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Abstract: Capacitor allocation plays a vital role in the planning and operation of distribution networks. 

Optimal allocation of capacitor provides reactive power compensation, relieves feeder capacity, improves 

voltage profile, minimizes power losses, annual cost, and maximizes net savings. However, optimal 

capacitor allocation is a complex combinatorial optimization problem which consists of finding the bus 

location, number of capacitors to be installed and their respective sizes by satisfying all the distribution 

network constraints. The present article investigates the effective implementation of two novel 

metaheuristic algorithms for solving capacitor allocation optimization problems in the radial distribution 

network (RDN). The first algorithm is inspired by the water cycle process of nature in the real world where 

streams and rivers flow to the sea known as the water cycle algorithm (WCA). The second algorithm is 

inspired by salp swarming behavior in oceans for navigating and foraging is known as the salp swarm 

algorithm (SSA). To crisscross the feasibility, WCA and SSA are tested on standard 9, 33, 34, 69, and 85 

– bus RDNs. Both the algorithms require less computational time for evaluating the objective function 

and only a few parameters need to be tuned. In addition, to show the superiority of the results obtained by 

WCA and SSA comparison has been made with various existing optimization techniques. The comparison 

confirms that both algorithms are more effective in minimizing power losses and operating costs and well 

suitable for solving capacitor allocation problems in RDNs. 

Keywords — Capacitor allocation, Metaheuristic algorithms, Power loss minimization, Radial 

distribution networks, Salp swarm algorithm, Water cycle algorithm. 
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Nomenclature: 

𝑃𝑚 real power flow from bus 𝑚 + 1 

connecting bus 𝑚 and 𝑚 + 1 

𝐶1 adaptive parameter  

𝑄𝑚 reactive power flow from bus 𝑚 + 1 

connecting bus 𝑚 and 𝑚 + 1 

𝐶2and𝐶3 random numbers between 0 and 1 

𝑃𝐿𝑚 real load at bus 𝑚 lbd lower boundary of the dth 

dimension 

𝑄𝐿𝑚 reactive load at bus 𝑚 ubd upper boundary of the dth 

dimension 

𝑅𝑚,𝑚+1 line resistance between bus 𝑚  and 

𝑚 + 1 

RDN radial distribution network  

𝑋𝑚,𝑚+1 line reactance between bus 𝑚  and 

𝑚 + 1 

WCA water cycle algorithm  

𝑉𝑚 voltage magnitude at bus 𝑚 SSA salp swarm algorithm  

𝑃𝐿(𝑚, 𝑚 + 1) Line loss between bus 𝑚 and 𝑚 + 1 SA simulated annealing  

(𝑃𝑇,𝐿) total line losses in a distribution 

network 

TS tabu search 

𝑄0
𝑐𝑎𝑝

 smallest capacitor size in kVAR GA genetic algorithm  

𝑄𝑚
𝑐𝑎𝑝 size of the installed capacitor at bus 𝑚 

in kVAR 

WSCP widespread commercial package 

𝐾𝑃 equivalent annual cost per unit of 

power loss in $/(kW-year) 

PSO particle swarm optimization  

𝐾𝑚
𝑐𝑎𝑝

   cost of capacitor installed at bus 𝑚 (in 

$/kVAR-year) 

PGSA plant growth simulation 

algorithm  

𝑉𝑀𝑖𝑛 minimum permissible limits of 

voltage in p.u. 

DSA direct search algorithm  

𝑉𝑀𝑎𝑥 maximum permissible limits of 

voltage in p.u. 

HBMO honeybee mate optimization  

𝑅𝐷 raindrops  TLBO teaching learning based 

optimization  

𝑁𝑅𝐷 initial population (the number of 

raindrops) 

BA bat algorithm  

𝑁𝑣𝑎𝑟 design variables  CS cuckoo search  

𝑁𝑠𝑟 sum of rivers  BFOA bacterial foraging optimization 

algorithm  

𝑁𝑆𝑘 number of streams  SSO shark smell optimization  

𝑟𝑎𝑛𝑑 random number distributed uniformly 

between 0 and 1  

WOA whale optimization algorithm  

𝐷 a value between 1 and 2  FPA flower pollination algorithm  

𝑑 distance between stream and river GWO grey wolf optimizer  

Xd
1  location of leader salp in the dth 

dimension 

SLD single line diagram  

Xd
𝑖  location of follower salp in the dth 

dimension 
ACO ant colony optimization  

𝐹𝑑 food source location in the dth 

dimension 
MINLP mixed integer nonlinear 

programing  

 

 



 

 

1. Introduction 

 The analysis of electric distribution networks is attaining as the most significant area for research 

over the past few decades. Since the distribution network is the final link between the bulk power 

generation system and consumers, hence utmost care must be taken for network operation, control, and 

maintenance. In general, a distribution network carries high currents and operates at low voltages due to 

the presence of inductive loads. When we move far away from the substation the bus voltages will reduce 

and power loss will increase. This is due to the lack of reactive power availability throughout the 

distribution network. Hence the problem of insufficient reactive power in distribution networks can be 

solved by providing effective reactive power support or reactive power compensation. Capacitor allocation 

in the distribution network will provide reactive power support and relieves feeder capacity, improve 

voltage profile, minimize power losses, annual cost, and maximize net savings. It is a known fact that 

optimal capacitor allocation is a complex combinatorial optimization problem that consists of finding the 

bus location, the number of capacitors to be installed, and their respective sizes by satisfying all the 

distribution network constraints. Due to this, the problem of capacitor allocation is considered a most 

significant challenge in the power system.  

 Inappropriate capacitor allocation leads to high power losses, unbalanced bus voltages, 

deteriorates power quality and reliability finally system breakdown. In this context, several researchers 

have made noteworthy contributions to solving the capacitor allocation problem. A variety of methods 

have been implemented to solve the capacitor allocation problem in recent years.    A survey on capacitor 

allocation significance in distribution networks for power loss reduction and voltage profile improvement 

is presented in [1]. Bae has initially implemented an analytical method to identify the capacitor locations 

for reducing yearly losses through reactive power compensation by considering variable annual reactive 

power load in [2]. In [3], authors have developed an analytical method for the reduction of power and 

energy losses to optimize the net savings by considering a generalized procedure using equal area criteria. 

Salama et al in [4], have developed a step-by-step procedure for calculating variable load by assessing 

realistic financial data. Baran and Wu initially proposed a mixed integer solution algorithm which is based 

feasible direction approach for solving the capacitor allocation problem in [5]. Chiang et al in [6], have 

implemented simulated annealing (SA) with a generalized solution algorithm using a software package in 

Fortran. In [7], authors have formulated and solved capacitor placement problems with variable load 

demand by a tabu search-based solution algorithm. Levitin et al in [8], have implemented a fast energy 

loss computation technique with a genetic algorithm (GA). In [9], the author has applied GA for selecting 

fixed and switched capacitors to compensate for reactive power in the radial distribution network. The 

capacitor allocation problem is solved by using GA for loss minimization which has the capability of 

finding both location and size in [10].  



 

 

 A fuzzy based GA has been developed to identify both location and size for overall savings in 

[11]. In [12], authors achieved maximum savings through capacitor allocation after an appropriate 

linearization by mixed-integer linear program technique using a widespread commercial package (WSCP). 

A two-stage method has been implemented for solving the capacitor sizing problem: Markov chains are 

used to identify the sensitive buses and a heuristic method for sizing capacitors in [13]. An evolutionary 

technique has been proposed to minimize annual active power losses through capacitor placement in [14]. 

In [15], authors have implemented particle swarm optimization (PSO) for fixed capacitor placement and 

sizing considering current and voltage harmonics in the distribution network. In [16], the authors used a 

loss sensitivity index for determining capacitor location and a plant growth simulation algorithm (PGSA) 

for capacitor size. A direct search algorithm (DSA) has been used for determining capacitor locations with 

fixed sizes in [17]. In [18], authors have implemented PSO algorithm by considering both static and 

dynamic approaches for capacitor allocation in the distribution network. An integrated evolutionary 

algorithm has been implemented for solving capacitor placement using differential evolution and pattern 

search (DE – PS) in [19]. In [20], a novel stochastic technique based on the point estimate method (PEM) 

known as the self-adaptive modified honeybee mating optimization (SAMHBMO) algorithm has been 

implemented to solve the capacitor placement problem by considering uncertainty effects in the 

distribution system. A human ability-based algorithm known as teaching learning-based optimization 

(TLBO) is used for capacitor placement on various distribution networks in [21]. In [22], a novel method 

for capacitor placement based on PSO with Gaussian and Cauchy probability distribution function 

operators for chaotic load sequence in the distribution network. In [23], authors have proposed a hybrid 

optimization algorithm which is a combination of two bio-inspired algorithms namely bat algorithm (BA) 

and cuckoo search (CS) algorithm implemented to capacitor allocation where available capacitors are both 

fixed and variable switching types.  

 A combinational technique has been used for identifying the capacitor location and for sizes a 

bio-inspired algorithm called bacterial foraging optimization algorithm (BFOA) is used [24]. A new meta-

heuristic algorithm called shark smell optimization (SSO) is used for capacitor location and size in [25]. 

