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Abstract

We introduce a generalized information criterion which contains other well-known
information criteria, such as BIC and AIC, as special cases. Furthermore, the proposed
spectral information criterion (SIC) is also more general than the other information criteria,
e.g., since the knowledge of a likelihood function is not strictly required. SIC extracts
geometric features of the error curve and, as a consequence, it can be considered an automatic
elbow detector. SIC provides a subset of all possible models, with a cardinality that often
is much smaller than the total number of possible models. The elements of this subset are
“elbows” of the error curve. A practical rule for selecting a unique model within the sets of
elbows is suggested as well. Several experiments involving ideal scenarios, synthetic data and
real data show the benefits of the proposed scheme. Matlab code related to the experiments
is available.

Keywords: Model selection, automatic elbow detection, information criterion, BIC, AIC,
marginal likelihood

1 Introduction

Model selection is undoubtedly one of the most important task in signal processing, statistics
and machine learning. It can be considered one of the fundamental tasks of the scientific inquiry.
Indeed, the majority of the problems in statistical inference can be interpreted in some way as a
statistical modeling problem [1, 2, 3, 4].
Model selection is the process of selecting one model among many candidate models given some
data. We can distinguish three main scenarios. The first one (denoted as S1) is when completely
different models are compared. The second setting S2 is when several models of the same
parametric family are evaluated, i.e., the parameters or hyper-parameters of the model are tuned.
The third scenario S3 is related to the previous one but, in this case, the family contains models
of different complexity since the number of parameters can grow (building more complex models).
This last case is also referred as nested models. Examples of model selection in nested models are
the order selection in an autoregressive predictive method, variable or feature selection, clustering,
and even dimension reduction, to name a few [5, 6, 7, 8].
The main competing concerns are (a) the model performance and (b) the model complexity,
which generate the so-called bias-variance trade off. Namely, practitioners and researchers try



to overcome the two extreme conditions in prediction, underfitting (high bias and low variance)
and overfitting (low bias and high variance). The fitting of the current data usually requires
more complex models, whereas the ability of good predictions with new unseen data demands
for simpler models [9]. More generally, simpler models (e.g., with fewer parameters) are to be
preferred for a principle of parsimony (a.k.a. Occam’s razor). Therefore, the concept of selecting
the best model is in some sense related to the idea of choosing a model that is “good enough”.
The issue is to define mathematically what “good enough” means exactly [9].
In the literature, there are two main classes of methods for addressing also the scenarios S1 and
S3: they are resampling methods and probabilistic statistical measures. Examples of well-known
resampling methods are the bootstrap and cross-validation (CV) techniques [10, 11, 8]. They are
based on the splitting of the data in training and test sets into fitting a model on the training
set, and evaluating it on the test set. This process may then be repeated several times and the
performance can be averaged over the runs. Resampling methods can be also used to tune the
constant value λ in the regularization term in the scenario S2. However, the proportion of data to
use in training and in test is a crucial parameter to be chosen by the user, that affects critically the
results in terms of required computational time and model complexity penalization. The leave-
one-out CV approach is one of the faster CV strategies (if N is the number of data, the number of
CV repetitions is exactly N) but tends to select more complex models (closer to the overfitting).
More generally, in a CV scheme decreasing the percentage of data in the training set (and, as a
consequence, increasing the data in the test set) yields to obtain simpler models (tending to the
underfitting), whereas increasing the percentage of data in the training set yields to obtain more
complex models (tending to the overfitting).
Alternatively, the probabilistic measures employ score rules for evaluating the different models,
considering both their performance on the entire dataset and the model complexity. This
family is mainly formed by the so-called information criteria [12, 2, 13, 14], such the Bayesian
information criterion (BIC) which is an approximation of the marginal likelihood [15], and the
Akaike information criterion (AIC), which is based on entropy maximization principle [16]. Other
examples are the risk inflation criterion [17], the Mallows’s Cp coefficient [18], minimum description
length (MDL) [19]. The MDL is quite related to BIC and the Mallows’s Cp coefficient is related
to AIC in the context of Gaussian linear regression (and variable selection). Denoting as k the
dimension of the problem (e.g., the number of parameters to infer), all the information criterion
(IC) measures use the maximum log-likelihood as a fitting term (which is an error decay denoted
as V (k)), and a linear penalization of the model complexity λk, where λ is a positive constant.
They differ for the slope λ of this linear penalization term (see Table 2 and the appendices in
[20]). The choice of this slope, i.e., coefficient multiplying the penalization term, is justified
by different theoretical derivations, each one with several assumptions and approximations. In
Bayesian inference, the marginal likelihood is used for model selection purposes. The marginal
likelihood is strictly related to the BIC [21] and, more generally, it can be expressed similarly as
an IC measure (see the appendices in [20]). The model penalization in the marginal likelihood
is induced by the choice of the prior densities [4, 20]. Again in the Bayesian framework, the
posterior predictive is another approach similar to CV [20]. Other approaches based on geometric
considerations deserve to be mentioned. Some methods are based on visual inspection of an error
curve looking for an “elbow” or “knee”. Some automatic procedures for elbow detection, or similar
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goals, have been proposed in the literature [22, 23]. Finally, some classical schemes based on p-
values (the so-called stepwise regression) are designed for specific applications [24, 25].
In this work, we extend the IC approach extracting geometric information from the error curve.
The proposed spectral information criterion (SIC) generalizes and contains several IC schemes in
the literature as special cases. The underlying idea is to remove the dependence on a particular
choice of the slope λ in the IC approach, varying this value and studying the corresponding
distribution of minima of a suitable cost function. Namely, since the IC schemes given in the
literature are good or even optimal but only in specific scenarios and under certain assumptions,
the idea in this work can be interpreted as follow: to consider theoretically all the possible IC
approaches (within of the BIC and AIC type of information criteria) and then analyze the obtained
results. SIC has a wider range of application, since it can be employed even in scenarios where
a likelihood function is not provided. Indeed, the SIC scheme can be applied to any error curve
obtaining geometric information from it. In this sense, SIC can be considered an automatic elbow
detector. Firstly, the proposed technique is able to reduce drastically the possible number of
models, providing a subset of suggested models. Secondly, a final criterion for selecting a unique
model is also provided. Several numerical experiments show the good performance obtained by
the SIC scheme. We also provide Matlab code related to the experiments.1

