
1 
 

 

  
 

 The Metric Universe  

Gerd Pommerenke  

Email: gerdpommerenke@arcor.de  

Abstract  
 
Why is there a contradiction between SRT and GRT in strong gravitational fields? What is 
the cause of the relativistic effects? What is the contradiction in the expression ℏω = mc
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when considering the cosmological redshift? What is the cause of Planck's uncertainty 
principle? Can we really simulate the Big Bang inside a particle accelerator? Are the 
universal natural constants really constant? What is the meaning of the so-called Planck 
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Does the Mach-principle really apply? 
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1. Author-seminar paper 
 
 
Primary purpose of this work was to determine the HUBBLE-parameter with other methods 

than astronomic ones and if necessary even to calculate it. With the improved technical 
methods, like the James-Webb-Telescope, it now succeeds to advance into space farther and 
farther obtaining new, more exact data. With it, it becomes visibly that it will be always 
more imperative to have an exact model of the universe as whole in order to  interpret these 
data correctly, because the farther we look into the universe and with it, into the depths of 
time, the more effects appear, which can be hardly interpreted with the current models or not 
at all. 

 
Object of this work was, to posit such a model, using data being locally available, which is 

accessible with the present-day technical methods. These would be the universal 
fundamental physical constants and their relations to each other as well as the electron 
charge, -mass and similar values and the known physical rules. For this as fundamentals 
serves a cosmologic model basing on a lecture, delivered in German language by Prof. 
Cornelius LANCZOS  on the occasion of the EINSTEIN-Symposium 1965 in Berlin. Except for 
[1] this lecture does not have been published furthermore (and never in English) according to 
my knowledge.  
 

In his model LANCZOS postulates the existence of a strictly agitated wave-field, which 
generally should be, according to his opinion, the real cause of the qualities of space-time 
and relativistic effects. For more details please read the lecture itself, which has got only 
seven pages overall. There is also an English source denoted in [1]. Because this idea is 
fascinating me and since LANCZOS has sketched his model even only in coarse outlines, I 
have tried to put an authentic model on the basis of the known facts and phenomenons, both 
fitting LANCZOS’ demands and nevertheless not colliding with the yet accepted reality. 

 
The result is a model with changing natural constants with expansion. This leads to a 

reduction of well-known contradictions, e.g. between the SRT and the ART with strong 
curvature, with the red-shift in relation to the expression ℏω = mc

2
 and many more. Since 

some of the variable natural constants also affect the observer, i.e. he is affected by them 
himself, some of the changes cancel out. A virtual relativity principle applies. The laws of 
nature just seem to be the same in all frames of reference. 

 
However, the model also influences the metric system (SI). With the help of the electron 
mass and charge, the relations to the corresponding PLANCK units could be precisely 
determined. This makes it possible to calculate all natural constants outside the atomic 
nucleus as a function of the reference system or space and time to at least 10 decimal places, 
including the HUBBLE parameter and the CMBR temperature. Especially because of this 
influence I named the line element appearing in the model »Metric Line Element (MLE)«. 
 
Furthermore, the model explains the unexpected results of the Supernova-Ia-Cosmology-
Experiment as a consequence of a non-standard electromagnetic wave propagation function. 
Due to the expansion of the universe, there is a parametric damping that can only be detected 
at very large distances. At the same time, this leads to the appearance of an upper cut-off 
frequency, which is the cause of the specific waveform, the sharp descent at high 
frequencies, with the CMBR and, in general, any thermal radiation. 

 
In contrast to other models based on the hydrogen atom, where the ratio Fg/Fe is 

approximately 1:1040, this model is based on the PLANCK length with a ratio of 1:1. The 
theoretical electrotechnics custom notation is used in the work (j instead of i). Unusually, the 
letter β is used for the Lorentz factor γ, since γ is already heavily overused. Even SI-units are 
used consistently, since I believe that the preset of constants to 1 (e.g. light-speed), as usual 
in the RT, are leaving to a cover-up of as yet unknown interdependences at all. Since this 
work is strongly interdisciplinary I tried to present the stuff in such a manner, that it can be 
understood even by non-specialists.  
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3. Cosmologic model 

3.1. Specification of the model 
 
In this lecture, it is just assumed that the metrics is built like a cubic (regular) space-lattice 

of Metric line-elements periodically in all directions, and we want to assume too, that it 
would be actually so. For mathematicians, however, these only exist on paper, while 
LANCZOS regards them more as physical objects. Thus in future, we want to call them Metric 
Line-Elements with the abbreviation MLE. 

 
Object of the further contemplations should be the question, how such a Metric line-

element is built, how it „works“, how the single line-elements are arranged, how they 
interact together and how the electromagnetic waves propagate in such a metrics. Then, still 
open questions should be answered, like the one for the expansion of the universe and its 
causes, the existence and origin of the cosmologic background radiation as well as its 
isotropy also at sources, that cannot have any causal connection on reason of their big 
distance from each other. The existence of this radiation could not yet be taken into account 
in the above-mentioned lecture, since it had been discovered first in the year the lecture was 
held. The structure of the physical matter is not object of this work, since it represents, 
according to [1], autonomous sphere-symmetrical solutions of the field-equations. In a 
separate chapter however we will deal with the peculiarities and the interaction of matter and 
metrics. Now we want to establish the first hypothesis the model is based on: 

 
 
I.  On the level of the metric space-lattice apply the legalities of the classic  
 physics. The relativistic effects result from the existence of this lattice  
 and its structure. 
 

 
How the relativistic effects arise, will be considered in a later chapter. In the progression, 

we will apply just only the legalities of the classic physics. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1 
Cubic face-centred crystal lattice (fc) 

 
 
As first, we assume that the Metric line-elements (MLE), we want to examine here, are ar-

ranged in a (regular) cubic face-centred space-lattice (picture 1) [48]. Such a system behaves 
isotropically. 
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Simply let’s go out from the MAXWELL equations, that even beside the known methods 
according to [1], in fact should be to derive on the basis of an infinitesimal interference on 
the lattice. Now, at first we want to consider these equations less mathematically but more 
according to their content. 
 
div  B = 0        div  D = ρ  
curl E = –Ḃ   curl H = i + Ḋ       (1) 
 
As well for the electric as for the magnetic field-strength the operator curl for rotation (also 
rot) appears. Let’s assume that a rotation would really take place here. Thereto we look at 
the model figured in Figure 2 that is to imagine three-dimensional however. 
 
 
 

3.2. Forces in the model 
 
A ball-capacitor (Figure 2) with the radius rc and the charge of q0 moves on an orbit with 

the angular frequency ω0, the radius r0 and the velocity c=const (speed of light). The 
capacity results in C0= 4πε0rc. the energy stored in this capacitor in 
 

2 2
0 0

0
0 0 c

q q1
W

2 C 8 r
= =

πε
        (2) 

 

 
 

Figure 2 
Metric line-elements  
Physical dimensions and mutual coupling 

 
and with r0= 4πrc and C0= ε0r0 

 
2
0

0
0 0

q
W

2 r
=

ε
 (3) 

 
Furthermore this energy even should have a mass m0. Since this mass is rotating its mass-

moment of inertia results in 
 

2
0 0J mr=   (point-mass)       (4) 

 
According to our formulation, applies ω0=c/r0 and we receive for the kinetic energy, that 
should be equal to the electric one, 
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2 2
0 0 0 0

1 1W J m c
2 2

= ω =         (5) 

 
Since the capacitor does not have any mass itself, the mass m0 of the charge is given by 

 
2 2
0 0 0

0 2
0 0 0

q q
m

c r r
µ

= =
ε

           (6) 

  
The 2nd expression of (6) we get from the known relation 

 

0 0

1
c =

µ ε
 ,            (7) 

 
which has a strong similarity with the formula for the resonance-frequency of a loss-free 
oscillatory circuit on the first look 

 
1

LC
ω =   .               (8) 

 
Then for the centrifugal force (amount) Fz = m0 r0 ω0

2
 applies: 

 
2 2 2

2 20 0 0
Z 0 0 02 2

0 0 0

q q
F q

c r
ω

= = µ ω =
ε ε

        (9) 

 
Figure 3  
Magnetic field-strength in one and  
in several conductor loops 

 
Fz is directed outwardly. Expression (9;3) represents with the exception of a factor 1/4π the 
COULOMB law (repulsion), only that there is no second charge, that could wield a repelling 
force, here. Centrifugal force and COULOMB-force would just be of same magnitude. To 
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guarantee, that mo doesn’t vanish in the infinite, a force is required, able to eliminate the 
appearing centrifugal force. Thereto it must be directed contrarily and of same quantity. 

 
Since we are concerned with the circular motion of a charge here, we can even talk about 

a current i0 = ω0q0. This current generates a magnetic field at which point even an inductivity 
occurs (1 turn). Simplifying, we now assume, that the inductivity should be L0= µ0r0. That 
agrees with the equation for a coil with one turn as well: 

 

0

8r 7
L r ln

r 4
 = µ − ′ 

 ,         (10) 

 
in which r represents the inside-radius, r´ the wire-radius of one single short-circuited turn 
(µr=1). If r´=0.5114 r applies, the bracket-expression yields 1 and we get the aforementioned 
expression. This is, as said, only a model, since our coil doesn’t consist of wire. Rather one 
should imagine the charge and current something like „spreaded“ across the space. 
According to [20] the magnetic field-strength H0 (in future always figured as vector, H is the 
HUBBLE-parameter) in the centre of the conductor loop (left) amounts to 

 
0

0

i
2r

= − r0H e            (11) 

 
er is the unit-vector. The negative sign results from the definition of the field-strength as 
difference between zero-potential (r=∞) and potential in the distance R. The field-strength-
share of a current-element i0ds in the distance r of the centre (Figure 3) calculates according 
to [20] as follows 

 
0 0

2 2
0 0

q c i ds
d d

4 (r r ) 4 (r r )
= =

π − π −
r r

0

e e
H             (12) 

 
Here the potential in the distance r0 takes the place of the zero-potential. For the field-
strength H0 in this point the following applies 

 
0

2
0

i ds
d

4 (r r)
= =

π −∫ ∫ r
0

e
H H� �

       (13) 

 
To solve this integral, we better divide dH into the two shares H1 (right) and H2 (left), dH 
results from the sum of both shares then. The integration-limits lie at 0 and π. 