In [26], the whale optimization algorithm (WOA) has been used for capacitor location and size in 

distribution networks. Flower pollination algorithm (FPA) has been implemented for capacitor placement 

in distribution network reduced power loss in [27]. Recently, grey wolf optimizer (GWO) and water cycle 

algorithm (WCA) have been extensively implemented on practical distribution networks for capacitor 

allocation with variable load demand in [28]. A global soft computing technique has been used for 

capacitor location and sizing in standard distribution systems [29]. In [30] authors have implemented a 

polar bear optimization algorithm for capacitor location and sizing to reduce real power loss and capacitor 

cost.  



 

 

 A hybrid technique has been used to solve the capacitor allocation problem to minimize total 

power loss and energy cost in standard and practical distribution systems [31]. In [32] author implemented 

a genetic algorithm considering daily load demand to achieve cost benefits. The harmony search algorithm 

is implemented for capacitor sizing and placement in a harmonic polluted distribution network [33]. A 

multiverse optimizer has been used for evaluating capacitor size and location [34]. Recently, authors have 

implemented a spotted hyena optimizer and mathematical remora optimization algorithm on a distribution 

system with various loading conditions for attaining power loss and energy cost minimization [35,36]. 

Summary of optimization techniques/algorithms used for SCB location and size in distribution networks 

have been presented in the below Table 1. 

Table 1 

Summary of optimization techniques/algorithms used for capacitor allocation in distribution networks 

Author 

Year  

[Reference] 

Technique / 

Algorithm  

Objective Capacitor 

type 

Switched / 

fixed   

Merits  Demerits  Test system 

Y. G. Bae  

1978 

[2] 

Analytical yearly loss 

reduction  

fixed simple mathematical 

equations. different 

reactive power levels.   

loss due to reactive 

power only 

considered and 

voltage regulation 

not considered.  

CPSL 23 kV 

feeder  

Grainger J. J., 

and Lee, S. H., 

1981 

[3] 

Analytical  power and 

energy loss 

minimization  

fixed unrealistic assumption 

not considered. capacitor 

installation economic 

analysis has been 

considered.   

not suitable for the 

network with 

laterals branches and 

voltage regulation is 

not considered. 

9 – bus 

Salama M. M. 

A et al.,  

1985 

[4] 

Analytical reducing power 

and energy loss 

fixed step by step calculation 

for variable load and 

considered realistic 

financial data.  

complex 

mathematical 

equations.  

11 – bus  

Baran M. E., 

and Wu, F. F., 

1989 

[5] 

Analytical  real power loss 

minimization  

fixed ac power model, 

incorporated capacitor 

cost into problem 

formulation, and 

considered bus voltage 

magnitudes as 

constraints.  

the cost factor is 

oversimplified.  

9 – bus and 

69 – bus   

Chiang et al.,  

1990 

[6] 

SA real power and 

energy loss 

minimization 

both fixed 

and 

switched 

cost analysis suitable for 

variable capacitor 

locations.   

voltage regulation 

not considered. 

69 – bus  

Yann-Chang 

Huang et al.,  

1996 

[7] 

TS capacitor cost 

investment and 

energy loss 

minimization 

fixed reduces search with 

priority list obtained by 

sensitivity analysis 

method. 

the solution obtained 

is near-optimal. 

69 – bus  

Levitin G., et 

al.,  

2000 

[8] 

GA power and 

energy loss 

minimization 

fixed four different loads have 

been considered instead 

of three. 

convergence 

characteristics have 

not been discussed.  

CPSL 23 kV 

feeder 

 

 

 



 

 

Author 

Year  

[Reference] 

Technique / 

Algorithm  

Objective Capacitor 

type 

Switched / 

fixed   

Merits  Demerits  Test system 

Das D.,  

2002 

[9] 

GA energy loss 

minimization 

both fixed 

and 

switched 

both fixed and marginal 

costs are considered.  

energy loss 

minimization 

compromises overall 

savings. 

69 – bus  

Swarup K. S.,  

2005 

[10] 

GA loss 

minimization  

fixed  the algorithm has the 

capability of finding both 

location and size. 

obtained results not 

validated with 

existing literature.   

Practical 

Indian 29 – 

bus, standard 

IEEE  

33-bus and 

34-bus  

Prasad P. V., et 

al.,  

2007 

[11] 

Fuzzy – GA  total loss 

minimization  

fixed  the algorithm has the 

capability of finding both 

location and size. 

convergence 

characteristics and 

computational time 

have not been 

discussed.  

15 – bus and 

69 – bus  

Khodr H. M., 

et al.,  

2008 

[12] 

WSCP maximize 

savings  

both fixed 

and 

switched 

the method is 

computationally efficient. 

convergence 

characteristics have 

not been discussed. 

15 – bus, 33 

– bus, and 

Canadian 

141 – bus   

Hamouda A., 

et al.,  

2010 

[13] 

Two-stage 

Heuristic 

Method 

maximize net 

savings 

fixed  Markov chains are used 

to identify the sensitive 

buses for capacitor 

placement.  

convergence 

characteristics and 

computational 

efficiency of the 

algorithm have not 

been discussed. 

9 – bus and 

69 – bus  

Elmaouhab A. 

et al., 

2011 

[14] 

Evolutionary 

technique  

the annual cost 

of active power 

loss 

minimization  

fixed bus voltage magnitudes 

are maintained within the 

limits. 

net injected reactive 

power is more 

compared to existing 

techniques to 

minimize losses.  

10 – bus and 

34 – bus  

Taher S. A et 

al., 

2011 

[15] 

PSO cost of power 

and energy loss 

minimization 

fixed network harmonics and 

power quality has been 

considered. 

convergence 

characteristics and 

application of an 

algorithm for large 

networks have not 

been discussed. 

18 – bus and 

33 – bus 

Rao R. S et al., 

2011 

[16] 

PGSA voltage 

improvement 

and loss 

minimization 

fixed the algorithm does not 

need any external control 

parameters and it handles 

the optimization problem 

objective and constraints 

separately. 

convergence 

characteristics of 

cost function have 

not been discussed.  

10, 34, and 

85 – bus  

Raju M. R. et 

al.,  

2012 

[17] 

DSA maximization of 

net savings and 

voltage stability 

improvement 

both fixed 

and 

switched 

the algorithm is methodic 

and sequential.   

convergence 

characteristics and 

computational 

efficiency of the 

algorithm have not 

been discussed. 

22 – 

practical, 

standard 69 – 

and 85 – bus  

Singh, S. P., 

and Rao A. R., 

2012 

[18] 

PSO power and 

energy losses 

minimization  

both fixed 

and 

switched 

power flow is computed 

with a simple iterative 

method and search space 

is reduced through the 

dynamic sensitivity 

technique.  

convergence 

characteristics and 

computational 

efficiency of the 

algorithm have not 

been discussed. 

70 and 135 – 

bus  

 



 

 

Author 

Year  

[Reference] 

Technique / 

Algorithm  

Objective Capacitor 

type 

Switched / 

fixed   

Merits  Demerits  Test system 

El-Fergany A. 

A., 

2013 

[19] 

DE – PS  annual operating 

cost 

minimization  

both fixed 

and 

switched 

search space is reduced 

through pre-identification 

of bus locations. 

convergence 

characteristics and 

application of an 

algorithm for large 

networks have not 

been discussed. 

34 – bus and 

69 – bus  

Kavousi-Fard, 

A., and 

Niknam, T. 

2013 

[20] 

SAMHBMO power quality 

improvement, 

power, and 

energy losses 

minimization 

fixed repository stores Pareto 

optimal solutions and 

clustering technique with 

fuzzy provides pre-

determined bus locations. 

the computational 

efficiency of the 

algorithm has not 

been discussed. 

18 and 33 – 

bus  

Sultana, S., and 

Roy, P. K. 

2014 

[21] 

TLBO power loss and 

energy costs 

minimization  

fixed the algorithm is capable 

of handling constrained 

optimization problems 

with few parameters 

tuning.  

slow convergence 

and solution 

obtained are near-

optimal for large 

networks.  

22, 69, 85, 

and 141 – 

bus  

Lee C. S et al.,  

2015 

[22] 

PSO voltage 

improvement, 

loss 

minimization, 

and feeder 

reliever 

fixed convergence 

characteristics show the 

efficiency and reliability 

of the algorithm. 

algorithm control 

parameters have not 

been discussed.  

9 – bus and 

33 – bus  

Injeti S. K et 

al.,  

2015 

[23] 

BA and CS maximization of 

net savings and 

power loss 

minimization 

both fixed 

and 

switched 

the high quality solution 

is obtained with 

hybridization.  

more parameter 

tuning is needed.  

34 – bus and 

85 – bus  

Devabalaji K. 

R et al.,  

2015 

[24] 

BFOA power loss 

minimization 

and voltage 

improvement 

fixed the algorithm has been 

implemented for variable 

load levels.  

the solution obtained 

if near-optimal 

solution.  

