 

will call the mass that is corrected for the motion of the observer 

relative to the observed scene the inertial mass. 

17.12.4 Observer 

The inspected location is the location of a hypothetical test object that 

owns an amount of mass. It can represent an elementary particle or a 

conglomerate of such particles. This location is the target location in the 

embedding field. The embedding field is supposed to be deformed by 

the embedded objects.  

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 

The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform converts the Euclidean coordinates of the background 

parameter space into the spacetime coordinates that are perceived by 

the observer.   

17.12.4.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the quaternionic setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (17.15.1) 

In flat dynamic fields, swarms of triggers of spherical pulse responses move with lower speed v. 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (17.15.2) 
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If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v, then 

 ( ) ( )' cosh sinhct ct x = −   (17.15.3) 

 ( ) ( )' cosh sinhx x ct = −   (17.15.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (17.15.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (17.15.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (17.15.7) 

This is a hyperbolic transformation that relates two coordinate systems, which is known as a Lorentz 

boost. 

This transformation can concern two platforms P  and 'P  on which swarms reside and that move with 

uniform relative speed. 

However, it can also concern the storage location P  that contains a timestamp   and spatial 

location  , ,x y z and platform 'P  that has coordinate time 't  and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two platforms that move with uniform relative speed. One 

of them may be a floating Hilbert space on which the observer resides. Or it may be a cluster of such 

platforms that cling together and move as one unit. The other may be the background platform on which 

the embedding process produces the image of the footprint. 

The Lorentz transform converts a Euclidean coordinate system consisting of a location  , ,x y z and 

proper timestamps   into the perceived coordinate system that consists of the spacetime coordinates 

 ', ', ', 'x y z ct in which 't  plays the role of coordinate time. The uniform velocity v  causes time 

dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

17.12.4.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric. 

In flat field conditions, proper time τ is defined by 

https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts
https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts
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2 2 2 2 2c t x y z

c


− − −
=    (17.15.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (17.15.9) 

 

Here ds  is the spacetime interval and d is the proper time interval. dt  is the coordinate time interval 

17.12.4.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric. The proper time interval d obeys 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   

   
  (17.15.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  

According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius. 

 
2

2
s

GM
r

c
=  (17.15.11) 

 

The variable r equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

17.12.4.4 Event horizon 

The deformation potential energy ( )U r   

 ( )
mMG

U r
r

=  (17.15.12) 
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at the event horizon 
ehr r=  of a black hole is supposed to be equal to 

the mass-energy equivalent of an object that has unit mass 1m =  and is 

brought by an agent from infinity to that event horizon. Dark energy 

objects are energy packages in the form of one-dimensional shock 

fronts that are a candidate for this role. Photons are strings of 

equidistant samples of these energy packages. The energy equivalent of 

the unit mass objects is  

 2

eh

mMG
E mc

r
= =  (17.15.13) 

Or  

 
2eh

MG
r

c
=  (17.15.14) 

At the event horizon, all energy of the dark energy object is consumed 

to compensate for the deformation potential energy at that location. 

No field excitation and in particular no shock front can pass the event 

horizon. 

17.12.5 Inertial mass 

The Lorentz transform also gives the transform of the rest mass to the 

mass that is relevant when the embedding field moves relative to the 

floating platform of the observed object with uniform speed v . 

In that case, the inertial mass M  relates to the test mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (17.16.1) 

This indicates that the formula (17.12.2) for the deformation potential 

at distance r must be changed to 
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 0

2

2

( )

1

M G
V r

v
r

c

=

−

   (17.16.2) 

17.12.6 Inertia 

The relation between inertia and mass is complicated. We apply an 

artificial field that resists its change. The condition that for each type of 

massive object, the deformation potential is a static function, and the 

condition that in free space, the massive object moves uniformly, 

establish that inertia rules the dynamics of the situation. These 

conditions define an artificial quaternionic field that resists change. The 

scalar part of the artificial field is represented by the deformation 

potential, and the uniform speed of the massive object represents the 

spatial part of the field. 

The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate for each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (17.17.1) 

Thus 

 , 0r r r  =  −  =  (17.17.2) 

 0r r   =  +    =  (17.17.3) 

These formulas can be interpreted independently. For example, 

according to the equation (17.17.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 
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change must together be equal to zero. For our purpose, the curl 

of the spatial field   is expected to be zero. The resulting terms of the 

equation (17.17.3) are 

 0r r  +  =  (17.17.4) 

In the following text plays  the role of the spatial field and r  plays the 

role of the scalar deformation potential of the considered object. For 

elementary modules, this special field concerns the effect of the hop 

landing location swarm that resides on the floating platform on its 

image in the embedding field. It reflects the activity of the stochastic 

process and the uniform movement of the geometric center of the 

floating platform over the embedding field in the background platform. 