 

0 0 0
2 2

0 0 0
0

r1 1i i
d

4 r r r r 2 r r

π
 

= + ϕ = π − + − ∫
r r

0

e e
H       (14) 

 
Then in the centre the field strength prevails denoted in (11). That value is related to one 
isolated, single MLE only. In order to determine the real field strength, we must consider the 
adjacent line elements additively. Let’s have a look to the effect of one adjacent MLE 
(Figure 3 right) in x-direction. To that purpose we can transform expression (14) in the 
following manner: 

 

0 0 0
2 2 2

00 0 0
0

r1 1i i
d

4 (k 1)r r (k 1)r r 2 r (k 1) 2 r r r

π
 

= + ϕ = π − − + − − − π +  ∫
r r

1

e e
H    (15) 

  
Since the individual line-elements are arranged in a cubic-face-centred space-lattice 

(Figure 1), in fact altogether four line-elements along a field-line in the manner depicted in 
Figure 4. On this occasion, I already have jumped in ahead of coming findings by figuring 
the single tracks not as circles but as eight-shaped graph (eight-curve). This is necessary in 
order to figure the phase-relations. So far, we have considered even only one special-case, 
namely that one, at which q and H have its effective-values.  
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We must however assume that it is about an oscillatable system overall (L and C) and there 
the single values will vary after an approximately sine-shaped function. A track-graph with a 
positive charge at one end and a negative charge at the other end however figures a dipole, 
that lines up in space according to a certain mode (vector E0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 
Collocation of the MLE’s at a 
field-line in x-direction  
at a cubic face-centred lattice 
 

 

 
Let’s look at Figure 4 now, so we first see the point A. This is the MLE, we are examining. 
In the point D there is the second MLE, whose influence we have determined in (15). There 
is also a connection with the point B. The field line intersects the two elements C with an 
angle of 0°, i.e. not at all, so that it doesn’t come into effect in x-direction. But with an 
interference (e.g. along the z-axis) they can change their orientation such, that they come 
into effect too or even take the place of A and B. Then the propagation takes place in z-
direction. Under consideration of the four adjacent MLEs we obtain the following 
expression for H0: 

 

0 0
0 2 2 2 2 2

00 0

r 1 4i
r r r (k 1) 2 r r r2

 
≈ + − − − π + 

re
H      (16) 

 

 
Figure 5 
Course of the magnetic field strength depending on  
the radius r and various lattice constants 
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What interests now is the question of the actual size of k. Placing the values 1, 2 and π, we 
obtain the course depicted in Figure 5 in x-direction. For k=1 we can see, that there is a zero 
transit of H0 at r = r0/2, the average value of the distance A-D. Thus, the magnetic field at 
this point is equal to zero. That means, the charge q0 of D has taken on its maximum. Hence, 
there is a phase-shift of 90° between both points, exactly as with a resonance coupling. 
Differently with k=2, that would be connection A-B. Here the magnetic field has its 
maximum. Thus, one MLE always communicates with the next but one MLE via the 
magnetic field.  
 

But there are any more MLEs in the fc-lattice. Even the ones on face and farther away  are 
interacting with A. But we considered the four adjacent MLEs only. But since a cube with 
the edge length r0 also contains 4 MLEs, we can assume, that (16) applies to the average 
value of all influences too. With it, we can define a so called effective lattice constant. So we 
are looking for the value of k, at which expression (16) becomes equal to 1 in half the 
distance and therefore (17) applies. As we can see in Figure 5, that’s the case at k = π. 
Herewith, the effective lattice constant has the value π r0, while the real lattice constant is 
equal to r0. For H0 applies: 
 

0

0

i
r

= − r0H e           (17) 

 
and for the magnetic induction 
 

0 0 0 0 0
0 2

0 0

q cq
r r

µ ω µ
= µ = =r r

0 0

e e
B H          (18) 

 
Simultaneously, we are concerned with a moved charge in the magnetic field. So, a 

LORENTZ-force Fm= q0(c × B0) will apply. It is directed inside. For the simplification, we 
want to look at the system along the x-axis again. Therefore, we can set for the amount of 
the attractive force Fm= – q0cB0. We get using 
 

2 2 2
0 0 0

m 2 2
0 0 0

c q q
F

r r
µ

= − = −
ε

             (19) 

 
Expression (9), just with inverse signs. Centrifugal force and LORENTZ-force cancel each 
other. Now, we can determine even the rest-mass of the magnetic field: 
 

2 2 22
0 0 0 0 0 0 0 0

1 1 1
W i L q r m c

2 2 2
= = ω µ =        (20) 

 
2

0 0
0

0

q
m

r
µ

=             (21) 

 
As it can be proven easily, this expression is identical to (6). Now, we want to determine 

the gravitative attraction of the magnetic and the electric rest mass (we imagine it as point-
masses in the centre of the orbit). We can write on reason of the mass-equality 

 
2 2 4
0 0 0

g 2 4
0 0

m q
F G G

r r
µ

= − = − .             (22) 

 
We now look at the energy stored in C0 once again (3). Since this represents only the half of 
the total-energy of the MLE, we can write 

 
2
0

0 0
0 0

q 1
W

2 r 2
= = ω

ε
ℏ          (23) 

 
Then, following expression arises for the charge: 

 

00
0

q c
Z

= ε = ℏ
ℏ           (24) 
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In this connection, Z0 stands for the vacuum wave-propagation impedance Z0 =��� ��� . 
This represents because of equation (7) a similarly invariable quantity like c. Herewith we 
have already »linked the lattice-oscillations with HEISENBERG’s uncertainty principle« by the 
way, as it LANCZOS demands in his lecture. From (22) and (24) we get:  

 
2 2 2

0 0 0 0 0
g 4 4

0 0

c q qG
F G

r c r
ε µ µ

= − = −
ℏ ℏ

 (25) 

 
and after expansion with c2 

 
2
0

g 3 4
0 0

qG
F

c r
= −

ε
ℏ

         (26) 

 
Now let’s have a look at the first fraction Gℏ/c3 somewhat more exactly, so it represents, 

with the exception of a factor of 1/2π, exactly the square of the PLANCK’s elementary-length, 
how we already know it from other models. If we now fix that 

 

0 3

G
r

c
=

ℏ  (27) 

 
should be, we also get for the gravitational-force expression (19) as well as (9) 

 
2
0

g 2
0 0

q
F

r
= −

ε
 (28) 

 
Now, the value of PLANCK’s elementary-length is not Gℏ/c3 however but actually Gh/c3 

The difference of 1/2π can be attributed to the fact, that it’s easier to count with the second 
expression with some models. In the course of the development of quantum mechanics it has 
also been shown that ℏ is the more practical natural unit than the h chosen by PLANCK. Then, 
the same applies even to the derivations. But from a physical point of view always the same 
result turns out at the end, even if the factors possibly looks a little bit bulky. We decide on 
Gℏ/c3, because it’s better for our model. Further we get for the other PLANCK’s elementary-
expressions: 

 
5 5

0 0 0
c c cW m

G G G
ω = = =ℏ ℏ

ℏ
    (29) 

 
The value for ω0 amounts to about 1.8551·1043s–1. We were able to trace back centrifugal, 

COULOMB-, LORENTZ- and gravitational-force to a single expression. Interestingly the value 
of r0 is insignificant with the electromagnetic contemplation (MAXWELL equations). If 
however the gravitational-force is coming into play then for the value of r0 only equation 
(27) may apply. Incidentally MAXWELL shall has gone out from a similar model we are 
discussing here, however without expansion. 

 
Another important point of view is the propagation-velocity of an interference in our 

model. If we postulate that the angular frequency ω0 of the electric dipole and ω0 of the 
magnetic induction and field-strength are equally large, so an interference must spread in 
phase and/or amplitude with the velocity of πc/2 along the field-line H0. That means, the 
interference propagates along a straight line AB (not figured in Figure 4) exactly with the 
speed of light. The same is applied even to the propagation in other, optional directions. So, 
there are also distances of π���. π�� available in the space-lattice. Now we must imagine 
the radial-velocity upon the field-line proportionally to the distance, so that the axial-
velocity is always c. If we regard the system L0C0 as a parallel-oscillatory circuit, so we get 
for the resonance-frequency:  
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00 0 0 0 0

1 1 c
rL C r

ω = = =
µ ε

 (30) 

 
and without r0 

 

0 0

1
c =

µ ε
 (31) 

 
exactly expression (7). For the total-energy W0 of a MLE, that results from the sum of 
electric and magnetic energy, then we get 

 
2

2 2 20 0 0
0 0

0 0

q m m
W c c m c

r 2 2
= = + =

ε
 (32) 

 
For this reason, the energy of the mass of electromagnetic radiation amounts to m0c2 and not 
to m0c2/2. We get the same value here by solving the following equation (energy in the 
gravitational-field) 

 
2 2
0 0 0

0 m 0 2
0 0 0 0

q dr q
W F dr

r r
= = − =

ε ε∫ ∫  (33) 

 
That is already the total-energy, since both masses are involved in it. Furthermore, the 
relationship W0 = ℏω0 applies of course. We get more important relationships for the 
magnetic flux ϕ0, if we equate electric and magnetic energy 

 
2 2
0 0

0
0 0

q1 1
W

2 C 2 L
ϕ

= =  (34) 

 

0 0 0
0

0 0 0

L
Zq C

ϕ µ
= = =ε  (35) 

 

0 0 0 0 0q Z c Zϕ = = µ =ℏ ℏ  (36) 
 

 ϕ0q0 =   ħ (37) 
 

The last expression throws a marking light on the meaning of PLANCK’s quantity of action 
and we have already realized the suggestion of [1] : »…to link the lattice-oscillations with 
HEISENBERG’s uncertainty principle«. For the energy, one can also write W0 = ϕ0q0ω0 or 
W0= ϕ0i0 as well as W0= q0u0 (everything effective-values). One sees, almost all quantities 
can be attributed to simplest expressions. 

 
 
 

3.3. The Metric line-element as oscillatory circuit 
 
 
Having considered so far only the case of electric and magnetic mass which are equally 

large — charge and flux ϕ0 would have its effective-values and m0 would describe an orbit 
in this case — the MLE doesn’t behave quite so simply. So it suffices however to assume an 
orbit for later contemplations. As already more above suggested, there is an oscillatable 
system with a capacitor and a coil available, that shall (in the moment) be interconnected via 
a loss-free medium, namely the vacuum. So, we can make even an equivalent circuit for it 
(Figure 6), the one of an undamped parallel-oscillatory circuit: 
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Figure 6 
Equivalent circuit  
of a static MLE 
 
 
 
 
 
 
Figure 7 
Courses of charge and induction 
with labelling of the track-points 
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We already have specified the equation for the resonance-frequency in (30). If L0 and C0 
behave like a parallel-oscillatory circuit however, even all values like q0, ϕ0, H0, etc. have to 
change time wise according to harmonic functions. The same even is valid for the distance 
r0. The temporal course of q0 and B0 (H0) in detail of the marked track-points is figured in 
Figure 7. The exact track-function arises from (33), (35) and (37) using the following 
formulation: 
 

2
20

0 0 0
0 0

q
W sin 2 t

r
= ω = ω

ε
ℏ         (38) 

 
Rearranged to r0 by neglecting the fixe phase-angle π/2 with δ =2ω0t: 
 

0
0 0 0

0 0 0 0

q c
r( t) 1 cos 4 t (1 cos4 t)

2 2 2
 π  ω = + + ω ⇒ + ω  ε ϕ ω ω  

    (39) 

 
0rr( ) (1 cos 2 )
2

δ = + δ              or in x and y to      (40) 

 
Figure 8 
Real track-course in the xy-plane 
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2

δ = + δ δ         (41) 
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0ry( ) (1 cos 2 ) sin
2

δ = + δ δ         (42) 

 
The exact course is figured in Figure 8. In the xy-plane it corresponds exactly to the course 
of the envelope of the POYNTING-vector S (like r) of a HERTZian dipole [24]. 