34 and 85 – 

bus  

Gnanasekaran 

N et al.,  

2016 

[25] 

SSO energy loss and 

reactive power 

compensation 

cost 

minimization 

both fixed 

and 

switched 

the algorithm has the 

capability of finding both 

location and size. 

the computational 

efficiency of the 

algorithm has not 

been discussed. 

34 and 118 – 

bus  

Prakash, D. B., 

and 

Lakshminaraya

na C. 

2017 

[26] 

WOA line losses and 

improve bus 

voltage 

minimization 

switched the algorithm requires 

less parameter tuning.  

multi-objective 

optimization 

objective functions 

must be 

contradictory.  

34 and 85 – 

bus  

Tamilselvan V 

et al.,  

2018 

[27] 

FPA power loss and 

reactive power 

compensation 

cost 

minimization 

switched the algorithm has been 

extensively implemented 

on various test systems. 

the solution obtained 

is near-optimal.  

33, 34, 69, 

and 85 – bus  

Kola 

Sampangi, S. 

and 

Thangavelu, J 

2020 

[28] 

GWO and 

WCA 

voltage 

deviation and 

power loss 

minimization  

both fixed 

and 

switched 

algorithms have been 

extensively implemented 

on various practical test 

systems. 

capacitor rated 

values are not 

standard available. 

Practical 

Indian 28 – 

bus, 47 – 

bus, 52 – 

bus, and 85 – 

bus  

 



 

 

In the present article, two novel metaheuristic algorithms namely water cycle algorithm (WCA) 

and salp swarm algorithm (SSA) are implemented for solving capacitor allocation problems in the 

distribution networks. The aim of the formulated objective function is to minimize power losses, improve 

voltage profile and maximize net savings, subject to operating constraints. Both the algorithms are 

implemented in MATLAB environment and tested on various standard radial distribution networks. 

In the present study, the assumptions considered are: 

• The capacitor losses associated cost is negligible compared to the system’s losses cost. 

• The impact of harmonic’s is neglected. 

• The test system is assumed to be balanced or is within tolerable limits. 

• Fixed transformers tap settings values. 

• The distribution substation (slack bus) is not capable of injecting reactive power. 

• Always bus 1 is considered as reference/slack. 

• The stray capacitor's effect on the line is neglected. 

• The capacitor size (kVAR) and cost are linearly proportional. 

• All loads are constant power. 

The main contributions of the present article are: 

➢ Summary of optimization techniques/algorithms has been implemented in the literature for solving 

capacitor allocation problems in distribution networks. 

➢ Two novel meta-heuristic algorithms WCA and SSA are effectively employed for solving the 

problem of capacitor allocation in distribution networks. 

➢ Both the algorithms are tested on standard radial distribution networks. 

➢ The two main objectives of power loss minimization and net savings maximization are attained 

without violating the system constraints. 

The remaining of this paper is structured as follows: Section 2 explains the distribution network 

load flow, Section 3 illustrates the problem formulation, Section 4 gives the overview and implementation 

of the water cycle algorithm for capacitor allocation, Section 5 gives the overview and implementation of 

salp swarm algorithm for capacitor allocation, Section 6 comprises the simulation results and discussions, 

Section 7 presents the conclusion and future scope.  

2. Distribution Network Load Flow 

In general, distribution networks are simple radial structured with several lateral branches. Radial 

distribution network (RDN) has high line resistance to inductive reactance ratio (𝑅 𝐿⁄ ) makes load flow 

studies complex. Conventional load flow analysis methods like Newton-Rapson and Gauss-Seidel are not 

much efficient in solving radial load flow due to convergence problems. Several simplified methods are 

proposed for normal and variable load distribution in networks. A direct approach method for solving load 

flow in RDN using topological structure is presented in [37, 38]. The present method avoids the 

convergence problem, hence in the present study, the same load flow method has been used.  



 

 

3. Problem formulation 

Reactive power compensation in distribution networks can be advantageous only if it is applied 

appropriately. Appropriate application means identifying the proper location and size of reactive power 

aid. In general, attaining zero power loss in a power system is impossible, however, it is feasible to retain 

them at a minimum. Reactive power compensation is used most often for power loss minimization with 

additional benefits such as relieving feeder capacity, improving equipment utilization, and avoiding 

equipment aging. It is acquitting that loss minimization does not ensure the benefits of operational cost 

minimization or net savings maximization unless the efficiency of all units must be identical. 

3.1. Power loss equations 

The problem formulation for the present problem can be obtained by Fig. 1. Single line diagram 

(SLD) of a sample distribution network [5]. The realized equations for load flow calculation are 

𝑃𝑚+1 = 𝑃𝑚 − 𝑃𝐿𝑚+1 − (
𝑃𝑚

2 +𝑄𝑚
2

|𝑉𝑚|2
) ∗ 𝑅𝑚,𝑚+1                                                                                               (1) 

𝑄𝑚+1 = 𝑄𝑚 − 𝑄𝐿𝑚+1 − (
𝑃𝑚

2 +𝑄𝑚
2

|𝑉𝑚|2
) ∗ 𝑋𝑚,𝑚+1                                                                                             (2) 

|𝑉𝑚+1|
2 = |𝑉𝑚|2 − 2 ∗ (𝑅𝑚,𝑚+1 ∗ 𝑃𝑚 + 𝑋𝑚,𝑚+1 ∗ 𝑄𝑚) + (𝑅𝑚,𝑚+1

2 + 𝑋𝑚,𝑚+1
2 ) ∗ (

𝑃𝑚
2 +𝑄𝑚

2

|𝑉𝑚|2
)                    (3) 

where 𝑃𝑚 and 𝑄𝑚 are real and reactive power flow from bus 𝑚 + 1 connecting bus 𝑚 and 𝑚 + 1; 𝑃𝐿𝑚 

and 𝑄𝐿𝑚 are real load and reactive load at bus 𝑚; 𝑅𝑚,𝑚+1 and 𝑋𝑚,𝑚+1 are line resistance and reactance 

between bus 𝑚 and 𝑚 + 1, respectively. 

The line loss between bus 𝑚 and 𝑚 + 1 is given by 

𝑃𝐿(𝑚,𝑚 + 1) = (
𝑃𝑚

2 +𝑄𝑚
2

|𝑉𝑚|2
) ∗ 𝑅𝑚,𝑚+1                                                                                                         (4) 

Therefore, total line losses (𝑃𝑇,𝐿) in a distribution network is evaluated as the summation of all line losses 

and it is given by 

𝑃𝑇,𝐿 = ∑ 𝑃𝐿(𝑚,𝑚 + 1)𝑏−1
𝑚=0                                                                                                                        (5) 

 
Fig. 1. SLD of a sample distribution network. 



 

 

In distribution networks capacitor allocation minimize power losses. The available standard sizes 

of capacitors in the market with the smallest size is 𝑄0
𝑐𝑎𝑝

. Also, from size-to-size annual cost per kVAR 

differs. The list of capacitor sizes and their associated annual cost per kVAR are illustrated in Table 2. 

Table 2 

Capacitor sizes available and their associated costs 

Number,(𝑛) 1 2 3 4 5 6 7 8 9 

Size, 𝑄𝑛
𝑐𝑎𝑝

  (in kVAR) 150 300 450 600 750 900 1050 1200 1350 

Cost, 𝐾𝑐𝑎𝑝  (in $/kVAR-year) 0.500 0.350 0.253 0.220 0.276 0.183 0.223 0.170 0.207 

Number,(𝑛) 10 11 12 13 14 15 16 17 18 

Size, 𝑄𝑛
𝑐𝑎𝑝

 (in kVAR) 1500 1650 1800 1950 2100 2250 2400 2550 2700 

Cost, 𝐾𝑐𝑎𝑝  (in $/kVAR-year) 0.201 0.193 0.187 0.211 0.176 0.197 0.170 0.189 0.187 

Number,(𝑛) 19 20 21 22 23 24 25 26 27 

Size, 𝑄𝑛
𝑐𝑎𝑝

  (in kVAR) 2850 3000 3150 3300 3450 3600 3750 3900 4050 

Cost, 𝐾𝑐𝑎𝑝 (in $/kVAR-year) 0.183 0.180 0.195 0.174 0.188 0.170 0.183 0.182 0.179 

3.2. Objective function 

The main objective of the capacitor allocation problem is to minimize power loss, capacitor 

integration cost, and improve bus voltage profile. To ease the newly facilitated network, allocated 

capacitor operation and maintenance cost is excluded. Also, peak power loss minimization benefits of 

power transmitted in lines/cables and transformers are ignored. The present objective function of capacitor 

allocation to achieve power loss and annual operating cost minimization is represented mathematically as 

follows 

𝐹 = 𝑚𝑖𝑛{𝑐𝑜𝑠𝑡} = 𝐾𝑃 ∗ 𝑃𝑇,𝐿 + ∑ 𝐾𝑚
𝑐𝑎𝑝𝑏

𝑚=1 ∗ 𝑄0
𝑐𝑎𝑝

                           (6) 

3.3. Constraints 

Bus voltage limits 

𝑉𝑀𝑖𝑛 ≤ 𝑉𝑚 ≤ 𝑉𝑀𝑎𝑥     ∀ 𝑚 = 1,2, … , 𝑏                                               (7) 

Capacitor allocation limits 

𝑄𝑚
𝑐𝑎𝑝 ≤ ∑ 𝑄𝐿𝑚

𝑏
𝑖=1                                          (8) 

where 𝑉𝑀𝑖𝑛 and 𝑉𝑀𝑎𝑥 are minimum and maximum permissible limits of voltages, respectively. 𝑄𝐿𝑚 is the 

reactive load at bus 𝑚. 

