On Legendre's conjecture

Kouider Mohammed Ridha ${ }^{1}$
${ }^{1}$ Department of Mathematics, Applied Mathematics Laboratory, University of Mohamed Khider, Biskra, Algeria
Email: mohakouider@gmail.com
Second email: ridha.kouider@univ-biskra.dz

Abstract

In this paper, we interesting in most conjecture problem relies with the prime number which is Legendre's conjecture. We also introduced polynomials that check this conjecture with algebraic proof. Also, we reinforced the conjecture with some rules.

Keywords: Prime number, Kouider Number with base a.

1. Introduction

In 1912, during the International Conference on Mathematics, Edmund Landau posed four basic problems about prime numbers, among them the Legendre's conjecture. Which states:

Is there always at least one prime number between consecutive square number n^{2} and $(n+1)^{2}$?

After algebraic operations, we found that the numbers that fulfil Legendre's conjecture are written in the following form

$$
\begin{equation*}
n^{2}+n-1=(n+1)^{2}-(n+2) \tag{1}
\end{equation*}
$$

for $n \in \mathbb{N}$ where $n \geq 2$ with $n \neq 5 k+2$ for $k \geq 1$ is a natural number. And of course, we found that the numbers written in the form (1) are prime numbers if $n \neq 5 k+2$ where $k \geq 1$.
It is easy to prove that the numbers written in the form (1) satisfy the relationship

$$
n^{2}<n^{2}+n-1<(n+1)^{2}
$$

by proof the correctness of the following:

$$
n^{2}-\left(n^{2}+n-1\right)<0 \text { and }(n+1)^{2}-\left(n^{2}+n-1\right)>0
$$

for $n \geq 2$.
In the second step we will prove that
$\operatorname{PGCD}\left(n^{2} ; n^{2}+n-1\right)=1$ it is true for every natural
number $n \in \mathbb{N}^{*}$ We have $n^{2}+n-1=n^{2} \times 1+n-1$, then

$$
P G C D\left(n^{2} ; n^{2}+n-1\right)=P G C D\left(n^{2} ; n-1\right)
$$

Also, we get $1 \times n^{2}+(n-1)(n+1)=1$. That is, there are two integers such that $\alpha=1$ and $\beta=(n+1)$. According to Puzo's theorem we have n^{2} and $n-1$ are relatively prime. Then n^{2} and $n^{2}+n-1$ are relatively prime also.
On the other hand, we find for $\operatorname{PGCD}(n ; n-1)=1$ that n and $n-1$ are relatively prime for every natural number $n \in \mathbb{N}^{*}$. Because, according to Puzo's theory we have $n-(n-1)=1$. We conclude under Dirichlet's theorem that for $\operatorname{PGCD}(n ; n-1)=1$ there is infinitely many primes given by

$$
\begin{equation*}
p(n)=n^{2}+n-1 \tag{2}
\end{equation*}
$$

Let Δ be the discriminant of (2), $\Delta=5 \equiv 1[4]$. It can be said that the polynomial (2) overlaps the definition of Rabinowitsch polynomial for instant see [4].
Next, we consider the natural number $n \geq 1$ where $n=5 k+r$ with $r=\{0,1,2,3,4\}$ and $k \in \mathbb{N}$. And we will write the polynomial (2) in terms of k for the following values of $n=\{5 k, 5 k+1,5 k+2,5 k+3,5 k+4\}$ respectively. Then
First, for $n=5 k$ we find
$n^{2}+n-1=25 k^{2}+5 k-1=5 k(5 k+1)-1=5 m-1$
And for $n=5 k+1$ we find
$n^{2}+n-1=25 k^{2}+15 k+1=5 k(5 k+3)+1=5 m+1$
Next, for $n=5 k+2$ we find
$n^{2}+n-1=25 k^{2}+25 k+5=5\left(5 k^{2}+5 k+1\right)=5 m$
And for $n=5 k+3$ we find
$n^{2}+n-1=25 k^{2}+35 k+11=5\left(5 k^{2}+7 k+2\right)+1=5 m+1$ Finally, for $n=5 k+4$ we find
$n^{2}+n-1=25 k^{2}+45 k+19=5\left(5 k^{2}+9 k+4\right)-1=5 m-1$
According to the results obtained previously, we conclude that the polynomial given in (2) became an odd number for $n=\{5 k, 5 k+1,5 k+3,5 k+4\}$ It is written in one of the two forms $5 m+1$ or $5 m-1$.
Since for $n=5 k+2$ the polynomial (2) is a multiple of 5 and is written in the form $5 m$ with $m \in \mathbb{N}$.Of course, except for number 5 for $k=0$.
Also, we give more than one polynomial that give a prime number. Which define as the following:
$25 n^{2}+5 n-1,25 n^{2}+15 n+1$ and $25 n^{2}+35 n+11$ with $5 n^{2}+5 n+1$. Finally, $25 n^{2}+45 n+19$.
There more, we reduced for the numerical results of the polynomial (2) shown in table (1), this relation as following: for consecutive $p_{j}(n)$ and $p_{j+1}(n)$ we have