 
For most further examinations, it suffices to go out from an orbit simplifying by 

consideration of effective-values only. 
 

 
 
 

Figure 9 
Idealized and real track of 
the MLE in three-dimensional presentation 

 
Significant is the shape of a dipole (vector E0) by the true track-course (Figure 8 and 9), 

since the charge q0 is equally large at the respective bend points of the track however 
affected with opposite sign. This dipole can be oriented in all three directions at will.  

 
An eventual expansion of this of model is achieved by the temporal increase of r0. The 

model however is only valid, if the expansion-velocity of r0 is smaller than c/2. If it is larger, 
so there is no more rotation anyway. The motion proceeds rectilinear as well as curvilinear 
then. It has no more exact track-function declared. That would be also rather pointless, as we 
will still see later. 

 
 

3.4. Disadvantages of the static model 
 
With the described static model, we have realized case (0.13) and »the direction of the 

main-axes remains uncertain. The smallest interference here can have the consequence of an 
at will strong rotation of the main-axes.« The cause is following: With L0 and C0, it is a 
matter of ideal components. That means, the Q-factor Q0 of such an oscillatory circuit would 
be infinite with it, the bandwidth zero. The resonance-super-elevation is also infinitely with 
an infinite Q-factor however (voltage u0 and current i0). Therefore it has no exact phase and 
amplitude declared. This is just identical to the uncertainty of the main-axe’s position 
however. 
 
Another disadvantage is that the model doesn’t change time wise. That means, all median 
values including r0 remain constant forever. Now it is a known fact however, that the cosmos 
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is expanding and the same should happen with the metrics too. Maybe, this is even the cause 
of expansion? We use this supposition as base and formulate our second hypothesis with it. 
 

 
II. The expansion of the cosmos is evoked by the expansion of the metric lattice/ 
 radiation-field. 
 

 
Furthermore, the question of origin and isotropy of the cosmologic background radiation 
remains unanswered. In order to avoid these disadvantages, we want to make dynamic the 
model. 
 

4. Dynamic model 

4.1. Further contemplations 
 

If we want to achieve an expansion of the metrics, so we must see to take away energy 
from  the MLE. Now one assumes yet the vacuum as loss-free, since the propagation-
velocity of electromagnetic radiation is independent from the frequency. Let’s introduce the 
conductivity κ0=1/ρ0, so for the complex wave-propagation-impedance (j is the imaginary 
unit, as used in the electrotechnics) applies 
 

0

0 0

j
Z

j
ωµ

=
κ + ωε

             (43) 

 
and on reason of (30) for c 
 

( )0 0 0

j
c

j
ω

=
µ κ + ωε

         (44) 

 
Two extreme-cases result from it. While (44) passes into equation (31) for a non-conductor, 
we get for an ideal conductor 
 

0 0

j
c

ω
=

µ κ
          (45) 

 
Therefore generally applies: in a loss-affected medium, the wave-propagation-impedance 
becomes complex and with it c too. Since c determines the propagation rate γ = α+j β= j ω/c, 
the attenuation rate α would become unequal to zero and even moreover frequency-
dependent with the appearance of an imaginary part of c. It applies 
 

2

0 0

0 0

1 1
1 1 sinh arsinh

c 2 c 2

    κ κω ω α = + − =    ωε ωε    

      (46) 

 
That means, additionally to the geometrically caused damping an additional damping e–αx 

would appear and one could define a lower cut-off frequency for the space (–3dB/λ). Only if 
the conductivity is zero, that wouldn’t be the situation. All this does neither has been 
observed in the vacuum and the wave-propagation occurs with light speed for all 
frequencies. The vacuum just acts like an ideal non-conductor [20]. 

 
Nevertheless, we want to try to find a solution, taking all these facts into account. At first 

we extend our equivalent circuit by the loss-resistor RoR (Figure 10), index R stands here 
for a series connection of circuits, as well as by the shunt-resistor R0. 



 
 

18 

 
 
Figure 10      Figure 11 
Equivalent circuit with     Equivalent circuit with 
series-resistor      shunt-resistor 

 
With our further contemplations, now we have to decide in favour of one of both equivalent 
circuits. For the conversion of both impedances applies 

 
2
0

0
0R

Z
R

R
=             (47) 

 
We decide in favour of the second model, since a very large loss-impedance is the best 

approach to a non-conductor. Starting with Figure 10 we first define the loss-impedance R0R 
which must be obviously very small in this case, in reference to a cube with the edge length 
of r0 to 

 
2

0R 0R
0 0

1 r 1
R A r R

A r
= = =

κ κ
      (48) 

 
From it we obtain for R0 

 
2

0 0 0 0R r Z= κ               (49) 
 
Evidently, our MLE is a system of second order. By introduction of R0, we can now 

define even two time constants, namely 
 

0 0 0L Cτ =   and  1 0 0R Cτ =          (50) 
 
With τ0, a time-constant of second order, it is with largest probability a matter of the reci-

procal of the angular frequency of our MLE. Which value in the nature then now that τ1 can 
be assigned to? An additional temporal damping of electromagnetic waves doesn’t appear as 
you know. Since R0 has to be very large, then the same is applied to τ1. We now assume that 
τ1 can be identified with the reciprocal of the HUBBLE-parameter H. This hypothesis is 
substantiated by the fact that H is a time-constant of first order, whatever is valid for τ1 too. 
We can write then 

 
2

0 0 0 0
2

0 0 0 0 0 0 0 0 0 0

r 1 1 1
H

r R C r L C

ε ε ω
= = = = =

κ µ κ κ

ɺ
.        (51) 

 
Furthermore generally applies H = n/t; n is a constant factor which depends on the used 

model (radiation-/dust-cosmos), t is the time and equates with the age here. Next we want to 
define the Q-factor of the oscillatory circuit according to [5] 

 
2

0 0 0 0
0 2

0 0

W R
Q

P u

ω ω
= =

ℏ
         (52) 

 
and because of u0= – ω0 ϕ0 as well as (36) 
 

Q0     =      = κ0r0Z0      =             =        (53) 

 
The numerical value is about 1.041·1061. If we go out from the last expression of (51), we 
can even write for H 

 

  

ℏR 0

ϕ0
2

R 0

Z0

2κ0t

ε0



 
 

19 

2
0 0 0 0 0 0

0 0 0 0 0 0 0

c
H

r r Z Q

ε ω ε ω ω ω
= = = =

κ κ κ
         (54) 

 
Now we could think, up to the determination of H it is far no more. Unfortunately, the value 
of κ0 is unknown however.  But it can be received from the astronomically determined value 
of H approximatively 

 
3

0
0

c
G H

κ =
µ ℏ

           (55) 

 
with  1.710·1093 AV–1m–1. In this connection a value of 55 kms–1Mpc–1, has been set up for 
H, that is 1.7824·10–18s–1. Possibly, this value is rather not up-to-date anymore. One 
recognizes the magnitude of κ0 however. Furthermore applies GℏH = const. 

 
Now that further on our model. Using the relationship H = n/t and the third expression of 

(51) we are already able to determine the time-function of r0 
 

0
0 0

t
r

n
=

κ µ
     and       (56) 

 

0
0 0

1 1
r

2 n t
=

κ µ
ɺ           (57) 

 
with it we get for the HUBBLE-parameter H 

 
0

0

r 1
H

r 2t
= =
ɺ

  and  0 0
2
0

r r
1

r
= − =q

ɺɺ

ɺ
    (58) 

 
just the relationship for a radiation-cosmos. This is nor further remarkable, since we have 
assumed the MAXWELL equations however. q is the dilatory-parameter (do not mix-up with 
the charge). It follows n=1/2 and we can write 

 

0
0 0

2t
r =

κ µ
     and  0

0 0

1
r

2 t
=

κ µ
ɺ        (59) 

 

2
0 0 0 0 0R C r

t
2 2

κ µ
= =             (60) 

 
With these relationships, we can now set about to put a differential equation for our 
oscillatory circuit. Let’s have a look at Figure 12 for that purpose. 

 
 

Figure 12  
Voltages and currents  
in the oscillatory circuit 

 

4.2. Differential equation and solutions 
 

4.2.1. Specification of the differential equation 
 
We have a parallel-oscillatory circuit with the inductivity L0, the capacity C0 and the loss-

resistor R0 on hand. Furthermore, the voltage u0 is connected to all components 
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simultaneously. In the node A the three currents i1, i2 and i3 unify. The KIRCHHOFF’s first 
law applies: 

 
i1 + i2 + i3 = 0          (61) 

 
Furthermore applies because of u0 = dϕ0/dt and ϕ0 = i1L0 

 
 

1 0
0

d(i L )
u

dt
=         (I) 

 

0 2
0

1
u i dt

C
= ∫        (II) 

 

0 3 0u i R=     (III) 
 

 
Now equation (I) can be resolved as follows 

 
1 0 01

0 0 1

d(i L ) dLdi
u L i

dt dt dt
= = +         (62) 

 
and we get the following differential equation 

 

0 0
1 1

0 0

L u
i i

L L
+ =
ɺ

ɺ  or         (63) 

 
y´+ f(t) y  = g(t)        (64) 

 
0 0

0 0

dL dL
dtf (t) dt L dt L

0M(t) e e e L∫= = = =∫ ∫ .          (65) 
 

Now, we are able to resolve for i1 [21] 
 

1

1
i g(t)M(t )dt C

M(t )
 = + ∫         (66) 

 
With C = 0 we get then 

 
0

1 0 0
0 0 0

u1 1
i L dt u dt

L L L
= =∫ ∫         (67) 

 
Now, we rearrange equation (II) for i2: 

 
0 0 0 0

2 0 0

d (u C ) du dC
i C u

dt dt dt
= = +        (68) 

 
We receive the value of i3 directly by rearrangement of (III) so that we can write 

 
 

1 0
0

1
i u dt

L
= ∫         (I) 

 
0 0

2 0 0

du dC
i C u

dt dt
= +     (II) 

 
0

3
0

u
i

R
=             (III) 

 

: 
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Put into (61) we obtain 
 

0 0
0 0 0

0 0

du dC1 1
u dt C u 0

L dt dt R

 
+ + + = 

 ∫        (69) 

 

Since u0 = φ· 

0 equation (69) changes into 
 

0 0 0 0 0
0 0

1 1
C C 0

R L

 
ϕ + + ϕ + ϕ = 

 
ɺɺɺ ɺ         (70) 

 
and after division by C0 

 

0
0 0 0

0 0 0 0 0

C 1 1
0

C R C L C

 
ϕ + + ϕ + ϕ = 

 

ɺ
ɺɺ ɺ   .        (71) 

 
This is the differential equation of a parametric amplifier. But on reason of the definition of 
C0 = ε0 r0 we also can write 

 

0
0 0 0

0 0 0 0 0

r 1 1
0

r R C L C

 
ϕ + + ϕ + ϕ = 

 