4. Water Cycle Algorithm  

Eskandar et al. [39] has proposed a water cycle algorithm (WCA) in 2012. The algorithm is 

inspired by the water cycle process of nature in the real world. When water flows downwards from one 

place to another a stream or a river will be formed. This implies that rivers are formed mostly above the 

mountains due to the melting of snow or ancient glaciers. The rivers naturally flow downwards. During 



 

 

the downwards flow of water gathered from rain and additional streams finally end up at sea. Where this 

journey of streams and rivers flow to the sea is generally known as the water cycle or hydrologic cycle. 

The illustration of the simplified hydrologic cycle is represented in Fig. 2.  

The algorithm is employed to solve various constrained and engineering design problems. The 

effective ability of WCA has been assessed and reported in terms of solution accuracy and computational 

effort in the literature. In [40], authors have implemented an efficient chaotic WCA by considering the 

chaos in real water cycle behavior in which random process is replaced with chaotic operators improved 

the optimization strategies of intensification and diversification.  In [41], authors have developed a 

Gaussian bare-bones WCA to solve the reactive power compensation problem. Even though improved or 

modified WCA varieties attain better solutions for various complex optimization problems still the 

standard version of WCA has significant ability in finding global optimum via appropriate parameter 

tunning.   Hence for solving the capacitor allocation optimization problem in a standard distribution 

network WCA has been effectively implemented.  

 
Fig. 2. Illustration of the simplified hydrologic cycle   

4.1 Procedure of WCA  

The detailed WCA open-source code has been provided to demonstrate the step-by-step process 

and to assess the performance and efficiency in solving optimization problems. The algorithm starts with 

an assumption of rain or precipitation phenomena. Initialization begins in WCA with a raining process. 

This process involves the generation of the initial population randomly which are known as decision 

parameters. The initially generated population is known as raindrops (RD). The optimization problem of 



 

 

𝑁𝑣𝑎𝑟 dimensions can be represented as an array of 1 × 𝑁𝑣𝑎𝑟 with single raindrop (single solution set) is 

as follows: 

𝑅𝐷 = [𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁]                                                                                                                           (9) 

The matrix RD has random solutions generated for the first iteration  

𝑅𝐷 = {𝑟𝑖
𝑘: 𝑘 = 1:𝑁𝑣𝑎𝑟 𝑎𝑛𝑑 𝑖 = 1:𝑁𝑅𝐷}                         (10) 

The optimization algorithm begins with the generation of the random number (i.e., raindrops population) 

forms a matrix, Y of 𝑁𝑅𝐷 × 𝑁𝑣𝑎𝑟 (rows represents population and column represents decision parameters, 

respectively):  

𝑌 =

[
 
 
 
 
 𝑟1

1 𝑟1
2 … 𝑟1

𝑁𝑣𝑎𝑟

𝑟2
1 𝑟2

2 … 𝑟2
𝑁𝑣𝑎𝑟

𝑟3
1 𝑟3

2 … 𝑟3
𝑁𝑣𝑎𝑟

⋮ ⋮ ⋮ ⋮

𝑟𝑁𝑅𝐷

1 𝑟𝑁𝑅𝐷

2 … 𝑟𝑁𝑅𝐷

𝑁𝑣𝑎𝑟
]
 
 
 
 
 

                                                                                                                (11) 

From the above equation, the cost function (𝐶𝐹𝑗) can be formulated as   

𝐶𝐹𝑗 = 𝐶𝑜𝑠𝑡𝑗 = 𝑓(𝑟𝑖
1, 𝑟𝑖

2, 𝑟𝑖
3, … , 𝑟𝑖

𝑁𝑣𝑎𝑟), 𝑖 =  1,2,3, … ,𝑁𝑅𝐷                        (12) 

Later, the streams, rivers, and sea can be evaluated using equation (13), which mainly depends on the 

potential of flow. Here, the sea is the destination (optimal solution) which is selected from the best RD, 

the river is formed from good RD and the streams are formed due to the remaining RD.  

𝑁𝑆𝑘 = round {|
𝐶𝑜𝑠𝑡𝑘

∑ 𝐶𝑜𝑠𝑡𝑖
𝑁𝑠𝑟
𝑖=1

| × 𝑁𝑅𝐷} , 𝑘 = 1,2,3, … , 𝑁𝑠𝑟                        (13) 

It is observed that with a random distance (Y) streams flow to the river. Similarly, the river flows to the 

sea, thus the new location for streams and rivers are 

𝑌𝑠𝑡𝑟𝑒𝑎𝑚
𝑖+1 = 𝑌𝑠𝑡𝑟𝑒𝑎𝑚

𝑖 + 𝑟𝑎𝑛𝑑 ∗ 𝐷 ∗ (𝑌𝑟𝑖𝑣𝑒𝑟
𝑖 − 𝑌𝑠𝑡𝑟𝑒𝑎𝑚

𝑖 )                        (14) 

𝑌𝑟𝑖𝑣𝑒𝑟
𝑖+1 = 𝑌𝑟𝑖𝑣𝑒𝑟

𝑖 + 𝑟𝑎𝑛𝑑 ∗ 𝐷 ∗ (𝑌𝑠𝑒𝑎
𝑖 − 𝑌𝑟𝑖𝑣𝑒𝑟

𝑖 )                                          (15) 

The significance of the evaporation process is effectively implemented to avoid immature convergence 

and local optimal trap. This process will begin after verifying the condition in equation (16) 

 |𝑌𝑠𝑒𝑎
𝑖 − 𝑌𝑟𝑖𝑣𝑒𝑟

𝑖 | < 𝑑𝑚𝑎𝑥         𝑖 = 1,2,3, … ,𝑁𝑠𝑟 − 1                        (16) 



 

 

The 𝑑𝑚𝑎𝑥 value decreases adaptively with the evaporation process every time,  

𝑑𝑚𝑎𝑥
𝑖+1 = 𝑑𝑚𝑎𝑥

𝑖 − (
𝑑𝑚𝑎𝑥

𝑖

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)                            (17) 

Once the process of evaporation is completed, the new raindrops formed due to the raining process. Hence 

new streams will be formed by the equation (18). 

𝑌𝑠𝑡𝑟𝑒𝑎𝑚
𝑛𝑒𝑤 = 𝑌𝑠𝑒𝑎 + √𝜇 × 𝑟𝑎𝑛𝑑𝑛(1, 𝑁𝑣𝑎𝑟)                          (18) 

where 𝜇 is the co-efficient with value 0.1 which represents searching region near the sea.  

 

Fig. 3. Pseudo code of Water Cycle Algorithm 

4.2 Implementation of WCA for optimal capacitor allocation 

To solve the capacitor allocation problem in the distribution network the process of WCA is implemented 

step-by-step is presented below.  



 

 

Step 1: The load flow program is supplied with the necessary bus and line [37].  

Step 2: Realize the WCA parameters 

Step 3: Generate the solution set RD randomly  

Step 4: The solution set generated must satisfy system constraints in subsection 3.3.  

Step 5: The cost or objective function can be evaluated by running the implemented WCA for each RD. 

Step 6: Retain the solution obtained so far from raindrops. 

Step 7: The new solutions set must generate.  

Step 8: Verify the stopping criteria, if it is fulfilled stop and display the results. else, repeat steps 1 – 7.   

Flowchart of WCA implemented for optimal capacitor allocation in RDN is shown in Fig. 4.  

 

Fig. 4. Flowchart of WCA for solving capacitor allocation problem. 

5. Salp Swarm Algorithm  

Mirjalili et al [42] has proposed a salp swarm algorithm (SSA) in 2017. It is a bio-inspired 

optimization algorithm that mimics the behavior of salp in deep oceans for navigating and foraging. The 



 

 

algorithm has initially tested on standard benchmark function and later implemented on different design 

and complex engineering problems. The swarming behavior of salp is illustrated in Fig. 5.  Fig. 5(a) 

illustrates salps in the ocean. And the illustration of salp swarming in the ocean is shown in Fig. 5(b). The 

salps are used to form a chain known as a salp chain. The structure of the salp chain is illustrated in Fig. 

5(c). The main reason behind the behavior of chain formation is to attain better movement through fast 

shifting and foraging. 

 
 (a) 

 
(b) 

 
(c) 

Fig. 5. (a) Salps in the ocean (b) Salp swarming (c) Salp chain. 



 

 

Similar to other swarm-based techniques, salps location is distinct in n – dimension search space. 