2 Proposed framework

Let be θ1, ..., θk, ..., θK the K possible components of a complete vector θK = [θ1, ..., θK ]> to infer,
which is related to some observed vector of data y, i.e., θK → y. In many applications, the goal is
to study all the possible models within a parametric family with parameters θk = [θ1, ..., θk]

> with
k ≤ K. Note that k represents the actual dimension of the problem, e.g., the order of a polynomial
function or the number of feature in a regression problem, or the number of clusters etc.. The
maximum number of components/variables/clusters (depending on the specific application) is
denoted as K. In this work, we focus on the task of selecting the optimal number of components
k∗ ≤ K. We also refer to k∗ as a possible “elbow” of the problem. In several parts of the work,
for clarity in the exposition we refer specifically to the nomenclature and notation of a variable
selection problem, without loss of generality.
In this work, we employ a generalized IC approach. Below, we introduce the cost function that
we desire to minimize,

C(k, λ) = V (k) + λk, k = 0, ..., K, λ ∈ [0, λmax], (1)

where V (k) is a generic fitting term, λk is a penalization term of model complexity, where λ is
a constant and k represents the dimension of the model. We consider all the possible values of
λ ∈ [0, λmax] where λmax is defined below in Section 3.1.
Linear penalization. It is important to remark that we employ in Eq. (1) a linear penalization of
the complexity, since this linear term appears in different theoretical derivations in the literature
[15, 16, 27]. Moreover, it appears not just in several IC formulations but also in other more
general approaches, e.g., involving marginal likelihood with uniform priors [20, App. A and B]

1The Matlab code is given at http://www.lucamartino.altervista.org/PUBLIC_SIC_CODE.zip.
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and alternative geometric solutions [22]. Therefore, choosing a linear penalty for the complexity
seems to have a strong theoretical support by different points of view.