ɺ
ɺɺ ɺ    .         (72) 

 
Of course it is somewhat difficult to imagine, that the capacitor quasi shall grow with the 
metrics. But considering C0 as a basic quality of space, whereat its size depend on the 
dimensions of the MLE, it should be somewhat less difficult however. If we now assume, 
that no expansion would take place at all, equation (72) would change into the normal 
differential equation for a loss-affected oscillatory circuit with shunt-resistor with the well 
known solution: 
 

2

0
0 0 0 0

1 1

L C 2R C

 
ω = −  

 
  .          (73) 

 
Then however, we would get for the speed of light: 

 
2

2
0 0 0 0 0

1 1
c

2 r

 
= −  

µ ε µ κ 
  ,           (74) 

 
That would even mean that the (maximum-)speed of light is not constant. The constancy of 
the light speed however is a basic statement, that we may not negate. To the luck our metrics 
is expanding and the first partial factor of φ0 in equation (72), namely H is ≠0. According to 
(51) furthermore both augmenters are identically and we can write 

 

0 0 0
0 0 0 0

2 1
0

R C L C
ϕ + ϕ + ϕ =ɺɺ ɺ        or       (75) 

 
2

0 0 0 0 02H 0ϕ + ϕ + ω ϕ =ɺɺ ɺ              .      (76) 
 

Equation (76) is very interesting. If we want to determine the time-function of φ0 however, 
we now have to insert (53, 54):  

 

0
0 0 0

0

1
0

t 2 t

κ
ϕ + ϕ + ϕ =

ε
ɺɺ ɺ            or           (77) 
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0
0 0 0

0

1
t 0

2 t

κ
ϕ + ϕ + ϕ =

ε
ɺɺ ɺ          .      (78) 

 
With it we have laid down the differential equation for our model. It deals with a very rare 
hyper-geometrical differential equation, that we want to solve in the next section. 

 
 
 
 

4.2.2. Universal solution of the differential equation 
 
During literature-study, this type of differential equation has not been found and the 

POOLE’s equation [17] did not succeed anyway. To solve the equation therefore only comes 
into question the integration of power series approach [21]. We look at the following 
equation for that purpose: 

 
y ″x    +    A y ′   +    B y  =   0              (79) 

 
We first rearrange this equation to y 

 
1

y (y x Ay )
B

= − ′′+ ′             (80) 

Then we expand y into a power series 
 
y = a0x

0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 +…+  anx
n (81) 

y ′ =        0a0x
–1 + 1a1x

0 + 2a2x
1 + 3a3x

2 + 4a4x
3 +…+ nanx n–1  (82) 

y ″ =   0 (–1)  a0x
–2 + 1 (0)  a1x

–1 + 2·1a2x
0 + 3·2a3x

1 + 4·3a4x
2 +…+  n (n–1)  anx 

n–2 (83) 
 

In cumulative notation: 
 

n
n

n 0

y a x
∞

=

= ∑        (84) 

 

n 1 n 1 n
n n n 1

n 0 n 1 n 0

Ay Ana x Ana x A(n 1)a x
∞ ∞ ∞

− −
+

= = =

′= = = +∑ ∑ ∑   (85) 

 

n 1 n 1 n
n n n 1

n 0 n 1 n 0

y x n(n 1)a x n(n 1)a x n(n 1)a x
∞ ∞ ∞

− −
+

= = =

′′= − = − = +∑ ∑ ∑   (86) 

 
Now, inserting the last column’s expressions into (80) we get: 

 
n n

n n 1
n 0 n 0

1
a x (A n)(1 n)a x

B

∞ ∞

+
= =

= − + +∑ ∑       (87) 

 
With it we can already specify the recurrence formula for the discrete coefficients of y: 

 
 

 

n 1 n

B
a a

(A n)(1 n)+ = −
+ +

 

 

 (88) 

 
 
 

It results in the following coefficients then: 
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1

1 0 0

B B
a a a

(A 0)(1 0) (A 0)(1 0)
= − = −

+ + + +
      (89) 

2

2 1 0

B B
a a a

(A 1)(1 1) (A 0)(A 1)(1 0)(1 1)
= − =

+ + + + + +
    (90) 

2

3 2 0

B B
a a a

(A 2)(1 2) (A 0)(A 1)(A 2)(1 0)(1 1)(1 2)
= − = −

+ + + + + + + +
  (91) 

… 

n n 1

B
a a

(A n 1)(1 n 1) −= −
+ − + −

          (92) 

n n

n 0

( 1) B
a a

(A 0)(A 1)(A 2) (A n 1)(1 0)(1 1)(1 2) (1 n 1)
−

=
+ + + … + − + + + … + −

   (93) 

 
Another notation would be 

 
n n

n 0
k 0

1
a a ( 1) B

(A k)(1 k)

∞

=

= −
+ +∏        (94) 

 
and with (z)n= (z+0)(z+1)…(z+n–1) 

 
n n n n

n 0 0
n n n

1 1
a a ( 1) B a ( 1) B

(1) (A) n!(A)
= − = −          (95) 

 
n

0
n 0 n

1
y a ( Bx)

n!(A)

∞

=

= −∑         (96) 

 
This is the general hypergeometric function 0F1 (;A;–Bx) however. 

 
 
y        =    a0 0F1 [;A;–Bx]  (97) 
 

 
Herewith we have found a special solution of our differential equation. Now we must see 

just, if we can express the result by a more simple analytic function. Whether it’s possible or 
not, depends on the parameter A however. Before we return to our model then, we still want 
to examine the behaviour of the universal solution (91). We look at two special cases 
thereto. 

 
 
 

4.2.3. Specific solutions 
 

4.2.3.1. The harmonic solution (A=1/2) 
 
We start with equation (97) inserting the value 1/2 for A: 
 

0 0 1
1y a F ; ; Bx
2

 = −  
 (98) 

 
This yields by setting the expansion-part ṙ0�r0 in (72) to zero as a solution of the differential 
equation  φ̈�0 t + ½ φ̇ 0 + κ0�(2ε0) φ0 = 0��(model without expansion). According to [12] applies: 

 
2

0 1
1 1F ; ; z cos z
2 4

 − =  
        (99) 
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21 z Bx or
4

− = −       (100) 

 
z 4Bx=           (101) 

 
0

0 0 0
0

1
ˆy a cos 4Bx with a B x t

2
κ

= = ϕ = =
ε

  (102) 

 

0
0 0 0 0 0

0

2 t
ˆ ˆcos cosQ

κ
ϕ = ϕ ϕ = ϕ

ε
        (103) 

 

0
0 0

0

ˆ cos 2 t
2 t
κ

ϕ = ϕ
ε

         (104) 

 
Considering the root-expression of eqn. (104) more exactly, so it would have to correspond 
to the angular frequency ω0 and would be time-dependent. 

 

0
0 0 0

0

ˆ 2 Z
2 t
κ

ω = ϕ =
ε

ℏ      (105) 

 

0 0 02 Z cos 2 tϕ = ωℏ                (106) 
 

Since it’s about a differential equation of second order, the universal solution had to be then: 
 

0 0 1 0 2 0Z (c cos 2 t c sin 2 t)ϕ = ω + ωℏ            (107) 
 

Since c2 can be even imaginary or complex, the universal solution also can be understood as 
the sum of the exponential-functions ej2ω0t und e–j2ω0t. These also figure two possible 
independent solutions. Equation (107) is then: 

 
0 0j2 t j2 t

0 0Z e e( )ω − ωϕ = +ℏ         (108) 
 

We would have found a solution with constant amplitude with it. MAXWELL uses this 
solution as base for the solution of the equations designated to him. The factor 2 should be 
neglected here once. The solution is not applicable for our model however, since we want to 
put a model with expansion being A always larger than 1/2 (78). 

 
 
 

4.2.3.2. The Bessel solution (A=1) 
 

This solution corresponds to our model. 
 

[ ]0 0 1y a F ;1; Bx= −          (109) 
 

According to [17] applies 
 

1
2b 1

0 1 b 1F (;b;x) (b)( jx) J (j2x )−
−= Γ        (110) 

 
Jn is the Bessel function of n’th order, just 

 
0

0 1 0F ( ;1; Bx) (1)( jBx) J ( 4Bx )− = Γ              (111) 
 

0 0y a J ( 4Bx)=              with   0
0 i

0

1
ˆa 2 B x t

2
/

κ
= ϕ = =

ε
  (112) 
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0 0 0 0
0

0
0 0

2 t
a (J a Q )J

κ
= =

ε
ϕ            (113) 

 

0 0
0

0
0a 2J t

2 t

κ =  ε
ϕ

 
   with    0

0
02 t

κ
ω =

ε
     (114) 

 
Since it´s about a differential equation of second order and the degree of the Bessel function 
is integer, the universal solution is: 

 
0 i 1 0 0 2 0 0ˆ (c J (2 t) c Y (2 t))ϕ = ϕ ω + ω        (115) 

 
Even in this case c1 and c2 can be imaginary or complex. According to [22] it’s often 
opportune to consider the two functions (Hankel functions) 

 

0
(1)
0 0H (x) J (x) Y (x)= +     and        (116) 

(2)
0 0 0H (x) J (x) Y (x)= −            (117) 

 
as linearly independent solutions forming the universal solution 

 
(1) (2)

1 0 2 0y(x) c H (x) c H (x)= +         (118) 
 

with it. The general solution (115) reads then: 
 

(1) (2 )
0 i 0 0 0 0ˆ (H (2 t) H (2 t))ϕ = ϕ ω + ω         (119) 

 
An analogy exists between equation (108) and (119). For our further examinations, we set c1 
and c2 in (119) equal to 1 for the moment. Then we get as specific solution: 

 

0
0 i 0 0 0 i 0

0

2 t
ˆ ˆJ (2 t) J

κ
ϕ = ϕ ω ϕ = ϕ

ε
        (120) 

 
Even a formulation with the Bessel-Y-function would be possible however. With the 

exception of an infinite initially-value no more differences arise then. Later, we will make 
use of  the sum of both (Hankel function). With it, the discussion, whether a finite or infinite 
initially-value is on hand, will have been proven as useless. 
 
 
4.2.3.3. Behaviour of solutions 

 
Depending on the coefficient A there is the following behaviour of solutions: 
 

 
A < 0.5  ascending amplitude 
A = 0.5  static amplitude 
A > 0.5  descending amplitude 
 

 
 
4.2.3.4. Consequences for the model 

 
We have got a solution with non constant amplitude (descending). With it the magnetic 

flux starts with a finite value however (gainful). Two problems result from it: 
 
1. It has no frequency defined in the real sense. 
2. The amount of Planck’s quantity of action ħ=ϕ0q0 is not constant. 
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The first problem is relatively easy to solve by studying the asymptotic behaviour of our 
function (120). Even from (76) can be concluded on a frequency ω0, that depends on the age 
i.e. the HUBBLE-parameter H. The second problem has extensive effects on nearly all 
physical laws and processes, that should be discussed in the course of this work in detail. 
Furthermore the gravitational-constant is also a variable quantity, which is being denied 
today by almost nobody more however. 