Hence salp location is saved in a matrix with two dimensions called X. The food source present in the 

search space called F is considered as the swarm’s target. The position of the leader salp is obtained from 

the first iteration and this equation is used to update its position. 

Xd
1 = {

Fd + C1((ubd − lbd)C2 + lbd), C3 ≥ 0

Fd − C1((ubd − lbd)C2 + lbd), C3 < 0
                                                                                        (19) 

𝐶1 = 2 ∗ 𝑒−(
𝑡

𝑇
)
2

                                                                                                                                         (20) 

𝑋𝑑
𝑖 =

1

2
(𝑋𝑑

𝑖 + 𝑋𝑑
𝑖−1)                                                                                                            (21) 

where, Xd
1  and Fd are the leader (first salp) position and the food source location in the dth dimension, 

lbd and ubd are lower and upper boundaries of the dth dimension, C2 and C3 are random numbers. 

 
Fig. 6. Pseudo code of Salp Swarm Algorithm 

5.1. Implementation of SSA for capacitor allocation 

Step 0: In the initial step, initialize the population size of salps 𝑁𝑠, this salps population is considered a 

feasible solution that satisfies all the constraints in subsection 3.3. Thus, the solution set of capacitors 

allocation (i.e.., location (l) and size (C)) is formulated as follows: 



 

 

𝑋 = [

 𝑙1
1 𝑙2

1 𝑙3
1

 𝑙1
2 𝑙2

2 𝑙3
2

⋮ ⋮ ⋮

   
𝐶1

1 𝐶2
1 𝐶3

1

𝐶1
2 𝐶2

2 𝐶3
2

⋮ ⋮ ⋮
   𝑙1

𝑛  𝑙2
𝑛   𝑙3

𝑛   𝐶1
𝑛 𝐶2

𝑛 𝐶3
𝑛

]                                                                                               (22) 

Step 1: Feed the required input bus and line data for the load flow program [30]. Run the SSA and evaluate 

the fitness or objective function (6). For the first iteration, compute the leader salp position using Eq. (19). 

Step 2: In steps of iterations the parameter C1 is updated using Eq. (20) and leader salp and follower salp 

positions are updated by Eq. (19) and Eq. (21). 

Step 3: Evaluate the fitness or objective function value (cost minimization) for each iteration. 

Step 4: Check for the stopping criteria, if it is satisfied stop and display the results. Otherwise, repeat steps 

1 – 3. 

The flow chart of SSA for capacitor allocation in distribution networks is illustrated in Fig. 7.  

 
Fig. 7. Flow chart of the proposed SSA for allocation of SCB 



 

 

6. Simulation results and discussions 

To crisscross the feasibility, WCA and SSA are tested on standard 9, 33, 34, 69, and 85 – bus radial 

distribution networks. Both the algorithms have been implemented in MATLAB. The entities considered 

for WCA and SSA are presented in Table 3. The simulation results obtained from WCA and SSA depend 

on random variables generated. Hence, it is necessary to run both algorithms for 50 trails for attaining the 

optimal solution set. The value of the equivalent annual cost per unit of power loss is 168 $/kW [20]. The 

bus voltage limits considered for the present analysis are 𝑉𝑚𝑖𝑛 = 0.9 𝑝. 𝑢. and 𝑉𝑚𝑎𝑥 = 1.1 𝑝. 𝑢.  

Table 3 

WCA and SSA parameters  

Entity WCA SSA 

Population size  100 100 

Maximum iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥) 500 500 

Trail runs  50 50 

 

6.1. Test systems 

6.1.1. 9-bus system 

The SLD of the 9-bus distribution network is shown in Fig. 8. The network line voltage rating is 

23 kV. The bus and line data of the network is taken from Table A1. The total load demand of real and 

reactive on the network is 12,368 kW and 4186 kVAR, respectively. The power loss of the network at the 

base case is 783.63 kW. WCA gives the optimal bus locations as 4, 5, 8 with optimal capacitor bank sizes 

of 3450, 900, and 600 kVAR, respectively. Whereas SSA gives the optimal bus locations as 2, 4, 6 and 

optimal capacitor bank sizes as 4050, 3150, and 1350 kVAR, respectively. The results obtained by both 

algorithms are presented in Table 4. It is noticed that after capacitor allocation the power loss reduction 

obtained by WCA and SSA are 682.99 kW and 678.845 kW, respectively. The percentage power loss 

reduction obtained by WCA and SSA compared to the base case is 12.77% and 13.371%, respectively. 

Fig. 9, Illustrates the comparison of obtained power loss reduction by WCA and SSA with other 

algorithms. In addition, it is observed from Table 4, that annual cost is reduced from 131,675 $ to 115,688 

$ by WCA and 131,675 $ to 115,664 $, by SSA. It is noticed that subsequent net saving is achieved by 

SSA of 16,011 $ outperforms all other algorithms. The minimum bus voltage before capacitor allocation 

is 0.8375 p.u. However, after capacitor allocation, the minimum bus voltage obtained is 0.9000 p.u. It can 

be concluded that both algorithms have the capability of minimizing power loss and operating costs. SSA 

is more capable to handle complex combinatorial optimization problems of capacitor allocation.  



 

 

 
Fig. 8. SLD of 9-bus distribution network. 

Table 4 

Comparison of results obtained by WCA and SSA with other techniques (9 – bus) 

Parameter Base case GA [22] PSO [22] ES [22] PSGA [16] WCA SSA 

Power loss (kW) 783.63 701.478 698.10 698.10 694.93 682.99 678.845 

Loss reduction (%) - 10.48 10.91 10.91 11.33 12.77 13.371 

Annual cost ($) 131,675 118,916 118,538 118,538 118,340 115,688 115,664 

Net saving ($) - 12,759 13,137 13,137 13,334 15,987 16,011 

Capacitor size (kVAR) 

@ bus location 

- 3300 @ 4 

1800 @ 5 

900 @ 9 

4050 @ 4 

1650 @ 5 

750 @ 9 

4050 @ 4 

1650 @ 5 

750 @ 9 

1200 @ 4 

1200 @ 5 

200 @ 8 

407 @ 9 

3450 @ 4 

900 @ 5 

600 @ 8 

4050 @ 2 

3150 @ 4 

1350 @ 6 

Net kVAR injected - 6000 6450 6450 3007 4950 8550 

Min. Voltage (p.u.) 0.8375 0.9007 0.9000 0.9000 NA 0.9000 0.9000 

Max. Voltage (p.u.) 0.9929 0.9992 1.001 1.001 NA 0.9969 1.004 

 

 
Fig. 9. Comparison of WCA and SSA with different algorithms based on loss reduction for 9 – bus system 



 

 

6.1.2. 33-bus system 

The SLD of the 33-bus distribution network is shown in Fig. 10. The network line voltage rating 

is 12.66 kV. The bus and line data of the network is taken from Table A2. The total load demand of real 

and reactive on the network is 3715 kW and 2300 kVAR, respectively. The power loss of the network at 

the base case is 202.66 kW. WCA gives the optimal bus locations as 11, 23, 29 with optimal capacitor 

bank sizes of 450, 450, and 900 kVAR, respectively. Whereas SSA gives the optimal bus locations as 11, 

23, 29 and optimal capacitor bank sizes like 450, 450, and 1050 kVAR, respectively. The results obtained 

by both algorithms are presented in Table 5. It is noticed that after capacitor allocation the power loss 

reduction obtained by WCA and SSA are 132.66 kW and 132.35 kW, respectively. The percentage power 

loss reduction obtained by WCA and SSA compared to the base case is 34.54% and 34.69%, respectively. 

Fig. 11, Illustrates the comparison of obtained power loss reduction by WCA and SSA with other 

algorithms. In addition, it is observed from Table 4, that annual cost is reduced from 34,047 $ to 22,698.88 

$ by WCA and 34,047 $ to 22,696.65 $, by SSA. It is noticed that subsequent net saving is achieved by 

SSA of 11,350.35 $, outperforming all other algorithms. The minimum bus voltage before capacitor 

allocation is 0.9131 p.u. However, after capacitor allocation the minimum bus voltage obtained is 0.9366 

p.u. Fig. 12 Illustrates the improved voltage profile obtained by WCA and SSA compared with the base 

case. It can be concluded that both algorithms have the capability of minimizing power loss and operating 

costs. SSA is more capable to handle complex combinatorial optimization problems of capacitor 

allocation.  

 
Fig. 10. SLD of 33 – bus distribution network. 