2.1 About the fitting term V (k)

The function V (k) represents a generic non-increasing function2 with a finite value in zero, i.e.,
V (0) <∞ (hence V (k) takes always finite values). Examples of function V (k) are:

• Given the vector of parameters θk = [θ1, ..., θk]
> of dimension k and denoting a likelihood

function p(y|θ), we can have V (k) = −2 log(`max) with `max = maxθ p(y|θk), exactly as in a
standard IC approach. Thus, the SIC scheme is a more general approach and contains the
standard IC strategies, that employ a cost function as Eq. (1), as a special cases;

• the root mean square error (MSE) or the mean absolute error (MAE) in a regression
problems, i.e., V (k) = MSE(k), as function of a integer k, where k can represent the order
of a polynomial or the number of variables involved in the regression;

• V (k) = 1−Accuracy(k) in a classification problem using the first k most important features;

• V (k) can present the k-th eigenvalue of the covariance matrix of the data in a principal
component analysis (PCA), where the eigenvalues are ordered in a decreasing order;

• V (k) could be the sum of the inner variances in each cluster (or the log of this sum), in a
clustering application.

The list above just contains some examples, but it is important to remark that the proposed
method only required that V (k) be non-increasing (condition that can be also relaxed).

3 Spectral information criterion (SIC) method

In this work, the underlying approach is inspired by the idea of “integrating out” λ as usually done
Bayesian analysis, i.e., we would like to remove the dependence of λ in our problem. Namely, we
would like to avoid to pick a specific value of λ, unlike the other IC schemes in the literature. In
the next subsections, we first define properly λmax and a piecewise linear function k∗(λ) of minima
of C(k, λ). Finally, in the last two subsections, we introduce the spectral information criterion
(SIC).

3.1 Defining and computing λmax

The value of λmax is defined as

λmax = {minλ : arg min
k
C(k, λ) = 0}, (2)

2This condition can be even relaxed, as also shown in Figure 8(c).
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so that
arg min

k
C(k, λmax) = arg min

k
[V (k) + λmaxk] = 0, (3)

and we have
arg min

k
C(k, λ′) = 0, for any λ′ ≥ λmax. (4)

Note that, as an example, k = 0 corresponds to a constant model in a regression problem, when
the case of “no variables” are used (in a variable selection example), i.e., V (0) = var(y) which is
the variance of the data. The value of λmax can be analytically obtained as

λmax = max
k

[
V (0)− V (k)

k

]
, for k = 1, ..., K. (5)

Since above we consider k = 1, 2, ..., K, we can perform an exhaustive search and, considering Eq.
(5), obtain λmax. If the value K is huge and/or for some reason the exhaustive search cannot be
performed, classical numerical methods can be successfully implemented, such as bisection method
[26, Chapter 3].

3.2 The function k∗(λ)

For the sake of simplicity, let assume in this section that V (k) is a decreasing function, with V (0) <
∞. With this assumption, it can be proved that C(k, λ) has a unique minimum. See a graphical
example in Figure 1(a). Now, we study the function k∗(λ) : [0, λmax] ⊂ R→ {0, 1, 2..., K}, defined
as

k∗(λ) = arg min
k
C(k, λ), (6)

which takes real values in the interval [0, λmax] and covert them in discrete values within the set
{0, 1, 2..., K}. It is a non-increasing, piecewise constant function where k∗(0) = K and k∗(λ) = 0
for λ ≥ λmax, i.e., more specifically, {

k∗(0) = K,

k∗(λmax) = 0,
(7)

as shown in Figure 1(b). A relevant consideration is that some values of k ∈ {0, 1, 2..., K} could not
represent an output of the function k∗(λ), i.e., they could not have a corresponding λ associated.
For instance, this is the case of k = 1 in Figure 2(a).
An example of piecewise constant function k∗(λ) is given in Figure 1(b). Several values of λ can
be associated to the same minimum k∗, as shown in Figure 2(a). On the other hand, some value
k′ could not have any λ associated, that means that the value k′ cannot be a minimum of C(k, λ).
More generally, to each k, we can associate an interval of lambda values, Sk ⊂ [0, λmax]. Observe
that S0 = by definition since we consider λ ∈ [0, λmax], so that |S0| = 0. These intervals, for
k = 1, ..., K, form a partition of [0, λmax], i.e.,