 
 
4.2.4. Asymptotic expansion 

 
Since the Hankel function is difficult to handle, we want to search for a good approxi-

mation. Furthermore we are interested in the course of the function and of φ0 and q0. To the 
approximation we treat the single elements of the Hankel function Jn(x) and Yn(x). On 
presence of the following conditions: t »0, Re(x) »0, Re(n) > −1/2 according to [23] applies: 

 

n
2 n

J (x) cos x
x 2 4

π π ≈ − − π  
             (121) 

 
and for J0 and its derivative that we require even later. We use the equality sign from now on: 

 

0

2 1
J (x) cos x (cos x sin x)

x 4 x

π = − = + π π 
    (122) 

 

1

2 3 1
J (x) cos x (cosx sin x)

x 4 x

π = − = − − π π 
       (123) 

 
For ω0 we can write 

 

0
0

02 t
κ

ω =
ε

             (124) 

 
For φ0 applies then (approximation): 

 
i

0 0 0

0

ˆ
(cos2 t sin 2 t)

2 t

ϕ
ϕ = ω + ω

πω
        (125) 

 
Except for one factor and a different phase-angle we get an expression equal to the 

harmonic solution (107) then. The phase-correction −π/4 can be omitted with greater 
arguments. The Hankel function even can be described by an exponential function in the 
phase (229). Deeper examinations show equation (123) to be very exact (Figure 13 and 14). 
In [23] an additional approximation is presented: 

 
i

0 0 0

0

ˆ
(cos 2 t sin 2 t)

(1 2 t)

ϕ
ϕ = ω + ω

π + ω
       (126) 

 
But that one proves to be essentially more inaccurate than (121) and is no longer followed 
up therefore. Also significant is the effective value. But it is defined across one period 
minimum. Within the first period (t<2τ1) and to the calculation of PLANCK’S quantum of 
action it would be opportune to operate with the exact envelope function divided by �� 
(addition theorem of Bessel functions � modulus of the Hankel function). It applies to 
Bessel functions (J and Y) of zeroth order and with very good approximation to Bessel 
functions of any order (real) and of course even to greater values of t: 

 
2 2

0 i 0 0 0 0ˆ J (2 t) Y (2 t)ϕ = ϕ ω + ω     Envelope curve  (127) 
 

Indeed, it starts in the infinity. Then, �� i is defined to the point of time the envelope curve 
takes on the value 1. But function (127) does not match correctly with smaller arguments. 
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The reason is the root in the argument of the Hankel function. Therefore, we make use of the 
radical expression from (121), which is essentially more correct. Thus, the envelope curve 
and the effective value are defined as follows: 
 

i
0

0

ˆ2
ˆ   

2 t

ϕ
ϕ =

π ω
         Envelope curve  (128) 

 
1
2 11

0 0 0 0 0

0

0 0  q qQ Q
2 t

− −ϕ
ϕ ϕ= ϕ =

ω
∼ ∼ ∼ℏ  Effective value  (129) 

 
The exact course of ϕ0 (125), as well as of the approximate function of the envelope curve 
(128) and of the effective value (129) is shown in Figure 13. Also depicted are the original 
Bessel functions, which you can’t see however, because they are completely covered by the 
approximation. 

 

 
 

Figure 13 
Course of magnetic flux as well as of approximation-  
and envelope-functions across a greater time period 

 
Thus, with greater arguments, no differences are statable, neither in the amplitude,  nor in 
the phase. Most important for the quality of the approximation is the course in the striking 
distance of t = 0. The exact course of ϕ0 as well as of the envelope functions (128) and (129) 
for small and very small values of t is shown in Figure 14. The course of q0, the 1st 
derivative (123), has been omitted. The envelope functions likewise applies to ϕ0 and q0 and 
they are important to the determination of the effective values and of ħ. 

 
In contrast to the normal Bessel function, which starts similarly to the Cosine function, the 

temporal function of the magnetic flux within the first part of the first period has rather a 
course like an RC-circuit of 1st order. The charge q0 starts similar to the function –sin x. With 
increasing phase-angle/Q-factor Q0 = 2ω0t both transition to a nearly harmonic function, at 
which point the frequency decreases proportional t−1/2.  

 
As we can see, the approximation can be used down to Q0=1, that’s the particle horizon. 

The maximum error at that point amounts to +1.44% in the real part and 8.17% with the 
imaginary part. But you can’t get that close to the particle horizon and the beyond remains 
totally locked. That’s the realm of astronomers, physicists, astro-physicists and cosmo-
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logists, on paper and in the lab. If you want to know more about the range Q0<1 you are 
forced to make use of the exact expressions. 

 

 
 —————————————————————————————————————  

 
 

Figure 14 
Course of flux as well as of the approximate-  
and envelope-functions nearby the singularity 

 

4.3. Laplace-transform 
 

4.3.1. Time domain 
 
How does the solution-behaviour of equ. (115) actually look like? J 0 (��) is defined for 

real arguments –∞ < x < ∞. For positive x arises the course already figured many times. The 
ambiguity of the root doesn’t have any effect. To the negative region, a real solution submits 
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in form of the modified Bessel function I 0 (��). This one manifests a course similar to cosh 
going towards infinite. In contrast, J1(���) and the charge q0=  –j I 1(��) becomes imaginary 
and shows a course like j  sinh(��). 

 
 For t < 0 don’t arise any physically meaningful solutions therefore. A charge is not 

defined. The point of time t = 0 is just the beginning of the expansion of the universe. What 
was before, cannot be said, probably »NOTHING«. In such a case, the application of the 
LAPLACE-transformation offers itself in order to get more information. 

 
 

4.3.2. Figure function 
 
LAPLACE-transformation: This is suitable even to the solution of differential equation (78), 

provided, the re-transformation is possible. We just go out from (78): 
 

0
0 0 0

0

1
t 0

2

κ
ϕ + ϕ + ϕ =

ε
ɺɺ ɺ      or     (130) 

 
y ″x   +   y ′ +  a y   =   0             (131) 

 
According to the differentiation-rule [22] applies:  

 

L {y ′} =  p y(p) –         with   =      (132) 

 
Fortunately we have already solved the differential equation and know the initial values 

for t = 0. Therefore it applies:  
 
L {y ′} =  p y(p) – 1   .       (133) 

 
We get for the second derivative: 
 
L {y ″} =  p2y(p) – p  –    with the initial values 1 and 0  (134) 

 
L {y ″} =  p2y(p) – p         (135) 

 
We require the LAPLACE transform for the product of y″ and t however. According to the 
multiplication-rule and (133) applies: 

 
L {tn f(t) } =  (–1)n F(n)(p)        (136) 

 
dy (p)

dp

''    =  2p y(p) + p2 y ′ (p) – 2p y(p)      (137) 

 
L {y ″t} = 1 – p2 y ′ (p) – 2p y(p)       (138) 

 
Substitution in (131) results in: 

 

2

a p
y (p) y(p) 0p

−′ − =    with the solution        (139) 

 
2

1

a p 1a adp CCp p p 2pt1

1

C a 1
y(p) e e e e

p p 2pt

−
++ −− −

= = = =
∫

   (140) 

 
This solution has been specified wrong until now. Unfortunately, I could realize the error but 
now, since the function is not listed in any correspondence table and the inverse transfor-
mation proved to be difficult. The function InverseLaplaceTransform[φ1 E^(–(a/p))/p , p, t] 
really turns out expression (103) now. That also takes effect to the following calculations.  
 
C1 is in the form of a time-constant. The source-function is a differential equation of second 
order with a time-constant:  τ1 = 1/(2a) = ε0/κ0 = 1/ω1 = 2t1. It appears twice and with it, we 
does not come into the embarrassment, to examine which time-constant to be substitute at 

f 0
(0 ) f 0

(ν)

t → +0
lim

dν f (t )

dt ν

f 0
(0 ) f 0

(1)
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which position. The value arising from H0 [49] has a magnitude of 6.46396·10–105 s. In the 
figure domain with C = –1 applies for the magnetic flux then:  

 

1

1 Cpi
0

1

ˆ
(p) ep

− +τϕ
ϕ = τ            (141) 

 
For signals with a duration of t »τ1 it’s about an ideal I-gate (Integrating circuit) with a kind 
of inverse T-gate (Dead time circuit). It would be interesting too in that sense, to find the 
type of function, the model was activated with at the point of time t =  0. Comparative 
contemplations lead to the conclusion that it could have been a DIRAC-impulse σ(t) with the 
LAPLACE transform L {σ(t)} = 1, which even agrees with the model of big bang in the best 
manner. To the multiplication in the figure domain, the convolution corresponds in the time 
domain: 
 

0
0 i 0

0

2 t
ˆ (t) J

 κ
ϕ = ϕ σ *   ε 

        (142) 

 
At the beginning, there was the »NOTHING« with the physical qualities µ0, ε0 and κ0. 

Then, something was there suddenly (magnetic DIRAC-impulse). The DIRAC-impulse is an 
impulse with infinite amplitude and a duration of t→0. The integral below this impulse is 
equal to 1. This would speak in behalf of a finite initial value (Bessel-J). The response of the 
model (overshoot with a mean value of 0) can also be observed on electronic systems of 
second order using a DIRAC-like agitation (needle-impulse) but not using a jump- or ramp-
function. The DIRAC-impulse is already known for a long time. Using technical methods 
however it won’t be to realize whether at present nor in future. So far, there were even no 
parallels in nature, only in form of an approximation as needle-impulse. This way, another 
mathematical function would have found its exact correspondence in reality. In any case, it’s 
about a forced process. 

 
 
 
On the assumption, that it was actually a DIRAC-impulse, we get promptly for the transfer-

function G(p): 
 

1

1 Cp

1

1
G(p) ep

− +τ
= τ

          (143) 

 
Btw. the figure-function of the simplest I-gate, the generic RC-low-pass-filter, reads 
G(p) =K/(1+pτ1). The course of the transfer-function for the magnetic flux and of the charge 
q0 (first derivative) is depicted in Figure 15, at first by setting C = 0, since it has only an 
influence on the scale of the y-axis. Both functions point out a null at p = +0, a pole at  p = –0 
and a maximum at the point of time τ1  resp. τ1/2. For longer impulses, the function changes 
into the one of an ideal I-gate. The contradiction in the earlier editions (D-gate, high pass) 
rather should have pointed out the error in (140) to me. 
 
The PN-diagram doesn’t need to be figured separately, null at p = +0, pole at p = –0. The 
number of poles is equal to the number of the nulls (realizability-condition). There are no 
pole in the left half-plane p<0 (stability-condition). Since the pole is located at the point 0, 
the system is loss-free anyway but still a „passive component“. That state is also named 
marginally stable. 
 