 

 

 

Fig. 11. Comparison of SSA with different algorithms based on loss reduction for 33 – bus system 

Table 5  

Comparison of results obtained by the proposed algorithm with other techniques (33 – bus) 

Parameter Base case Analytical [27] Two-stage 

method [27] 

FPA [27] WCA SSA 

Power loss (kW) 202.66 171.78 144.04 139.075 132.66 132.35 

Loss reduction (%) - 15.23 28.92 31.37 34.54 34.69 

Annual cost ($) 34,047 29,358.39 24,705.87 23,757 22,698.88 22,696.65 

Net saving ($) - 4688.61 9341.13 10290 11348.12 11350.35 

Capacitor size (kVAR) @ 

bus location 

- 450 @ 9 

800 @ 29 

900 @ 30 

850 @ 7 

25 @ 29 

900 @ 30 

450 @ 13 

450 @ 24 

900 @ 30 

450 @ 11 

600 @ 23 

900 @ 29 

450 @ 11 

450 @ 23 

1050 @ 29 

Net kVAR injected - 2150 1775 1800 1950 1950 

Min. Voltage (p.u.) 0.9131 0.9501 0.9251 0.9327 0.9355 0.9366 

Max. Voltage (p.u.) 0.9970 NA NA NA 0.9976 0.9977 

 



 

 

 
Fig. 12. Improved voltage profile obtained after OSCB allocation using SSA for 33 – bus system 

6.1.3. 34-bus system 

The SLD of the 34-bus distribution network is shown in Fig. 13. The network line voltage rating 

is 11 kV. The bus and line data of the network is taken from Table A3. The total load demand of real and 

reactive on the network is 4636.5 kW and 2873.5 kVAR, respectively. The power loss of the network at 

the base case is 221.73 kW. WCA gives the optimal bus locations as 8, 18, 23 with equal optimal capacitor 

bank sizes of 750 kVAR at each location. Whereas SSA gives the optimal bus locations as 8, 18, 23 and 

optimal capacitor bank sizes like 750, 900, and 750 kVAR, respectively. The results obtained by both 

algorithms are presented in Table 6. It is noticed that after capacitor allocation the power loss reduction 

obtained by WCA and SSA are 160.80 kW and 160.58 kW, respectively. The percentage power loss 

reduction obtained by WCA and SSA compared to the base case is 27.47% and 27.57%, respectively. Fig. 

14, Illustrates the comparison of obtained power loss reduction by WCA and SSA with other algorithms. 

In addition, it is observed from Table 6, that annual cost is reduced from 37,250 $ to 27,636.50 $ by WCA 

and 37,250 $ to 27,556.14 $, by SSA. It is noticed that subsequent net saving is achieved by SSA of 

9,693.86 $, outperforming all other algorithms. The minimum bus voltage before capacitor allocation is 

0.9417 p.u. However, after capacitor allocation the minimum bus voltage obtained is 0.9502 p.u. Fig. 15 

Illustrates the improved voltage profile obtained by WCA and SSA compared with the base case. It can 

be concluded that both algorithms have the capability of minimizing power loss and operating costs. SSA 

is more capable to handle complex combinatorial optimization problems of capacitor allocation.  



 

 

 
Fig. 13. SLD of 34 – bus distribution network. 

 
Fig. 14. Comparison of SSA with different algorithms based on loss reduction for 34 – bus system 

 

 



 

 

Table 6 

Comparison of results obtained by the proposed algorithm with other techniques (34 – bus) 

Parameter Base case PSO [21] ACO [27] FPA [27] WCA SSA 

Power loss (kW) 221.73 168.8 162.68 161.055 160.80 160.58 

Loss reduction (%) - 23.87 26.63 27.36 27.47 27.57 

Annual cost ($) 37,250 29,936 28,334.5 27,592 27,636.50 27,556.14 

Net saving ($) - 7314 8915.5 9658 9613.5 9693.86 

Capacitor size 

(kVAR) @ bus 

location 

- 781 @ 19 

479 @ 20 

803 @ 22 

645 @ 9 

719 @ 22 

665 @ 25 

600 @ 10 

1050 @ 18 

900 @ 24 

750 @ 8 

750 @ 18 

750 @ 23 

750 @ 8 

900 @ 18 

750 @ 23 

Net kVAR injected - 2063 2029 2550 2250 2400 

Min. Voltage (p.u.) 0.9417 0.9486 0.9501 0.9496 0.9497 0.9502 

Max. Voltage (p.u.) 0.9941 NA NA NA 0.9951 0.9952 

 

 

Fig. 15. Improved voltage profile obtained after OSCB allocation using SSA for 34 – bus system 

 

 



 

 

6.1.4. 69-bus system  

The SLD of the 69-bus distribution network is shown in Fig. 16. The network line voltage rating 

is 12.66 kV. The bus and line data of the network is taken from Table A4. The total load demand of real 

and reactive on the network is 3801.89 kW and 2694.1 kVAR, respectively. The power loss of the network 

at the base case is 225 kW. WCA gives the optimal bus locations as 17, 60, 65 with optimal capacitor bank 

sizes of 300, 1200, 300 kVAR, respectively. Whereas SSA gives the optimal bus locations as 10, 17, 60 

and optimal capacitor bank sizes like 300, 300, and 1200 kVAR, respectively. The results obtained by 

both algorithms are presented in Table 7. It is noticed that after capacitor allocation the power loss 

reduction obtained by WCA and SSA are 145.36 kW and 145.26 kW, respectively. The percentage power 

loss reduction obtained by WCA and SSA compared to the base case is 35.39% and 35.44%, respectively. 

Fig. 17, Illustrates the comparison of obtained power loss reduction by WCA and SSA with other 

algorithms. In addition, it is observed from Table 6, that annual cost is reduced from 37,800 $ to 24,835.32 

$ by WCA and 37,800 $ to 24,817.68 $, by SSA. It is noticed that subsequent net saving is achieved by 

SSA of 12,982.32 $, outperforming all other algorithms. The minimum bus voltage before capacitor 

allocation is 0.9092 p.u. However, after capacitor allocation the minimum bus voltage obtained is 0.9308 

p.u. Fig. 18 Illustrates the improved voltage profile obtained by WCA and SSA compared with the base 

case. It is noticed that the bus voltage at each obtained by both algorithms is almost identical. Hence in 

Fig 18 voltage profile obtained by both the algorithms got overlapped. It can be concluded that both 

algorithms have the capability of minimizing power loss and operating costs. SSA is more capable to 

handle complex combinatorial optimization problems of capacitor allocation.  

 
Fig. 16. SLD of 69 – bus distribution network. 



 

 

 

Fig. 17. Comparison of SSA with different algorithms based on loss reduction for 69 – bus system 

Table 7 

Comparison of results obtained by the proposed algorithm with other techniques (69 – bus) 

Parameter Base case PSO [21] TLBO [21] FPA [27] WCA SSA 

Power loss (kW) 225 152.48 146.35 145.86 145.36 145.26 

Loss reduction (%) - 32.23 34.95 35.17 35.39 35.44 

Annual cost ($) 37,800 NA 25,033.2 24,972.78 24,835.32 24,817.68 

Net saving ($) - NA 12766.8 12827.22 12964.68 12982.32 

Capacitor size 

(kVAR) @ bus 

location 

- 241 @ 46 

365 @ 47 

1015 @ 50 

600 @ 12 

1050 @ 61 

150 @ 64 

450 @ 11 

150 @ 22 

1350 @ 61 

300 @ 17 

1200 @ 60 

300 @ 65 

300 @ 10 

300 @ 17 

1200 @ 60 

Net kVAR injected - 1621 1800 1950 1800 1800 

Min. Voltage (p.u.) 0.9092 NA 0.9313 0.9496 0.9307 0.9308 

Max. Voltage (p.u.) NA NA NA NA 1.0000 1.0000 



 

 

 

Fig. 18. Improved voltage profile obtained after OSCB allocation using SSA for 69-bus system  

6.1.5. 85-bus system  

The SLD of the 85-bus distribution network is shown in Fig. 19. The network line voltage rating 

is 11 kV. The bus and line data of the network is taken from Table A5. The total load demand of real and 

reactive on the network is 2570.28 kW and 2621.936 kVAR, respectively. The power loss of the network 

at the base case is 316.097 kW. WCA gives the optimal bus locations as 7, 34, 66 with optimal capacitor 

bank sizes of 1050, 600, 600 kVAR, respectively. Whereas SSA gives the optimal bus locations as 8, 33, 

67 and optimal capacitor bank sizes as 1050, 750, and 450 kVAR, respectively. The results obtained by 

both algorithms are presented in Table 8. It is noticed that after capacitor allocation the power loss 

reduction obtained by WCA and SSA are 149.37 kW and 148.91 kW, respectively. The percentage power 

loss reduction obtained by WCA and SSA compared to the base case is 52.74% and 52.89%, respectively. 

Fig. 20, Illustrates the comparison of obtained power loss reduction by WCA and SSA with other 

algorithms. In addition, it is observed from Table 6, that annual cost is reduced from 53,104.3 $ to 

25,597.59 $ by WCA and 53,104.3 $ to 25,571.88 $, by SSA. It is noticed that subsequent net saving is 

achieved by SSA of 27,532.42 $, outperforming all other algorithms. The minimum bus voltage before 

capacitor allocation is 0.8713 p.u. However, after capacitor allocation the minimum bus voltage obtained 

is 0.9222 p.u. Fig. 21 Illustrates the improved voltage profile obtained by WCA and SSA compared with 

the base case. It can be concluded that both algorithms have the capability of minimizing power loss and 

operating costs. SSA is more capable to handle complex combinatorial optimization problems of capacitor 

allocation.  



 

 

 
Fig. 19. SLD of 85 – bus distribution network. 