$$
\begin{equation*}
p_{j+1}(n)=p_{j}(n-1)+2 n \tag{3}
\end{equation*}
$$

Since, if $n=5 k+2$ for $k \geq 1$. We get

$$
\begin{equation*}
p_{j+1}(n)=p_{j}(n-2)+2(2 n-1) \tag{4}
\end{equation*}
$$

And that through the two relations (3) and (4) we can write an algorithm for this formula for $2 \leq n<22$. See the following table.

Table 1: Values of the polynomial $n^{2}+n-1$ for $n=\{1 ; \cdots \cdots ; 34\}$.

n	n^{2}	$p(n)=n^{2}+n-1$	$(n+1)^{2}$	Is Prime
1	1	1	4	
2	4	5	9	5
3	9	11	16	
4	16	19	25	
5	25	29	36	
6	36	41	49	
7	49	55	64	5×11
8	64	71	81	
9	81	89	100	
10	100	109	121	
11	121	131	144	
12	144	155	169	5×31
13	169	181	196	
14	196	209	225	
15	225	239	256	
16	256	271	289	
17	289	305	324	5×61
18	324	341	361	
19	361	379	400	
20	400	419	441	
21	441	461	484	
22	484	505	529	5×101
23	529	551	576	
24	576	599	625	
25	625	649	676	11×59
26	676	701	729	
27	729	755	784	5×151
28	784	811	841	
29	841	869	900	11×79
30	900	929	961	
31	961	991	1024	
32	1024	1055	1089	5×211
33	1089	1121	1156	
34	1156	1189	1225	29×41
35	1225	1259	1296	
36	1296	331	1369	$11 \times 11 \times 11$
37	1369	1405	1444	5×281
38	1444	1481	1521	
35	1521	1559	1600	
40	1600	1639	1681	11×149

2. CONCLUSIONS

In this paper we have introduced a Legendre's conjecture, which poses the following question:
Is there at least one prime number between n^{2} and $(n+1)^{2}$

?.

After algebraic operations shown in table (1) we found that the defined polynomial is as (2). But for $n=5 k+2$ we found that the Legendre's conjecture is not true because our polynomial gives us a multiple of 5 and therefore the number is not prime number.
For this we will put a new conjecture, it is as follows:
For the natural number $n \geq 1$ where $n=5 k+r$ with
$r=\{0,1,3,4\}$ and $k \in \mathbb{N}$. There infinite prime numbers written in the form $p(n)=n^{2}+n-1$ and checked

$$
n^{2}<p(n)<(n+1)^{2} .
$$

It's clear from table (1) this conjecture is often true for $2 \leq n<22$ without $n=5 k+2$ for $k \in \mathbb{N}^{*}$. And after $n=22$ we note that, in addition to the numbers are written as (2) for $n=5 k+2$ with $k \in \mathbb{N}^{*}$ from table (1), we find other numbers are not prime. But it can be expressed by multiplying prime numbers

REFERENCES

[1] Kouider, MR, "The Josephus Numbers" (August 7, 2019) http://dx.doi.org/10.2139/ssrn. 3433635.
[2] Kouider, MR, "Kouider Function have Basis a", (February 13, 2021).
http://dx.doi.org/10.2139/ssrn. 3785337
[3] Kouider MR "Kouider Number with base a" (2022) .viXra:2208.0145
[4] Richard A. Mollin, Anitha Srinivasan "Euler
-Rabinowitsch polynomials and class number problems revisited" Functiones et Approximation 45.2 (2011), 271288

AUTHORS' BIOGRAPHIES

PhD student at the University of Biskra, Algeria, in the field of applied mathematics in statistics with the field of extreme value theories under censored data. Also, I have some contributions in other fields. You can visit the following website:
http://ssrn.com/author=3647992