With pole in the left half-plane, the system could come into an oscillation by itself. With 
pole in the right half-plane at p > 0, losses appear, so that the oscillation grinds to a halt after 
a certain time,  contrary to reality, where oscillation whether hasn’t yet faded away even 
today nor probably in the future. The null in the origin (+0) points to a blocking of higher 
frequencies. 
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Physically speaking it’s about a low pass. Since the null is in the right half-plane (p≥0), it’s 
just about a minimum-phase-system. Systems of this category have, according to [26], the 
quality of attenuation and phase being associated by the HILBERT-transformation. Since 
there are no conjugate complex pole available, even no resonance-effects appear.  
 

 
 
Figure 15 
Transfer-functions (figure domain) 
for magnetic flux and charge (C=0) 

 
From the figure-function we have read that it deals with a high pass of 2nd order. In 

general, such a system has a frequency-dependent attenuation. However, this stands in 
contradiction to the observations, resulting in a constant frequency response across all 
(technically observable) frequencies.  

 
To the calculation of the complex frequency response of our model we start with equation 

(143), in that we replace: p = σ + jω. A substitution p = jω doesn’t emerge any useful result, 
since the system is still oscillating so that the associated Fourier integral doesn’t converge at 
all. The convergence is forced by the term σ. The frequency response of the magnetic flux 
gives also information about the vacuum wave propagation, since the separate dipoles 
(MLE) are interconnected via the magnetic field (resonant coupling). The value of σ arises 
from the half inverse of the right-hand time constant of (77). The free parameter can be 
determined to C = 1 with the help of the initial condition G(j0) = 1. 

 

With 0
1 2

0 11 1

1 1
as well as and θ

2t 1

κ ω Ω
σ = = = = ω Ω = =ε ωτ + Ω
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1

1

( j )
1

1

1
G( j ) e
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−
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         (144) 
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(145) 

 
 That yields the following expression (complex frequency response): 

 

( ) ( )
2
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2
eG( j ) cos θ sin θ j sin θ cos θ

1

Ω
+ Ω

 ω = + Ω + − Ω  + Ω
    (146) 
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The locus curve of frequency response in comparison with the one of a generic low pass is 
shown in Figure 16. Since both don’t cut the y-axis, there is no aperiodic borderline case in 
this system.  

 

 
Figure 16 
Frequency response locus curve 

 
For frequency and phase response we get further 
 

2

21

2

1
A( ) e

1

Ω
+ Ωω =

+ Ω
          (147) 

 

2

sin θ cos θ
B( ) arctan arctan

1cos θ sin θ
γ

− Ω Ωω = = − Ω + = ϕ
+ Ω+ Ω

          (148) 

 
We have got the right-hand expression of (148) by means of subtle application of the cor-
responding addition theorems and substitution. In this connection –arctan Ω relates to the I-
share, θ to the inverse T-share. Both functions (BODE-diagram) are depicted in Figure 17. 
The damping course (–6 dB/decade) points to a system of 2nd order.  
 

Interesting is the cosine of the phase response cos B(ω) = cos φγ as well. This value is used 
e.g. in the electrotechnics for the calculation of efficiency (power). It figures the size of the 
mutual coupling factor of the separate MLE’s. Interestingly enough, because of  
cos φ = cos (–φ), this value is not affected by the miscalculation. 

 

2 2cos cos arctan cos arctan
1 1γ

Ω Ω   ϕ = − Ω + = Ω −   + Ω + Ω   
   (149) 

 
Then equation (146) also can be written in the following manner: 
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2 2
2

2 2
1 ln (1 ) j
21 1

2

1
G( j ) (cos jsin ) e e

1

γ
Ω Ω − +Ω + ϕ
+Ω +Ω

γ γω = ϕ + ϕ =
+ Ω

    (150) 

 
Figure 17, the BODE-diagram shows frequency- and phase-response up to ω1/10, after expan-
sion up to ω0/10, that’s at least 1.855·1042s–1 resp. 2.952·1041Hz, to be equal to 1 (0dB) 
constantly, exactly as observed. Technically speaking we are light-years away from the 
upper limit. There is also a lower cut-off frequency given by the requirement, that the wave 
length λmin = 2cT must fit the universe’s extension. The value ωmin is equal to the HUBBLE-
parameter H0, as can easily be proved. 

 

 
Figure 17 
BODE-diagram: Frequency response A(ω) 
and phase response B(ω) of the system 

 
The course of cos φγ is shown in Figure 18. Furthermore the course of the second term in 
φγ is depicted. You can see that it only takes effect from frequencies near ω1 onwards. 

 
Figure 18 
Course of phase angle,  
cos φ and of the expression θ 
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Finally, the phase- and group delay in dependence on the frequency should be examined. 
Both functions are depicted in Figure 19. The phase delay is defined as: 

 

Ph 2

B( ) 1
T (arctan )

1
ω Ω= = − Ω −

ω ω + Ω
     (151) 

 
For the group delay we get: 

 
22

Gr 2
1 1

2 θd
T B( ) 2

1d

Ω = ω = − = − ω ω+ Ωω  
        (152) 

 

 
Figure 19 
Group- and phase delay 

 
It are the same functions as with the wrong solution, but just negative. Are negative delay 
times physically possible? The answer is – Yes. That comes about very frequently in techno-
logy and is not a breach of causality. See [50] for details. 

 
 
 

4.3.3. Properties of the model 
 
The following statements are applied to one single MLE only. More exact statements for 

wave-propagation as such are worked out later. You can see here quite clearly that fre-
quency- and phase-response proceed approximately exact straight-line (0 dB) until one third 
of the frequency ω1 and that phase-true. A noticeable attenuation and phase-shift does not 
occur until approximate one tenth of ω1. Since the amount of ω1 is so extremely high (the 
supreme measured frequency, cosmic radiation is about 1042Hz), this effect does not have 
been observed so far however. 

 
The amplitude ascends around ω1, only to descend again irrevocably (Figure 17). There 
actually turns out a slight high-pass-behaviour within a low-pass. However, since the value 
cos ϕγ  strongly declines above ω1 /2 (Figure 18), and with it the mutual coupling coefficient 
of the MLEs, both influences cancel each other, a mere hillock remains (Figure 20).  

 
The frequency response across two MLE’s with the coupling coefficient k = cos φγ is 

shown in Figure 20. The damping course (–12dB/decade) points to the fact, that it’s about a 
group-delay-corrected low pass of 2nd order. The expression 1+Ω2 even occurs in the filter-
theory and corresponds to the form-factor of a calibrated equally-tuned dual-circuit filter 
with identical attenuation-course [26].  
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Figure 20 
Frequency response for the transfer  
to the adjacent MLE 

 
In reference to the sampling-theorem we expect, that only frequencies below ω0 /2 are 

transferred. Strictly speaking, the previous statements apply to the universal wave-field only 
in accordance with [1]. The propagation of radio waves or photons, as we understand, in 
reality takes place as propagation of interferences of this wave-field. Since the MLE’s figure 
non-linear systems, several side frequencies occur. But only the sum- and difference-
frequency ω0±ω are important. With the other frequencies, no power-conversion is achieved 
(property of a non-linear circuit). But for the cut-off frequency of overlaid signals only the 
sum frequency is relevant. Since overlaid signals are being more red-shifted than the 
universal wave-field, the „relative cut-off frequency“, i.e. the spacing between the overlaid 
frequency ω and the cut-off frequency ω0/2, ascends continuously with rising age.  

 
The course of group delay shows that the „processing“ of changes in the magnetic induc-

tion of lower frequencies actually takes place „instantaneously“. The transfer to the adjacent 
MLE takes place on the basis of a resonance-coupling with a phase-shift of π/2 = ω0tv. For 
the delay time tv we get the following expression then: tv = π/(2ω0) = π r0 /(2c). For the trans-
fer rate of c (the half circumference of the field-line of the vector H0 proceeding through the 
centre of the track graphs of both MLE’s is equal to πr0/2), we receive an amount of: 

 
0

v 0 0

r 1
c c

2 t
π

= = =
µ ε

       (153) 

 
With it, the vacuum-wave-propagation-velocity directly arises from the phase-shift π/2, 

which comes about with magnetic resonance-coupling of two oscillatory circuits. This effect 
even can be observed in technology with discrete components, which is figured in [26] 
extensively. With frequencies near ω1, the phase delay TPh, multiplied with 2π, has to be 
added to tv. However, an accurate formula for c for this case (critical photons) cannot be 
stated at this point, because we consider the single MLE only. We will work out an exact 
expression for the wave-propagation-velocity in section 4.3.4.4.5. being valid near t = 0 as 
well. 

 
Further we can say, that the propagation-velocity c decreases the more approaching to ω1. 

However, this value exactly corresponds exactly to that value, at which the track-curve 
(Figure 8) is no longer defined. A phase-transition occurs, the rotation ends. There is only 
the straight-line-expansion then. 
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With it the phase-shift to the adjacent MLE also adds up and achieves a value of π, a 
destructive interference appears, a wave-propagation isn’t possible at all (coupling-factor 
k = cos(π/2) = 0). Furthermore, c and even the wave impedance Z become complex, leading 
real- and imaginary-part to achieve same value. This corresponds to the case of an 
electrically conductive medium.  

 
All that arises from the going smaller and smaller value of R0, resulting from descending 

r0, and the Q-factor. That means, the impedance achieves the magnitude of the complex 
impedances XC and XL short-circuiting them more and more. Above ω0, R0 only determines 
the behaviour of the system then (electric conductor). However this is not applied to the 
wave-field as such. Reverse behaviour appears here. Near t = 0 as well as ω = ω0, the field-
wave impedance behaves like a non-conductor. First at larger distance, the behaviour 
approaches the one of an ideal conductor, as we will still see later. Decisive for it is the 
mutual coupling-factor of the MLE’s however. 

 
Now a wave-propagation-velocity different from c does not contradict our primary 

assumption c = const and nor the SRT for so long, while its value is smaller or equal to c. 
This is always guaranteed even with frequencies near ω1 respectively in the time just after 
the big bang. The previous results don’t just stand in contradiction to prevailing discoveries. 

 
 
 
 

4.3.4. Propagation-function 
 
First we want to pass in review the classic theory of MAXWELL’s equations once again, in 

order to work out, with the help of analogies, an alternative solution, fitting the requests of 
our model. The equation-system (1) is under-determined, so that there is more than one 
solution filling these equations. 