 

Fig. 20. Comparison of SSA with different algorithms based on loss reduction for 85 – bus system 



 

 

Table 8 

Comparison of results obtained by the proposed algorithm with other techniques (85 – bus) 

Parameter Base case MINLP [21] BFOA [24] FPA [27] WOA [26] WCA SSA 

Power loss (kW) 316.097 159.87 152.25 151.807 149.52 149.37 148.91 

Loss reduction (%) - 49.42 51.83 51.97 52.69 52.74 52.89 

Annual cost ($) 53,104.3 27637 27,027.07 25971.576 NA 25,597.59 25,571.88 

Net saving ($) - 25467.3 26077.23 27132.724 NA 27506.71 27532.42 

Capacitor size 

(kVAR) @ bus 

location 

- 300 @ 7 

700 @ 8 

900 @ 29 

500 @ 58 

840 @ 9 

660 @ 34 

650 @ 60 

1200 @ 8 

600 @ 36 

600 @ 72 

490 @ 25 

709 @ 34 

566 @ 67 

417 @ 80 

1050 @ 7 

600 @ 34 

600 @ 66 

1050 @ 8 

750 @ 33 

450 @ 67 

Net kVAR injected - 2400 2150 2400 2182 2250 2250 

Min. Voltage (p.u.) 0.8713 0.9171 0.9180 0.9235 0.9214 0.9204 0.9222 

Max. Voltage (p.u.) 0.9957 NA NA NA NA 0.9973 0.9973 

 

Fig. 21. Improved voltage profile obtained after OSCB allocation using SSA for 85-bus system 

6.2. Convergence property  

The power loss convergence characteristics of WCA and SSA for 9 – bus system is illustrated in 

Fig. 22. The annual cost minimization convergence characteristics of WCA and SSA for 9 – bus system 

is illustrated in Fig. 23. It can be noticed that both algorithms have smooth convergence characteristics for 

minimization of power loss and annual cost.  



 

 

 

Fig. 22. Convergence characteristics of WCA and SSA for 9 – bus system (power loss) 

 
Fig. 23. Convergence characteristics of WCA and SSA for 9 – bus system (annual cost minimization) 

6.3. Computational time 

In the present study for each test system, both algorithms have run 50 times. Since WCA and SSA 

are stochastic optimization techniques hence for evaluating the performance of the best, average, and worst 

power loss, corresponding standard deviation (SD), variance, and average computational time MALTAB 

built-in functions have been used and obtained simulation results are presented in Table 9. The 

methodology for finding best, average, worst, standard deviation, and variance of given solution set can 

be evaluated using different techniques presented.  

 

 



 

 

Table 9 

The best, average, and worst power loss with SD and variance obtained by WCA and SSA for 50 trial runs 

Algorithm  Test system Power loss (kW) Computational 

time (s) Worst Average Best SD Variance 

WCA 

9 – bus system 678.845 678.845 678.845 0.0000 0.00000 3.15 

33 – bus system 135.01 133.11 132.35 0.8737 0.76335 8.05 

34 – bus system 161.18 160.83 160.58 0.2487 0.06185 8.07 

69 – bus system 147.11 146.01 145.26 0.7528 0.56670 16.32 

85 – bus system 150.72 149.19 148.91 0.5733 0.32867 23.45 

SSA 

9 – bus system 682.99 682.99 682.99 0.0000 0.00000 3.15 

33 – bus system 135.34 133.44 132.66 0.8635 0.74563 8.05 

34 – bus system 163.25 161.96 160.80 0.2487 0.06185 8.07 

69 – bus system 147.26 146.53 145.36 0.3528 0.12446 16.32 

85 – bus system 150.21 149.69 149.37 0.3733 0.13935 23.45 

 

7. Conclusion and future scope  

In this paper, two novel metaheuristic algorithms have been implemented for solving capacitor 

allocation optimization problems in the distribution network. The first algorithm is inspired by the water 

cycle process of nature in the real world where streams and rivers flow to the sea known as the water cycle 

algorithm (WCA). The second algorithm is inspired by salp swarming behavior in oceans for navigating 

and foraging is known as the salp swarm algorithm (SSA). Both the algorithms are tested on standard 9, 

33, 34, 69, and 85 – bus distribution networks. The efficiency of WCA and SSA is assessed in terms of 

power loss minimization and net saving maximization. The power loss reduction achieved by the present 

algorithms is compared with the existing techniques. The comparison confirms that both the algorithms 

are suitable and capable of solving optimal capacitor allocation problems in distribution networks. 

The better results of the present optimization algorithms show their capabilities of local 

(intensification) and global search (diversification). To crisscross the feasibility of present algorithms, 

both algorithms are effectively implemented for solving capacitor allocation problems in small, medium, 

and large distribution networks. However, the application of the present algorithm is not restricted only to 

solving capacitor allocation problems, it can be utilized in related areas of research for future work. The 

effective implementation of WCA and SSA for solving various optimization problems, hybridization of 

WCA and SSA can be implemented and tested with benchmark functions and various well-established 

optimization algorithms, and the effective implementation of novel optimization algorithms for solving 

optimal capacitor allocation problems in the distribution network.    
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Appendices  

Table A1 

Line and bus data of 9 – bus test system 

line no. from bus, 𝑚 to bus, 𝑚 + 1 𝑅𝑚,𝑚+1 (Ω) 𝑋𝑚,𝑚+1 (Ω) 𝑃𝐿  (kW) 𝑄𝐿  (kVAR) 

1 1 2 0.1233 0.4127 1840 460 

2 2 3 0.0140 0.6051 980 340 

3 3 4 0.7463 1.2050 1790 446 

4 4 5 0.6984 0.6084 1598 1840 

5 5 6 1.9831 1.7276 1610 600 

6 6 7 0.9053 0.7886 780 110 

7 7 8 2.0552 1.1640 1150 60 

8 8 9 4.7953 2.7160 980 130 

9 9 10 5.3434 3.0264 1640 200 

Table A2 

Line and bus data of 33 – bus test system  

line no. from bus, 𝑚 to bus, 𝑚 + 1 𝑅𝑚,𝑚+1 (Ω) 𝑋𝑚,𝑚+1 (Ω) 𝑃𝐿  (kW) 𝑄𝐿  (kVAR) 

1 1 2 0.0922 0.0477 100 60 

2 2 3 0.493 0.2511 90 40 

3 3 4 0.366 0.1864 120 80 

4 4 5 0.3811 0.1941 60 30 

5 5 6 0.819 0.707 60 20 

6 6 7 0.1872 0.6188 200 100 



 

 

7 7 8 0.7114 0.2351 200 100 

8 8 9 1.03 0.74 60 20 

9 9 10 1.04 0.74 60 20 

10 10 11 0.1966 0.065 45 30 

11 11 12 0.3744 0.1238 60 35 

12 12 13 1.468 1.155 60 35 

13 13 14 0.5416 0.7129 120 80 

14 14 15 0.591 0.526 60 10 

15 15 16 0.7463 0.545 60 20 

16 16 17 1.289 1.721 60 20 

17 17 18 0.732 0.574 90 40 

18 2 19 0.164 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 50 

23 23 24 0.898 0.7091 420 200 

24 24 25 0.896 0.7011 420 200 

25 6 26 0.203 0.1034 60 25 

26 26 27 0.2842 0.1447 60 25 

27 27 28 1.059 0.9337 60 20 

28 28 29 0.8042 0.7006 120 70 

29 29 30 0.5075 0.2585 200 600 

30 30 31 0.9744 0.963 150 70 

31 31 32 0.3105 0.3619 210 100 

32 32 33 0.341 0.5302 60 40 

Table A3 

Line and bus data of 34 – bus test system  

line no. from bus, 𝑚 to bus, 𝑚 + 1 𝑅𝑚,𝑚+1 (Ω) 𝑋𝑚,𝑚+1 (Ω) 𝑃𝐿  (kW) 𝑄𝐿  (kVAR) 

1 1 2 0.117 0.048 230 142.5 

2 2 3 0.10725 0.044 0 0 

3 3 4 0.16445 0.04565 230 142.5 

4 4 5 0.15 0.0415 230 142.5 

5 5 6 0.15 0.0415 0 0 

6 6 7 0.3144 0.054 0 0 

7 7 8 0.2096 0.036 230 142.5 

8 8 9 0.3144 0.054 230 142.5 

9 9 10 0.2096 0.036 0 0 

10 10 11 0.131 0.0225 230 142.5 

11 11 12 0.1048 0.018 137 84 

12 3 13 0.1572 0.027 72 45 

13 13 14 0.2096 0.036 72 45 

14 14 15 0.1048 0.018 72 45 

15 15 16 0.0524 0.009 13.5 7.5 

16 6 17 0.1794 0.0498 230 142.5 

17 17 18 0.16445 0.04565 230 142.5 

18 18 19 0.2079 0.0473 230 142.5 

19 19 20 0.189 0.043 230 142.5 

20 20 21 0.189 0.043 230 142.5 

21 21 22 0.262 0.045 230 142.5 

22 22 23 0.262 0.045 230 142.5 



 

