On Legendre's conjecture

Kouider Mohammed Ridha¹

¹ Department of Mathematics, Applied Mathematics Laboratory, University of Mohamed Khider, Biskra, Algeria

Email: <u>mohakouider@gmail.com</u> Second email: <u>ridha.kouider@univ-biskra.dz</u>

Abstract:- In this paper, we interesting in most conjecture problem relies with the prime number which is Legendre's conjecture. *We also introduced polynomials that check this conjecture* with algebraic proof. *Also, we reinforced the conjecture with some rules.*

Keywords: Prime number, Kouider Number with base a.

1. Introduction

In 1912, during the International Conference on Mathematics, Edmund Landau posed four basic problems about prime numbers, among them the <u>Legendre's</u> <u>conjecture</u>. Which states:

Is there always at least one prime number between consecutive square number n^2 and $(n+1)^2$?

After algebraic operations, we found that the numbers that fulfil Legendre's conjecture are written in the following form

 $n^{2} + n - 1 = (n + 1)^{2} - (n + 2)$ (1)

for $n \in \mathbb{N}$ where $n \ge 2$ with $n \ne 5k + 2$ for $k \ge 1$ is a natural number. And of course, we found that the numbers written in the form (1) are prime numbers if $n \ne 5k + 2$ where $k \ge 1$.

It is easy to prove that the numbers written in the form (1) satisfy the relationship

$$n^2 < n^2 + n - 1 < (n+1)^2$$

by proof the correctness of the following:

$$n^{2} - (n^{2} + n - 1) < 0$$
 and $(n + 1)^{2} - (n^{2} + n - 1) > 0$

for $n \ge 2$.

In the second step we will prove that

 $PGCD(n^2; n^2 + n - 1) = 1$ it is true for every natural

number
$$n \in \mathbb{N}^*$$
 We have $n^2 + n - 1 = n^2 \times 1 + n - 1$, then
 $PGCD(n^2; n^2 + n - 1) = PGCD(n^2; n - 1)$

Also, we get $1 \times n^2 + (n-1)(n+1) = 1$. That is, there are two integers such that $\alpha = 1$ and $\beta = (n+1)$. According to Puzo's theorem we have n^2 and n-1 are relatively prime. Then n^2 and n^2+n-1 are relatively prime also.

On the other hand, we find for PGCD(n;n-1)=1 that n and n-1 are relatively prime for every natural number $n \in \mathbb{N}^*$. Because, according to Puzo's theory we have n-(n-1)=1. We conclude under Dirichlet's theorem that for PGCD(n;n-1)=1 there is infinitely many primes given by

$$p(n) = n^2 + n - 1 \qquad (2)$$

Let Δ be the discriminant of (2), $\Delta = 5 \equiv 1[4]$. It can be said that the polynomial (2) overlaps the definition of Rabinowitsch polynomial for instant see [4].

Next, we consider the natural number $n \ge 1$ where n = 5k + r with $r = \{0, 1, 2, 3, 4\}$ and $k \in \mathbb{N}$. And we will write the polynomial (2) in terms of k for the following values of $n = \{5k, 5k + 1, 5k + 2, 5k + 3, 5k + 4\}$ respectively. Then

First, for n = 5k we find

$$n^{2} + n - 1 = 25k^{2} + 5k - 1 = 5k(5k + 1) - 1 = 5m - 1$$

And for $n = 5k + 1$ we find

$$n^{2} + n - 1 = 25k^{2} + 15k + 1 = 5k(5k + 3) + 1 = 5m + 1$$

Next, for n = 5k + 2 we find

$$n^{2} + n - 1 = 25k^{2} + 25k + 5 = 5(5k^{2} + 5k + 1) = 5m$$

And for
$$n = 5k + 3$$
 we find

$$n^{2} + n - 1 = 25k^{2} + 35k + 11 = 5(5k^{2} + 7k + 2) + 1 = 5m + 1$$

Finally, for n = 5k + 4 we find

 $n^{2} + n - 1 = 25k^{2} + 45k + 19 = 5(5k^{2} + 9k + 4) - 1 = 5m - 1$

According to the results obtained previously, we conclude that the polynomial given in (2) became an odd number for $n = \{5k, 5k + 1, 5k + 3, 5k + 4\}$ It is written in one of the two forms 5m + 1 or 5m - 1. Since for n = 5k + 2 the polynomial (2) is a multiple of 5

Since for n = 5k + 2 the polynomial (2) is a multiple of 5 and is written in the form 5m with $m \in \mathbb{N}$. Of course, except for number 5 for k = 0.