 
 

4.3.4.1.  Classic solution for a loss-free medium 
 
In accordance with the previous discoveries, the cosmic vacuum seems to be a loss-free 

medium. It applies ρ = 0 (space-charge-density) as well as κ = 0. To the reminiscence here the 
MAXWELL equations once again: 

 
 div  B = 0  div  D = ρ  
 curl E = – Ḃ  curl H = i + Ḋ          (154) 

 
Furthermore applies: 

 
 D = εE     B = µH  i = κE           (155) 

 
Put into (154) we get (partial derivatives for x, y and z): 

 
 div H  = 0  div E   =  0 

 
 curl E = – µḢ  curl H  = εĖ (156) 
    

curl curl
t t

∂ ∂
= − µ = ε

∂ ∂
H E

E H  

 
Reapplication of the rotation-operation on (156) and substitution of the expression for curl H 
results in: 
 

 

2

2

(curl )
curl curl curl

t t t

∂ ∂ ∂
= − µ = − µ = − µε

∂ ∂ ∂
H H E

E       (157) 
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Still formal-mathematically applies and due to div E = 0, (∆ is the LAPLACE-operator): 
 
curl curl E   = grad div E – ∆E    =   –∆E      (158) 

 
Analogously applies for H: 

 
2

2

(curl )
curl curl curl

t t t
∂ ∂ ∂

= ε = ε = − µε
∂ ∂ ∂
E E H

H     (159) 

 
Just as because of div H = 0: 

 
curl curl H    = grad div H – ∆H    =   –∆H      (160) 

 
Then for µr = εr = 1 (vacuum) can be applied: 

 
2 2 2 2

0 0 0 02 2 2 2 2 2

1 1
t c t t c t

∂ ∂ ∂ ∂
∆ = µ ε = ∆ = µ ε =

∂ ∂ ∂ ∂
E E H H

E H        (161) 

 
The Laplace-operator ∆ is nothing other than the vector of the second directional-derivatives 
however: ∆ = (∂2/∂x2, ∂2/∂y2, ∂2/∂z2). With propagation only into x-direction, the partial 
derivatives for y and z become zero, and we can write too: 

 
2 2 2 2

0 0 0 02 2 2 2

d d d d
dx dt dx dt

= µ ε = µ ε
E E H H     (162) 

 
After division by d2E respectively d2H, multiplication with dx2, division by µ0ε0 
and subsequent extraction of the square-root, we will receive the known expressions for the 
wave-propagation-velocity c (phase- and group velocity) as well as the field-wave-
impedance ZF = µ0c: 

 

0
F 0

00 0

dx 1
c c Z Z

dt

µ
= = = = =

εµ ε
     (163) 

 
The underlining stand for complex values. Since the product µr εr is always larger than 1, the 
maximum wave-propagation-velocity is equal to c. It has an all-pass-behaviour on hand, no 
lower cut-off frequency exists and the wave-propagation-velocity is independent from the 
frequency. For the propagation rate γ applies: 

 

γ   =   α + j β     =    ± j ω /c    =    ± j ω  �����      (164) 
 

In this connection is α the attenuation rate (α = 0) and β the phase-rate. Except for the 
geometrical attenuation (S ~ r 

–2) in this case just no additional attenuation appears. Then, for 
the propagation-function (into x-direction) we get (analogously for H—): 

 
xj t c j t x( )

e e
ω − ω −γ= =E E E          (165) 

 
This solution suffices the cases appearing most frequently in the nature. If the medium is 

not loss-free, it fails however. Even, the cosmologic red-shift cannot be explained so. 
 
 
 

4.3.4.2.  Classic solution for a loss-affected medium 
 
At a loss-affected medium (e.g. water) ρ = 0 applies as well as κ > 0. E and H are 

understood as complex time-functions (underlined). Equation (156) is then: 
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curl curl
t t t

∂ ∂ ∂ = − µ = κ + ε ∂ ∂ ∂ 

H E
E H         (166) 

 
To the solution of the equations, MAXWELL works with the following ansatz: 

 
0 0j t j te eω ω= =E E H H       (167) 

 
 In this connection, the real-part corresponds to an orientation of the vector in y-, the 

imaginary-part to the one in z-direction, x is the propagation direction. This ansatz matches, 
except for the factor 2, the first term of equation (108) ejωt i.e. the harmonic solution with 
static amplitude (static model without expansion). However, equation (108) does not treat 
the magnetic (or even electric) field-strength but the charge as well as the flux. To the 
conversion, a coupling-length rk, is required, depending from the model in use. At both 
MAXWELL solutions, the value can be chosen absolutely free. But it should be essentially 
smaller than the wavelength. The best choice would be PLANCK’s elementary-length r0 
indeed. The magnetic field-strength submits to H = φ er/( µr k

2
 ) then. 

 
Now it is comprehensible enough, that MAXWELL first attempts to find an harmonic 

solution, this nevertheless corresponds to the long-time experiences (harmonic wave-
functions) and even to the current approaching in solving equation-systems. Furthermore, he 
achieved a solution, that agrees to the greatest extent with observations and experiments, 
delivering even technically applicable results, as well. The cosmologic red-shift however 
cannot be explained with it. It applies further: 

 

j t j tj e j j e j
t t

ω ω∂ ∂
= ω = ω = ω = ω

∂ ∂
E H

E E H H    (168) 

 
We get for the second derivatives: 

 
2 2

2 j t 2 2 j t 2
2 2

e e
t t

ω ω∂ ∂
= − ω = − ω = − ω = − ω

∂ ∂
E H

E E H H    (169) 

 
Further applies: 

 

curl j curl ( j )
t t

∂ ∂ = −µ = − ωµ = κ + ε = κ + ωε ∂ ∂ 

H
E H E E E   (170) 

 
We apply the rotation-operation to both sides again: 

 
curl curl E  =  curl (–j ω µ H ) =   – j ω µ  curl H       = – j ω µ (κ + j ω ε) E  = –∆E  (171) 

 

curl curl H  =  curl ((κ + j ω ε) E ) = (κ + j ω ε)  curl E = – j ω µ (κ + j ω ε) H = –∆H (172) 
 

Furthermore applies: 

2 2j j
j ( j ) ( )

 ωε − κ   ωε − κ    ∆ = ωµ κ + ωε = −ω µ = µ −ω      ω ω      
E E E E   (173) 

2 2j j
j ( j ) ( )

 ωε− κ   ωε− κ    ∆ = ωµ κ + ωε = −ω µ = µ −ω      ω ω      
H H H H  (174) 

 
On propagation in x-direction only, the partial derivatives for y and z become zero again and 
it applies ∆= d2/dx2. Because of (169) one can also write: 

 
2 2 2 2

2 2 2 2

d j d d j d
dx dt dx dt

 ωε − κ   ωε− κ    = µ = µ      ω ω      

E E H H
        (175) 

 
For µr = εr = 1, we get after division by d2E– as well as d2H— 

, multiplication with dx2, division 
by the double bracketed expression, de-parenthesizing of –j and extraction of the root  
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the known expressions for the propagation-velocity c = dx/dt and for the field-wave impe-
dance ZF: 

 

0
F

0 0 0

jj
c Z

( j ) j
ωµω

= =
µ κ + ωε κ + ωε

     (176) 

 
Or resolved for real and imaginary part: 

 
2 2
0 0

2 2 2 2 2
0 0 0

2 2
0

c 1
c 1 1 j 1 1

2
1

 κ κ = + + + + −
 ω ε ω ε κ  +

ω ε

    (177) 

 

2
0 004

2 2
0

c 1 1
c cos arctan jsin arctan

2 2
1

 κ κ
= + ωε ωεκ  +

ω ε

      as well as     (178) 

 

2
0 00

2 2
0

c 1 1
c cosh arsinh jsinh arsinh

2 2
1

 κ κ
= + ωε ωεκ  +

ω ε

       (179) 

 
The root-expression in (177) even is the absolute value simultaneously. For the attenuation 
rate α and the phase-rate β one finally gets: 

 
2

0 0 0
2 2

0 0

1
1 1 sinh arsinh

2 c 2

   µ ε κ ω κ
α = ω + − =    ω ε ωε  

        (180) 

 
2

0 0 0
2 2

0 0

1
1 1 cosh arsinh

2 c 2

   µ ε κ ω κ
α = ω + + =    ω ε ωε  

       (181) 

 
The propagation-function is the same like (164) however with the variant values for α and 

β (180, 181). For κ = 0 this solution passes into case 4.3.4.1. The propagation-velocity is 
dependent on κ and ω and amounts to c at most There is a lower cut-off frequency. Since 
α ≠ 0, an additional attenuation of the electromagnetic field-strength (POYNTING-vector) app-
ears to the geometrical one. With extreme values of κ, nonlinear distortions occur because of 
different group- and phase velocity. This solution describes wave-propagation in a medium 
of whatever qualities and zero space-charge-density. It doesn’t explain cosmologic red-shift. 

 
 

4.3.4.3. Alternative solution for a loss-affected medium with expansion 
 

4.3.4.3.1. Solution 
 
In contrast to MAXWELL, which used the first term of the harmonic solution (108) ejωt as 

ansatz, we now choose the first term of expression (119), obtained as an independent 
solution of the differential equation (78). It’s about the temporal function of the magnetic 
flux φ0 there, relating to one single MLE, from which the charge q0 can be derived. For the 
propagation function however we need the magnetic and electric field strength H and E. The 
relation: 

 

A

dAϕ = ∫ B    with B = µ0 H            leads to  0
2

0 0

ˆ

r

ϕ
=

µ
H

          
 (182) 

 
Because of r0 indeed the right-hand expression depends on the frame of reference. Moreover 
we are rather looking for the starting value at T = 0. The temporal function is just known. 
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Hence, we must carry out a reference-frame-independent coupling only. The coupling-length 
rk is not arbitrary in this case. Because the imaginary part of the Hankel function is coming 
from infinity, the starting value ϕ0 is defined at the point 2ω0t = Q0 =1. The coupling-length 
at this point is r1 as already predicted more above. This value is denominated as H1 resp. E1. 
With respect to the fact, that (129) is an effective value, we obtain the following relations: 
 

01
2 2

0 1 0 0 0

q 1
2 2

r Z r

ϕ
= =

ε ε1E    0
2

0 0

2
r

ϕ
=

µ1H       (183) 

 
 E–   =  E1 (2ω0t)   

 H—   =  H1 (2ω0t)    (184) 
 

Here again, the real part of the vector corresponds to an orientation in y-, the imaginary 
one in z-direction, x is the propagation direction. As already stated, there is an analogy 
between the exponential function ej2ωt and the Hankel function. Both are transcendent 
complex functions and periodic respectively almost periodic. E and H are understood as 
complex time-functions again (underlined). We start with the same values as in the previous 
case: ρ = 0 as well as κ0 > 0. Since in the time just after big bang there is a pure radiation-
cosmos and because we are considering the MLE, just the empty space, here the vacuum 
solution only can be of interest anyway. Equation (156) reads then: 

 

0 0 0curl curl
t t

∂ ∂ = −µ = κ + ε ∂ ∂ 

H
E H E     (185) 

 
In contrast to MAXWELL, who made use of the first term of equation (108) ejωt as base, we 
now choose the first term of equation (119), which we have obtained as an independent 
solution of the differential equation (78). The coupling-length of rk cannot be chosen here 
freely. Because the imaginary-part of the Hankel function is coming from the infinite the 
initial value of φ is defined at the point 2ω0t = Q0 = 1. The coupling-length at this point is r1. 