S1 ∪ S2... ∪ SK = [0, λmax],

and Sk ∩ Sj = 0, for all k 6= j. Figure 2(b) provides a graphical representation. As stated above,
some value k′ 6= 0 could be never a minimum, so that |Sk′ | = 0.
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3.3 Description of the SIC method

As previously stated, we would like to remove the dependence of λ in our problem. Namely, we
would like to avoid to pick a specific value of λ. Here, the idea is to use the information provided
by the measures |Sk|. With this goal, we define the weights w̄k ∝ |Sk|, i.e.,

w̄k =
|Sk|∑K
j=0 |Sj|

=
|Sk|∑K
j=1 |Sj|

, (8)

where we have used |S0| = 0. Note that w̄k, for k = 1, ..., K, defines a probability mass function
(pmf),

∑K
k=1 w̄k = 1. The main part of the SIC method is to compute (approximately) the

probabilities w̄k. This approximation can be obtained with a quasi-Monte Carlo strategy (i.e.,
with a simple grid) or with a standard Monte Carlo approach using M number of samples. The
latter is given in Table 1. An example of the weights w̄k is given in Figure 3(a), which correspond
to the V (k) curve in Figure 1(a). The algorithm in Table 1 is generally fast even with choices of
M such as M = 106, M = 107 or greater.3
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Figure 1: (a) Example of function V (k), a penalization term λk and the corresponding cost
function C(k, λ) (shown with dots). (b) Example of piecewise constant function k∗(λ).

3.4 Interpretation and model selection

We will show in the next sections that the set E of indices k such that the corresponding weight
is non-zero, w̄k > 0,

E = {all k : w̄k > 0} = {k(1)E , k
(2)
E , ..., k

(J)
E },

3See the (non-optimized) Matlab implementation at http://www.lucamartino.altervista.org/PUBLIC_SIC_
CODE.zip.
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(a) (b)

Figure 2: (a) Correspondence between choice of λ ∈ [0, λmax] and the corresponding minimum k∗.
Different lambda can give the same minimum k∗. Each minimum has associate an interval Sk∗ of
values of λ’s. (b) A graphical representation of the intervals Sk (and the measures |Sk|) for all k.
Note that, for some k′, |Sk′| = 0, i.e., the discrete value k′ could be never a minimum, considering
all the possible values of λ ∈ [0, λmax].
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Figure 3: (a) The weights w̄k obtained by the SIC method applied in the experiment in Section
5.4. (b) The cumulative function Wk corresponding to the probability mass w̄k, with k = 0, ..., K.
The dashed lines show the confidence level ` = 0.9 and ` = 0.95, respectively.

can be interpreted as a a possible “elbow” of the curve, i.e., a possible chosen models represented
by the indices k

(j)
E . We have denoted J = |E|. Note that J ≤ K and, in some cases, J << K.

Therefore, we can have a sensible reduction of the number of possible models to choose. In order
to select just one model, the more conservative solution is kE = max k

(j)
E choosing the more

complex model, whereas the simplest possible model is given by the choice kE = min k
(j)
E with
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j = 1, ..., J . Any intermediate solution can be motivated by the specific application. However,
more considerations can be done. For this purpose, let us define the cumulative sum of the first
m weights, i.e.,

Wm =
m∑
i=1

w̄i,

with 1 < m ≤ K. Figure 3(b) provides an example. In absence of any other user consideration to
select a specific model within the set E , we give here a possible suggestion, obtained by empirical
studies. We suggest to choose as “elbow” the index defined as

kE = min{k : Wk ≥ `}, with ` ≥ 0.9,

where ` is a confidence level. A conservative, robust choice (selecting a more complex model) can
be get setting ` = 0.95.

Table 1: Computation of the weights in the SIC method by Monte Carlo.

• For i = 1, ...,M :

1. Draw λi ∼ U([0, λmax]).

2. Compute

k∗i = arg min
k
C(k, λi) = arg min

k
[V (k) + λik] . (9)

• Return the number of occurrences of the event {k∗i = j} for j = 1, ..., K, or equivalently
return the weights

w̄j =
#{k∗i = j}

M
, j = 1, ..., K. (10)

4 Analysis of SIC performance and behavior

In this section, we analyze the results provided by SIC in ideal scenarios (Section 4.1), and its
behavior (a) under variation of K, and (b) under translation and scale of the axes (Section 4.2).