It is characterized by a mass value and by the uniform velocity of the 

floating platform concerning the background platform. The real (scalar) 

part conforms to the deformation that the stochastic process causes. 

The spatial part conforms to the speed of movement of the floating 

platform. The main characteristic of this field is that it tries to keep its 

overall change at zero. The author calls   the conservation field. 

At a large distance r , we approximate this potential by using the 

formula 

 ( )r

GM
r

r
   (17.17.5) 

Here M is the inertial mass of the object that causes the deformation. 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 

as a normal situation. It is a combination of scalar potential 
GM

r
 and 

speed v . This speed of movement is the relative speed between the 

floating platform and the background platform. At rest this speed is 

uniform. 
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If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the change of the spatial field v  by compensating this with an 

equivalent change of the scalar part 
GM

r
 of the new field  . According 

to the equation (17.17.4), this equivalent change is the gradient of the 

real part of the field. 

 
3

GM GM r
a v

r r

 
= = − = 

 

 
 (17.17.6) 

This generated spatial field acts on masses that appear in its realm. 

Thus, if two uniformly moving masses m  and M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

deformation force 

 ( )
( ) ( )0 1 2 0 0 1 2

1 2 0 3 3

1 2 1 2

Gm M r r Gm M r r
F r r m a

r r r r


− −
− = = =

− −
 (17.17.7) 

Here 0M M=  is the inertial mass of the object that causes the 

deformation. 
0m is the rest mass of the observer. 

The inertial mass M relates to its rest mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (17.17.8) 

This formula holds for all elementary particles except for quarks.  

The problem with quarks is that these particles do not provide an 

isotropic symmetry difference. They must first combine into hadrons to 

be able to generate an isotropic symmetry difference. This 

phenomenon is known as color confinement. 
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17.12.7 Momentum 

In the formula (17.17.7) that relates mass to force the factor  that 

corrects for the relative speed can be attached to 0m  or to 0M  

 ( )
( )0 0 1 2

1 2 3

1 2

Gm M r r
F r r

r r


−
− =

−
 (17.18.1) 

The force relates to the temporal change of the momentum vector P of 

the observer 

  
dP

F P
dt

= =  (17.18.2) 

The momentum vector P  is part of a quaternionic momentum P . The 

momentum depends on the relative speed of the moving object that 

causes the deformation which defines the mass. The speed is 

determined relative to the field that embeds the object and that gets 

deformed by the investigated object. For free elementary particles, the 

speed equals the floating speed of the platform on which the particle 

resides. 

 rP P P= +  (17.18.3) 

 
22 2

rP P P= +
 (17.18.4) 

 0P m v=  (17.18.5) 

 
2 22 2

0P m v=
 (17.18.6) 

 
2 22 2 2 2 2 2

0 0rP m c P m v = = +  (17.18.7) 

 0 /P m c E c= =  (17.18.8) 

 
2

0E m c=  (17.18.9) 
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( )

22 2 2 2 2 2

0 0

2
22 2 2 2 2 2 2 2

0 0 01

rP m c m v

v
m c v m c m c

c

 

 

= −

 
= − = − =  

   (17.18.10) 

 
0r

E
P m c

c
= =

 (17.18.11) 

 0P m v=
 (17.18.12) 

 

 
0 0 0r

E
P P P m c m v m v

c
 


= + = + = +

 (17.18.13)

  

If 0v =  then 0P =  and 0rP P P m c= = =  

Here Einstein’s famous mass-energy equivalence is involved. 

 
2 2

0E m c mc= =  (17.18.14) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the deformation force into action. The description also 

holds when the field  describes a conglomerate of platforms and M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the deformation potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the deformation potential behaves like the 
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green’s function of the field. There, the formula 
r

GM

r
 =

applies. 

Further, it bases on the intention of modules to keep the deformation 

potential inside the mentioned sphere constant. At least that holds 

when this potential is averaged over the regeneration period. In that 

case, the overall change    in the conservation field  equals zero. Next, 

the definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 

represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 

deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the deformation potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the deformation attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the green’s function.  

17.12.7.1 Forces 

In the system of separable Hilbert spaces, all symmetry-related charges 

are located at the geometric center of an elementary particle and all 
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these particles own a footprint that for isotropic symmetry differences 

can deform the embedding field. In that case, the particle features mass 

and forces might be coupled to acceleration via  

 F ma=  (17.18.15) 

Or to momentum via F P=  (17.18.16) 
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