AN APPROXIMATION FOR $\frac{\sqrt{2}}{2}$ USING TRIANGULAR NUMBERS

Julian Beauchamp

Abstract

In this short paper, I prove that the difference between the square roots of two consecutive triangular numbers tends to $\frac{\sqrt{2}}{2}$, the reciprocal of $\sqrt{2}$, as the triangular numbers tend to infinity. I believe this relationship between $\sqrt{2}$ and triangular numbers is previously unknown.

The sequence of triangular numbers, $T_{(n)}$, where $T_{(1)}=1$, begins:
$1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210$, $231,253,276,300,325,351,378,406,435, \ldots$ (sequence A000217 in the OEIS).

The formula is given as:

$$
\begin{equation*}
T_{(n)}=\sum_{k=1}^{n} k=1+2+3+4+\ldots+n=\frac{n(n+1)}{2} \tag{0.1}
\end{equation*}
$$

As n tends to infinity, the difference between the square roots of two consecutive triangular numbers tends to $\frac{\sqrt{2}}{2}(=0.707106781$ to 9 decimal places $)$, as given in the following formula:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt{T_{(n+1)}}-\sqrt{T_{(n)}}=\frac{\sqrt{2}}{2} \tag{0.2}
\end{equation*}
$$

When n is small, as in the case of $n=7$, it follows that:

$$
\sqrt{T_{(8)}}-\sqrt{T_{(7)}}=\sqrt{36}-\sqrt{28}=0.708926927 \approx \frac{\sqrt{2}}{2}
$$

This is correct only to 2 decimal places. However, when $n=500$, say, the result is correct to 5 decimal places:

$$
\sqrt{T_{(501)}}-\sqrt{T_{(500)}}=\sqrt{125751}-\sqrt{125250}=0.707107135 \approx \frac{\sqrt{2}}{2}
$$

Proof.

Prove that

$$
\lim _{n \rightarrow \infty} \sqrt{T_{(n+1)}}-\sqrt{T_{(n)}}=\frac{\sqrt{2}}{2}
$$

Using the general formula for triangular numbers in (0.1), it follows that:

$$
\begin{aligned}
& \sqrt{\frac{(n+1)(n+2)}{2}}-\sqrt{\frac{n(n+1)}{2}}=\frac{\sqrt{2}}{2} \\
& \Rightarrow \sqrt{(n+1)(n+2)}-\sqrt{n(n+1)}=1
\end{aligned}
$$

Date: Sept 2022.
Key words and phrases. Number Theory, Triangular Numbers.

But as n tends to infinity, this becomes

$$
\begin{aligned}
& \sqrt{(n+1)^{2}}-\sqrt{n^{2}}=1 \\
& \Rightarrow(n+1)-n=1
\end{aligned}
$$

The Rectory, Village Road, Waverton, Chester Ch3 7QN, UK
Email address: julianbeauchamp47@gmail.com