4.1 SIC performance with piecewise linear decays V (k)

In this section, we consider ideal scenarios to check the performance of the proposed method in
these settings. We describe the 4 different scenarios denoted as I1-I2-I3 and I4. We also discuss
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the expected results in each case, and we check the performance of SIC.

• I1. The first ideal scenario is when V (k) is constant, i.e., V (k) = V (0) for all k. This means all
the components θ1, ..., θK of the vector to infer θK are independent from the output variable y, so
that the correct solution is kE = 0. Since V (k) is constant in this scenario, we have V (k) = V (0),
and we would obtain λmax = 0 by Eq. (5). Namely, we get k∗(λ) = 0 for any possible λ > λmax = 0,
by definition of λmax. Hence, having k∗(λ) = 0, finally we have kE = 0. Thus, the SIC method
obtains the correct result.

• I2 The second ideal scenario is when V (k) is a linear straight line connection the points (0, V (0))
and (K,V (K)), as shown in Figure 7(e). In this situation, all the variables contribute in the same
way to the decay of V (k) (i.e., each variable has the same influence to the error decrease), so that
the correct solution is kE = K. In Figure 7(e), we can see that the SIC scheme selects kE = K
having a unique non-zero weight w̄K = 1 (i.e., at k = K), which is the correct result.

• I3 Another ideal scenario is when V (k) is formed by two pieces of straight lines, as depicted
in Figures 7. In this case, if V (k) is convex (i.e., when the second slope is smaller than the first
slope) the solution kE (i.e., a possible “elbow”) is given by the intersection of the two straight
lines, as illustrated in Figures 7. If V (k) is concave (i.e., when the second slope is greater than
the first slope), as for instance in Figure 7(f), the intersection is not a possible solution, so that
the correct solution is kE = K in this case.
As we can observe in Figures 7, SIC selects the right kE in any of these cases. Generally, there is
a main weight w̄k close to 1, and in Figures 7(a), 7(e) and 7(f) we have even a unique non-zero
weight. Note that as the value V (kE) grows the weight at at k = K becomes bigger and bigger.
This is a desirable behavior since, V (kE) grows, the scenario becomes more similar to I2, i.e., more
similar to Fig. 7(e), where all the components/variables have the same impact to the results, i.e.,
they generate the same drop in V (k). Indeed, if the value V (kE) is such that we have only one
straight line connecting the points (0, V (0)) and (K,V (K)) as in Fig. 7(e), we have w̄K = 1 since
we come back I2. As the value V (kE) grows more, V (k) becomes concave and the SIC scheme
correctly keeps w̄K = 1 at kE = K. Therefore, in all settings, the SIC method provides the
expected and desirable behavior.

• I4 More generally, we can consider a piecewise linear decay V (k), formed by several pieces
of straight lines, as given in Figures 8. If V (k) is convex, all the intersection points are possible
candidates to be an “elbow”. Let us denote the intersection points as

E = {k(1)E , k
(2)
E , ..., k

(J)
E },

where J is the number of the intersections. In this framework, different users can have different
opinions regarding the correct “elbow” to pick, i.e., the model to choose. These opinions can
depend to the different context and application, as well as the computational budget etc. Note
that this setting I4 is the more general scenario and contains the other ones, I1-I2 and I3, as
special cases.
Also in this scenario, the SIC method provides desirable results, considering the criterion in Section
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3.4, with both ` = 0.9 or ` = 0.95. As we can observe in Figures 8(a)-8(b)-8(c) and Figures

8(d)-8(e)-8(f) the only non-zero weights w̄k correspond to the possible elbows {k(1)E , k
(2)
E , ..., k

(J)
E }.

Moreover, in Figure 8(c), we consider an increase piece in V (k) creating a concave part, so that
a possible elbow point should be discarded as the SIC scheme does. An equivalent situation is
given in Figure 8(b).