Also, we give more than one polynomial that give a prime number. Which define as the following:

$$25n^2 + 5n - 1$$
, $25n^2 + 15n + 1$ and $25n^2 + 35n + 11$

with $5n^2 + 5n + 1$. Finally, $25n^2 + 45n + 19$.

There more, we reduced for the numerical results of the polynomial (2) shown in table (1), this relation as following: for consecutive $p_j(n)$ and $p_{j+1}(n)$ we have

$$p_{i+1}(n) = p_i(n-1) + 2n$$
 (3)

Since, if n = 5k + 2 for $k \ge 1$. We get

$$p_{i+1}(n) = p_i(n-2) + 2(2n-1)$$
 (4).

And that through the two relations (3) and (4) we can write an algorithm for this formula for $2 \le n < 22$. See the following table.

n	n^2	$p(n) = n^2 + n - 1$	$(n+1)^2$	Is Prime
1	1	1	4	
2	4	5	9	5
3	9	11	16	
4	16	19	25	
5	25	29	36	
6	36	41	49	
7	49	55	64	5×11
8	64	71	81	
9	81	89	100	
10	100	109	121	
11	121	131	144	
12	144	155	169	5×31
13	169	181	196	
14	196	209	225	
15	225	239	256	
16	256	271	289	
17	289	305	324	5×61
18	324	341	361	
19	361	379	400	
20	400	419	441	
21	441	461	484	
22	484	505	529	5×101
23	529	551	576	
24	576	599	625	
25	625	649	676	11×59
26	676	701	729	
27	729	755	784	5×151
28	784	811	841	
29	841	869	900	11×79
30	900	929	961	
31	961	991	1024	
32	1024	1055	1089	5×211
33	1089	1121	1156	
34	1156	1189	1225	29×41
35	1225	1259	1296	
36	1296	1331	1369	11×11×11
37	1369	1405	1444	5×281
38	1444	1481	1521	
35	1521	1559	1600	
40	1600	1639	1681	11×149

Table 1: Values of the polynomial <i>n</i>	$n^2 + n - 1$ for $n = \{1; \dots; 3\}$	34}.
--	---	------

2. CONCLUSIONS

In this paper we have introduced a Legendre's conjecture, which poses the following question:

Is there at least one prime number between n^2 and $(n+1)^2$

After algebraic operations shown in table (1) we found that the defined polynomial is as (2). But for n = 5k + 2 we found that the Legendre's conjecture is not true because our polynomial gives us a multiple of 5 and therefore the number is not prime number.

For this we will put a new conjecture, it is as follows: For the natural number $n \ge 1$ where n = 5k + r with $r = \{0, 1, 3, 4\}$ and $k \in \mathbb{N}$. There infinite prime numbers

written in the form $p(n) = n^2 + n - 1$ and checked $n^2 < p(n) < (n+1)^2$.

It's clear from table (1) this conjecture is often true for $2 \le n < 22$ without n = 5k + 2 for $k \in \mathbb{N}^*$. And after n = 22 we note that, in addition to the numbers are written as (2) for n = 5k + 2 with $k \in \mathbb{N}^*$ from table (1), we find other numbers are not prime. But it can be expressed by multiplying prime numbers

REFERENCES

Kouider, MR, "The Josephus Numbers" (August 7, 2019) <u>http://dx.doi.org/10.2139/ssrn.3433635</u>.

[2] Kouider, MR, "Kouider Function have Basis a", (February 13, 2021).

http://dx.doi.org/10.2139/ssrn.3785337

[3] Kouider MR "Kouider Number with base a" (2022).viXra:2208.0145

[4] Richard A. Mollin, Anitha Srinivasan "Euler -Rabinowitsch polynomials and class number problems revisited" *Functiones et Approximation 45.2 (2011), 271–* 288

AUTHORS' BIOGRAPHIES

PhD student at the University of Biskra, Algeria, in the field of applied mathematics in statistics with the field of extreme value theories under censored data. Also, I have some contributions in other fields. You can visit the following website:

http://ssrn.com/author=3647992