 

23 23 24 0.3144 0.054 230 142.5 

24 24 25 0.2096 0.036 230 142.5 

25 25 26 0.131 0.0225 230 142.5 

26 26 27 0.1048 0.018 137 85 

27 7 28 0.1572 0.027 75 48 

28 28 29 0.1572 0.027 75 48 

29 29 30 0.1572 0.027 75 48 

30 10 31 0.1572 0.027 57 34.5 

31 31 32 0.2096 0.036 57 34.5 

32 32 33 0.1572 0.027 57 34.5 

33 33 34 0.1048 0.018 57 34.5 

Table A4 

Line and bus data of 69 – bus test system  

line no. from bus, 𝑚 to bus, 𝑚 + 1 𝑅𝑚,𝑚+1 (Ω) 𝑋𝑚,𝑚+1 (Ω) 𝑃𝐿  (kW) 𝑄𝐿  (kVAR) 

1 1 2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.366 0.1864 2.6 2.2 

6 6 7 0.3811 0.1941 40.4 30 

7 7 8 0.0922 0.047 75 54 

8 8 9 0.0493 0.0251 30 22 

9 9 10 0.819 0.2707 28 19 

10 10 11 0.1872 0.0619 145 104 

11 11 12 0.7114 0.2351 145 104 

12 12 13 1.03 0.34 8 5 

13 13 14 1.044 0.345 8 5.5 

14 14 15 1.058 0.3496 0 0 

15 15 16 0.1966 0.065 45.5 30 

16 16 17 0.3744 0.1238 60 35 

17 17 18 0.0047 0.0016 60 35 

18 18 19 0.3276 0.1083 0 0 

19 19 20 0.2106 0.069 1 0.6 

20 20 21 0.3416 0.1129 114 81 

21 21 22 0.014 0.0046 5 3.5 

22 22 23 0.1591 0.0526 0 0 

23 23 24 0.3463 0.1145 28 20 

24 24 25 0.7488 0.2745 0 0 

25 25 26 0.3089 0.1021 14 10 

26 26 27 0.1732 0.0572 14 10 

27 3 28 0.0044 0.0108 26 18.6 

28 28 29 0.064 0.1565 26 18.6 

29 29 30 0.3978 0.1315 0 0 

30 30 31 0.0702 0.0232 0 0 

31 31 32 0.351 0.116 0 0 

32 32 33 0.839 0.2816 14 10 

33 33 34 1.708 0.5646 19.5 14 

34 34 35 1.474 0.4673 6 4 

35 3 36 0.0044 0.0108 26 18.55 

36 36 37 0.064 0.1565 26 18.55 

37 37 38 0.1053 0.123 0 0 

38 38 39 0.0304 0.0355 24 17 

39 39 40 0.0018 0.0021 24 17 

40 40 41 0.7283 0.8509 1.2 1 

41 41 42 0.31 0.3623 0 0 



 

 

42 42 43 0.041 0.0478 6 4.3 

43 43 44 0.0092 0.0116 0 0 

44 44 45 0.1089 0.1373 39.22 26.3 

45 45 46 0.0009 0.0012 39.22 26.3 

46 4 47 0.0034 0.0084 0 0 

47 47 48 0.0851 0.2083 79 56.4 

48 48 49 0.2898 0.7091 384.7 274.5 

49 49 50 0.0822 0.2011 384.7 274.5 

50 8 51 0.0928 0.0473 40.5 28.3 

51 51 52 0.3319 0.1114 3.6 2.7 

52 9 53 0.174 0.0886 4.35 3.5 

53 53 54 0.203 0.1034 26.4 19 

54 54 55 0.2842 0.1447 24 17.2 

55 55 56 0.2813 0.1433 0 0 

56 56 57 1.59 0.5337 0 0 

57 57 58 0.7837 0.263 0 0 

58 58 59 0.3042 0.1006 100 72 

59 59 60 0.3861 0.1172 0 0 

60 60 61 0.5075 0.2585 1244 888 

61 61 62 0.0974 0.0496 32 23 

62 62 63 0.145 0.0738 0 0 

63 63 64 0.7105 0.3619 227 162 

64 64 65 1.041 0.5302 59 42 

65 11 66 0.2012 0.0611 18 13 

66 66 67 0.0047 0.0014 18 13 

67 12 68 0.7394 0.2444 28 20 

68 68 69 0.0047 0.0016 28 20 

Table A5 

Line and bus data of 85 – bus test system 

line no. from bus, 𝑚 to bus, 𝑚 + 1 𝑅𝑚,𝑚+1 (Ω) 𝑋𝑚,𝑚+1 (Ω) 𝑃𝐿  (kW) 𝑄𝐿  (kVAR) 

1 1 2 0.108 0.075 0 0 

2 2 3 0.163 0.112 0 0 

3 3 4 0.217 0.149 56 57.58 

4 4 5 0.108 0.074 0 0 

5 5 6 0.435 0.298 35.28 36.28 

6 6 7 0.272 0.186 0 0 

7 7 8 1.197 0.82 35.28 36.28 

8 8 9 0.108 0.074 0 0 

9 9 10 0.598 0.41 0 0 

10 10 11 0.544 0.373 56 57.58 

11 11 12 0.544 0.373 0 0 

12 12 13 0.598 0.41 0 0 

13 13 14 0.272 0.186 35.28 36.28 

14 14 15 0.326 0.223 35.28 36.28 

15 2 16 0.728 0.302 35.28 36.28 

16 3 17 0.455 0.189 112 115.17 

17 5 18 0.82 0.34 56 57.58 

18 18 19 0.637 0.264 56 57.58 

19 19 20 0.455 0.189 35.28 36.28 

20 20 21 0.819 0.34 35.28 36.28 

21 21 22 1.548 0.642 35.28 36.28 

22 19 23 0.182 0.075 56 57.58 

23 7 24 0.91 0.378 35.28 36.28 

24 8 25 0.455 0.189 35.28 36.28 



 

 

25 25 26 0.364 0.151 56 57.58 

26 26 27 0.546 0.226 56 57.58 

27 27 28 0.273 0.113 35.28 36.28 

28 28 29 0.546 0.226 0 0 

29 29 30 0.546 0.226 35.28 36.28 

30 30 31 0.273 0.113 14 14.39 

31 31 32 0.182 0.075 0 0 

32 32 33 0.182 0.075 35.28 36.28 

33 33 34 0.819 0.34 0 0 

34 34 35 0.637 0.264 0 0 

35 35 36 0.182 0.075 56 57.58 

36 26 37 0.364 0.151 56 57.58 

37 27 38 1.002 0.416 56 57.58 

38 29 39 0.546 0.226 35.28 36.28 

39 32 40 0.455 0.189 35.28 36.28 

40 40 41 1.002 0.416 0 0 

41 41 42 0.273 0.113 35.28 36.28 

42 41 43 0.455 0.189 35.28 36.28 

43 34 44 1.002 0.416 35.28 36.28 

44 44 45 0.911 0.378 35.28 36.28 

45 45 46 0.911 0.378 35.28 36.28 

46 46 47 0.546 0.226 14 14.39 

47 35 48 0.637 0.264 0 0 

48 48 49 0.182 0.075 0 0 

49 49 50 0.364 0.151 36.28 37.31 

50 50 51 0.455 0.189 56 57.58 

51 48 52 1.366 0.567 0 0 

52 52 53 0.455 0.189 35.28 36.28 

53 53 54 0.546 0.226 56 57.58 

54 52 55 0.546 0.226 56 57.58 

55 49 56 0.546 0.226 14 14.39 

56 9 57 0.273 0.113 56 57.58 

57 57 58 0.819 0.34 0 0 

58 58 59 0.182 0.075 56 57.58 

59 58 60 0.546 0.226 0 0 

60 60 61 0.728 0.302 56 57.58 

61 61 62 1.002 0.415 56 57.58 

62 60 63 0.182 0.075 14 14.39 

63 63 64 0.728 0.302 0 0 

64 64 65 0.182 0.075 0 0 

65 65 66 0.182 0.075 56 57.58 

66 64 67 0.455 0.189 0 0 

67 67 68 0.91 0.378 0 0 

68 68 69 1.092 0.453 56 57.58 

69 69 70 0.455 0.189 0 0 

70 70 71 0.546 0.226 35.28 36.28 

71 67 72 0.182 0.075 56 57.58 

72 68 73 1.184 0.491 0 0 

73 73 74 0.273 0.113 56 57.58 

74 73 75 1.002 0.416 35.28 36.28 

75 70 76 0.546 0.226 56 57.58 

76 65 77 0.091 0.037 14 14.39 

77 10 78 0.637 0.264 56 57.58 

78 67 79 0.546 0.226 35.28 36.28 

79 12 80 0.728 0.302 56 57.58 

80 80 81 0.364 0.151 0 0 

81 81 82 0.091 0.037 56 57.58 

82 81 83 1.092 0.453 35.28 36.28 

83 83 84 1.002 0.416 14 14.39 

84 13 85 0.819 0.34 35.28 36.28 

 