4.2 Additional considerations about the SIC behavior

We have seen that the SIC scheme provides the desirable results in all the ideal scenarios above,
where a piecewise linear curve V (k) is given. Moreover, it is important to remark that SIC presents
a small dependence on possible changes of the value K (i.e., on an increase or a decrease of K), if
there is not a significant drop variation in V (k) associated to the variation of K. Indeed, we can
also observe in Eq. (5) that λmax is also virtually insensible to variations to the value of K. This
is clearly another desirable behavior.
Finally, it is important to remark that the results of SIC does not depend on a shift and/or a scale
of the axes. Regarding a shift and scale of the horizontal axis k′ = αk+ β, it is easy to show that
the solutions are just shifted and scaled in the same way, i.e., k′E = αkE + b. Regarding a shift of
V (k), we can see the solutions are completely invariant. For instance, defining V ′(k) = V (k) + b,
since the constant b does not depend on k, we can write the following sequences of equalities,

k∗(λ) = arg min
k

[V (k) + λk] , λ ∈ [0, λmax],

= arg min
k

[V (k) + λk + b] ,

= arg min
k

[V ′(k) + λk] .

Hence the function k∗(λ) does not change for any possible value of b. Considering now a scale
factor, i.e., defining V ′(k) = aV (k), we have to observe that λmax is also scaled in the same way.
Namely, we have

λ′max = max
k

[
aV (0)− aV (k)

k

]
, for k = 1, ..., K,

= amax
k

[
V (0)− V (k)

k

]
= aλmax.

Thus, we have also that λ′ ∈ [0, λ′max] = [0, aλmax]. Observe that we can write λ′ = aλ where
λ ∈ [0, λmax], so that we can write

k∗(λ′) = arg min
k

[V ′(k) + λ′k] , with λ′ ∈ [0, λ′max] = [0, aλmax],

= arg min
k

[aV (k) + aλk] , with λ ∈ [0, λmax],

= arg min
k

[a(V (k) + λk)]

= arg min
k

[V (k) + λk] = k∗(λ).

Namely, again the function k∗(λ) does not change. In the next section, we will consider experiments
with real-word applications, and with real data in two of them.
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5 Real-world applications and experiments

In this section, we test SIC in different real-world applications, considering different functions
V (k), in order to show the vast range of applicability of the proposed scheme. In Sections 5.4-
5.5, the experiments involve real data problems: variable selection in a regression problem with
soundscape emotion data, and in a classification problem with biomedical data. In Sections 5.3-5.5,
a probabilistic model is involved so that the fitting term can be defined as V (k) = −2 log(`max).
Hence, in these two sections, this allows a comparison with BIC, AIC and other information
criteria described in the literature.

5.1 Clustering

We generate 2500 artificial data from 5 different bidimensional Gaussian distributions, N (µi,Σi),
where µ1 = [3, 0], Σ1 = [0.3, 0; 0, 2], µ2 = [14, 5], Σ2 = [1.5, 0.7; 0.7, 1.5];, µ3 = [−5,−10], Σ3 =
[1.5, 0.7; 0.7, 1.5], µ4 = [10,−10], Σ4 = [1.5, 0; 0, 1.5];, and µ5 = [−5, 5], Σ5 = [1,−0.8;−0.8, 1].
Figure 4(a) depicts these data points.

We consider V (k) = log
[∑k+1

j=1 var(j)
]
, where var(j) is the internal variance in the j-th cluster, as

shown in Figures 4(b). Each value of var(j) is compute and averaged after 200 runs of a k-means
algorithm. Note that the total number of clusters is k + 1 (e.g., k = 0 corresponds to a single
cluster). We consider K = 50 as maximum number of possible clusters. Figures 4(c)-4(d) show
the results obtained by SIC. Recalling that the number of clusters is k + 1, we have the subset of
possible clusters,

E = {2, 5, 6, 50},

and the final SIC suggestion is kE = 5 for both ` = 90 and ` = 95, which is the correct number of
clusters in the synthetic data.

5.2 Dimension reduction

In this experiment, we generate 104 Gaussian data in R5 with a zero vector mean and the following
covariance matrix,

Σ =


1 0 0 0 0
0 1 0 0 0
0 0 2 0.7 0
0 0 0.7 2 0.7
0 0 0 0.7 2

 . (11)

where 2 dimensions are completely uncorrelated to the remaining ones. Three dimensions are
correlated (i.e., they could be summarized by one of them). We consider as V (k) the eigenvalues
of Σ (in decreasing order) and the trace of the matrix Σ as V (0), i.e.,

V (0) = 8, V (1) = 3.00, V (2) = 2.01, V (3) = 1.01 V (4) = 1.00, V (5) = 0.98.
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Figure 4: (a) Data points of the clustering experiment. (b) The curve V (k) = log
[∑k+1

j=1 var(j)
]

where var(j)

is the internal variance in the j-th cluster. (c) The weights w̄k obtained by the SIC method. (d) The cumulative
function Wk. Recall that k + 1 is the number of cluster (hence, k = 0 corresponds to a single cluster).

The function V (k) and the results of SIC are depicted in Figure 6(a). Looking the weights in

Figure 6(a), we can observe that SIC is mainly focus on the possible elbows k
(1)
E = 1 and k

(2)
E = 3.

Applying the final SIC suggestion, we obtain kE = 3 for both ` = 90 and ` = 95, that is the
expected result for this dimension reduction problem. The AED method in [22] can be also
applied in this example but suggests the use of kE = 1, unlike SIC (that provides the correct
answer in this example).

5.3 Order selection of a polynomial function in a regression problem

We generate a dataset of N = 100 pairs {xn, yn}Nn=1, where both inputs xn’s and outputs yn’s are
scalar values, considering the following observation model,

yn = θ0 + θ1xn + θ2x
2
n + ...θkx

k
n + εn, (12)
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where θk = [θ0, θ1, ..., θk]
>, εn is a Gaussian noise with zero mean and variance σ2

ε = 1. The
dataset has been generated with a polynomial function of order k = 4, and with the coefficients

θ0 = 4.05, θ1 = −2.025, θ2 = −2.225, θ3 = 0.1, θ4 = 0.1.

Figure 5(a) depicts the generated data points and the underlying polynomial function of order 4
in solid line. In this experiment, we consider V (k) = −2 log(`max) with `max = maxθ p(y|θk) with
k ≤ K, where p(y|θk) is induced by the Eq. (12). The function V (k) is shown in Figure 5(b).
With this choice of V (k), we can compare with other information criteria in the literature, as
shown in Table 2. After applying SIC, we obtain the results in Figures 5(c)-5(d) and the following
set of possible models,

E = { 4 ,

AED,BIC

6 ,

AIC

10 ,

HQIC

12, 13}.

Above, we have also highlighted the suggested models by BIC (i.e., 4), AIC (i.e., 6), Hannan-Quinn
IC (i.e., 10), and the AED method in [22] (i.e., 4), which are all contained in E (as expected by
the design of SIC). The final SIC suggestion is kE = 4 for both ` = 90 and ` = 95, which is the
correct order of the underlying polynomial function. Therefore, in this experiment, BIC, AED
and SIC provide the correct answer.

5.4 Variable selection in a regression problem with real data

In several real-world applications, we observe a dataset of N pairs {xn, yn}Nn=1, where each input
vector xn = [xn,1, ..., xn,K ] is formed by K variables, and the outputs yn’s are scalar values. We
consider the case that K ≤ N and assume a linear observation model,

yn = θ0 + θ1xn,1 + θ2xn,2 + ...θKxn,K + εn, (13)

where εn is a Gaussian noise with zero mean and variance σ2
ε , i.e., εn ∼ N (ε|0, σ2

ε ). More
specifically, in [5], in the real dataset there are K = 122 features and N = 1214 number of
data. The dataset studied in [5] has two outputs: “arousal” and “valence”. Here, we focus on the
“arousal”.
In this experiment, we set V (k) = −2 log(`max) with `max = maxθ p(y|θk) with k ≤ K, after
ranking the 122 variables (see [5]). The likelihood p(y|θk) is induced by the Eq. (13). Hence, in
this experiment, we can compare again with other IC measures in the literature (see Table 2). We
use M = 106 samples for SIC. The set E is formed by J = |E| = 19 << 122 suggested models,
more specifically,

E = {1, 3, 5, 6, 7, 9, 11,

AED

16 , 17,

BIC

25, 28, 40, 41,

HQIC

44,

AIC

46, 70, 71, 96, 122}.

Above, we have also remarked the suggested models by BIC (i.e., 17), AIC (i.e., 44), Hannan-
Quinn IC (i.e., 41), and AED (i.e., 11), which are all contained in E (as expected by the design of
SIC). Figures 3(a)-3(b) shows the SIC weights and the cumulative function for this experiment.
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Figure 5: (a) Data points (N = 100) of the experiment of the order selection of a polynomial function (shown
with a solid line) in a regression problem. (b) The corresponding curve V (k) = −2 log `max. (c) The weights w̄k

obtained by the SIC method. (d) The cumulative function Wk. Recall that k represents the order of the polynomial
function.

The final SIC suggestion is kE = 7 for both ` = 90 and ` = 95. Therefore, SIC confirms the results
given in other previous studies and experts have suggested in the literature. Hence, unlike in the
previous experiment, here only SIC provides the correct result.

5.5 Variable selection in a biomedical classification problem with real
data

In [28], the authors study the most important features for predicting patients at risk of developing
nonalcoholic fatty liver disease. The authors collected data from 1525 patients who attended the
Cardiovascular Risk Unit of Mostoles University Hospital (Madrid, Spain) from 2005 to 2021, and
use a random forest (RF) method to classify patients and rank the input variables. They found
that 4 features were the most relevant according to the ranking and the experts opinions: (a)
insulin resistance, (b) ferritin, (c) serum levels of insulin, and (d) triglycerides.
In this experiment, we set V (k) = 1 − accuracy(k) that is depicted in Figure 6(b), after ranking
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Table 2: Different information criteria contained in SIC as special cases; N denotes the number
of observed data.

Criterion Choice of λ

Bayesian-Schwarz information criterion (BIC) [15] logN

Akaike information criterion (AIC) [16] 2

Hannan-Quinn information criterion (HQIC) [27] log(log(N))

Automatic Elbow Detector (AED) [22] V (0)
min[argminV (k)]

the 35 features [28]. Note that V (0) = 0.5 representing a completely random binary classification.
The set of possible elbows obtained by SIC is

E = {1, 2, 3, 9, 11, 24},

where J = |E| = 6 << 35. The final SIC suggestion is KE = 2 features (` = 0.9), KE = 3
features (` = 0.95), which is close to the result of the paper [28]. SIC suggests a model without
the triglycerides.
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Figure 6: V (k) curves and SIC results for the experiments (a) in Section 5.2 and (b) in Section
5.5.

15



6 Conclusions

In this work, we have introduced a generalized information criterion which contains, as special
cases, several other information criteria introduced in the literature. First of all, we have
introduced the novel approach based on the idea of considering all the possible slopes associated
to the linear penalization of the model complexity. SIC returns two main products. The first one
is the set of possible “elbows”, which contains also the results of other well-known IC schemes in
the literature. The second one is the suggestion of the choice of a unique elbow, i.e., a chosen
model, within the set of possible ones.
We have tested the SIC technique in different ideal scenarios. These tests have proven that
SIC can be considered as an automatic elbow detector, extracting geometrical information from
the error curve V (k). Additionally, several real-world experiments (two of them involving real
data) have shown that SIC provides better results than the other existing IC measures, exactly
coincident (or much closer) to the groundtruths or the experts opinions. Finally, it is important
to remark that SIC does not require to assume the knowledge of a likelihood function, unlike
other IC schemes in the literature, so that its range of application is much wider, as shown in the
numerical experiments.
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Figure 7: (a)-(b)-(c) Application of SIC to ideal cases where V (k) has one unique elbow at k = 5. The elbow
is clearer in 7(a) than in 7(b) and 7(c). We can observe that, as the value of V (5) grows, SIC starts to suggest
also to use all the 50 components. Clearly, it is a desirable behavior. (d)-(e)-(f) Application of SIC to ideal cases
where V (k) has a very “slight“ elbow at k = 5 in 7(d), and there is not elbow in 7(e) and 7(f). SIC again provides
desirable results.
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Figure 8: (a)-(b)-(c) Application of SIC to ideal cases where V (k) has two elbows in 8(a), and one elbow in 8(b)
and 8(c). SIC again provides the desirable results. (d)-(e)-(f) Application of SIC to ideal cases where V (k) has
several elbows, that SIC is able to detect.
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