 
(1) (1)
0 0 0 0H (2 t) H (2 t)= ω = ωE E H H      (186) 

 

In this connection again, the real-part corresponds to the vector’s orientation in y, the 
imaginary-part to the one in z-direction, while x is the propagation direction. As already 
noticed, an analogy exists among the exponential-function ej2ω0t and the Hankel function. 
Both are transcendent complex functions being periodic respectively nearly periodic. In the 
following, we want to find out, whether this base leads to a solution of the MAXWELL 
equations too. It is however to mark that ω0 is time-dependent in this case. Therefore we will 
first work with the correct time-functions: 

 

(1) (1)0 0
0 0

0 0

2 t 2 t
H H

κ κ
= =

ε ε
E E H H     (187) 

 
Let’s proceed now like in 4.3.4.2. (analogously for  H— 

): 
 

(1) (1)0 0 0 0 0
1 1

0 0 0 0 0

2 2 t 2 t
H H

t 2 2 t 2 t
κ ε κ κ κ∂

= − = −
∂ ε κ ε ε ε
E

E E     (188) 

 
The minus sign is caused by the derivative of the Hankel-function. Furthermore applies, 
according to the calculating rules for cylinder-functions [22]: 

 
(1) 2 (1) (1)

0 1 0 0 0 0 2 0H (2 t ) t (H (2 t ) H (2 t))
t

∂
= − ω ω = − ω ω + ω

∂
E

E E       (189) 
 

(1) 2 (1) (1)
0 1 0 0 0 0 2 0H (2 t) t (H (2 t) H (2 t ))

t
∂

= − ω ω = − ω ω + ω
∂
H

H H      (190) 

 
As next, we de-parenthesize the expression for the Hankel function of zero order so we can 
write, because of (186), for the first derivative as expression of the original-function: 

H 0
(1) H 0

(1)
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(1) (1)
2 22 0 2 0
0 0(1) (1)

0 0 0 0

H (2 t) H (2 t)
t 1 t 1

t H (2 t) t H (2 t)
   ω ω∂ ∂

= −ω + = −ω +   ∂ ω ∂ ω   

E H
E H   (191) 

 
We require the second derivatives as well. These we determine to the best, in that we 
differentiate the right expression of (188) once again (analogously for H): 

 
2

(1)0 0
12

0 0

2 t
H (uv uv)

t t 2 t

 κ κ∂ ∂
= − = − +  ∂ ∂ ε ε 

E
E Eɺ ɺ       (192) 

 
For u and v, we get following expressions: 

 

0
0u u

2t

ω
= ω = −ɺ       (193) 

 
( )(1) (1) (1)

1 0 0 0 0 2 0v H (2 t) t H (2 t) H (2 t)= ω = ω ω + ω    (194) 
 

( )(1) (1) (1) (1)0
0 2 0 1 0 0 0 2 0

1
v H (2 t) H (2 t) H (2 t) H (2 t )

2t 2
ω

= ω ω − ω = − ω − ωɺ     (195) 
 

Replacement of the second expression of(192) results in: 
 

2
2 (1) 2
0 0 0 02

H (2 t)
t

∂
= ω ω = ω

∂
E

E E          (196) 

 
2

2 (1) 2
0 0 0 02 H (2 t)

t
∂

= ω ω = ω
∂

H
H H          (197) 

 
Now, we put (191) into (185) getting: 

 
(1)

2 2 0
0 0 0 0 0 (1)

0 0

H (2 t)
curl t 1

t H (2 t)

  ω∂ = κ + ε = κ − ε ω +     ∂ ω    
H E E      (198) 

 
Expression (198) even can be written more simple: 

 
(1)

2 0 2 0
0 0 2 (1)

0 0 0 0

H (2 t)
curl t 1

t H (2 t)

  κ ω
= ε ω − +   ε ω ω  

H E            (199) 

 
(1)

2 2 0
0 0 (1)

0 0

H (2 t)
curl t 2 1

H (2 t)

  ω
= ε ω − +   ω  

H E          (200) 

 
(1)

2 2 0
0 0 (1)

0 0

H (2 t)
curl t 1

H (2 t)
 ω

= ε ω − ω 
H E          (201) 

 

0For curl we obtain by substitution immediately:
t

∂
= − µ

∂
H

E  
 

(1)
2 2 0

0 0 (1)
0 0

H (2 t)
curl t 1

H (2 t)
 ω

= µ ω + ω 
E H        (202) 

 
We apply the rotation-operation to both sides again: 

 
(1) (1)

2 22 0 2 0
0 0 0 0(1) (1)

0 0 0 0

H (2 t) H (2 t)
curlcurl curl t 1 t 1 curl

H (2 t) H (2 t)

    ω ω
= ε ω − = ε ω −     ω ω    

H E E    (203) 
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(1) (1)
4 2 2 0 2 0

0 0 0 (1) (1)
0 0 0 0

H (2 t) H (2 t)
curlcurl t 1 1

H (2 t) H (2 t)
   ω ω

= µ ε ω − + = −∆   ω ω   
H H H     (204) 

 
22 (1)

2 20 2 0
02 (1)

0 0

H (2 t)
curl curl t 1

c H (2 t)

  ω ω
 = ω − = −∆   ω  

H H H        (205) 

 
The result for E is analogous. We continue like in section 4.3.4.2.: 

 
2 22 2 (1) 2 2 (1) 2

20 2 0 0 2 0
02 (1) 2 (1) 2

0 0 0 0

t H (2 t) t H (2 t)
1 1

c H (2 t) c H (2 t) t
( )

      ω ω ω ω ∂
   ∆ = − − ω = − −         ω ω ∂      

E
E E    (206) 

 
2 22 2 (1) 2 2 (1) 2

20 2 0 0 2 0
02 (1) 2 (1) 2

0 0 0 0

t H (2 t) t H (2 t)
1 1

c H (2 t) c H (2 t) t
( )

      ω ω ω ω ∂
   ∆ = − − ω = − −         ω ω ∂      

H
H H   (207) 

 
With propagation only into x-direction, the partial derivatives for y and z will be zero again 
and it applies ∆ = d2/dx2 (analogously for  H— 

): 
 

22 2 (1)2 2
0 2 0

2 2 (1) 2
0 0

t H (2 t)
1

x c H (2 t) t

  ω ω∂ ∂
 = − −    ∂ ω ∂  

E E        (208) 

 
After rearrangement, we finally get for the wave-propagation-velocity c and field-wave-
impedance ZF:  

 

(1) 2
0 2 0

(1)
0 0

c 1
c

j t H (2 t)
1

H (2 t)

=
ω  ω

−  ω 

 with    
(1)
2 0

0 0(1)
0 0

H (Q )
Θ = Q 2 t

H (Q )
= ω   (209) 

 

 
2

0

c 1
c  

j t 1 Θ
=

ω −
         

 

0
F

2
0

Z 1
Z

j t 1 Θ
=

ω −
   (210) 

 
We see that the propagation-velocity converges to zero for large t. The same is applied to 

the field-wave impedance too. We have to do it with a quasi-stationary wave-field (standing 
wave) filling very well the requests on a metrics. The propagation-velocity is complex again. 
A decomposition into real- and imaginary-part works out quite difficult, but it’s mathe-
matically possible however. The solution for c reads:  

  
0 0 2 0 0 0 2 0

2 2
0 0 0 0

J (Q ) J (Q ) Y (Q )Y (Q )
A

J (Q ) Y (Q )

+
=

+
       2

0
4 2 2 21

(1 A B ) (2AB)
2

ρ = − + +
 

1

 

            (211) 

2 0 0 0 0 0 2 0
2 2
0 0 0 0

J (Q )Y (Q ) J (Q )Y (Q )
B

J (Q ) Y (Q )

−
=

+
       2

0

1
1 Θ

2
ρ = −        2 2

2AB
θ

1 A B
=

− +
 

 

M

0
2

0 0

c1 1 2
Q c Q 1

= =
ρ − Θ

 RhoQ = 2/#/Abs[Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] & 

            (212) 

0 2

1 1
arctan θ arg

2 21 Θ

  π
φ = = − 

−   
PhiQ = Arg[1/Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] –π/2 & 

                                                
1
  Due to the inaccuracy of the modulus of the Hankel function for derivatives >0, the results of the AB-expressions slightly differ from the  

 (209) ones which are more exact. Thus, the calculation of all values and graphics is switched over to (209) from this edition on. 
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The factor ½ arises from the 4th root. Expression (209) may be split into a real- and an 
imaginary part (213). A starts at +∞ converging to –1. The course resembles the function 
1/A2

<–1 approximately, which cannot be used well as approximation however. B has a course 
like 1/B2 and is converging to zero. The same is applied to θ then. The bracketed expression 
converges to one with it. For Q0 ≥ 5 the approximation ρ0

2
 Q0

2
 ≈ Q0 applies with Δ ≤ 1%. 

 
1
2 0j arctanθ j

0 00 00 0

c 1 1 c c
c cos arctan θ jsin arctan θ e e

Q 2 2 Q Q

φ = + = = ρ ρ ρ 
  (213) 

 
Unfortunately (213) cannot be transformed into an expression similar to (179) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. Thus 
we should better calculate with the following substitution: 
 

( )( )   
2 2arctan θ arg 1 A B j2AB= − + +                  1 π

arg c arccot θ
2 4

= −   (214) 

 
While the real-part of c is defined as the velocity in propagation direction, the imaginary-

part can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part 
in c means also that there is an attenuation anywhere (refer to Figure 23). A numerical 
handling of (209) even can be processed with »Mathematica« resulting in the course figured 
in Figure 21. Since the Hankel functions, with larger arguments, can be expressed well by 
other analytic functions, we will try to declare approximative solutions later. 

 
 

 
 
Figure 21 
Propagation-velocity 
in dependence on time (linear time-scale) 

 
 

In the coarse, the propagation-velocity behaves proportionally to t-1/4, as we will still see 
later. Overall, Figure 21 strongly reminds to the smooth curve of a discrete MLE (Figure 
13). Near t=0 it looks somewhat differently however. A logarithmic scale helps on in this 
case (Figure 22). As exact examination emerged, have real- and imaginary-part of c the 
same amount from 20κ0t/ε0 on approximately. We must pay attention to this with the 
specification of an approximation function. 
 

We have to do with a case of inversion here. This manifests by the fact that the 
propagation-velocity ascends from zero to an amount of 0.851661c (with 0.748514 t1) first in 
order to descend asymptotically to zero again. 
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Figure 22 
Propagation-velocity 
in dependence on time (logarithmic time-scale) 

 
 
With it, the world-radius (wave-front) of this model doesn’t expand with c but only with 

0.851661c which figures no violation of the SRT anyway. With it happens also that later 
transmitted wave-sections pass the wave-front quasi. Since the proportion of real- and 
imaginary-part is different in this case, it doesn’t take place on the same track-curve – the 
wave-fronts rather cross each other. 
 

To specify the propagation-function, let’s have a look at the classic solutions (165), (215) 
once again and at our primary function (186) too. 
 

xj t c j t x j( t j x)
( )

e e e
ω −

ω −γ ω + γ= = =E E E E         (215) 
 
Contrary to (165) the argument in the case with expansion is real. Strictly speaking, namely 
it’s not the Hankel function but the modified Hankel function Z 0

(2) = I0(z) –j K0(z) being the 
equivalent of the exponential-function. It is valid for I0(z) = J0(jz) however only for pure 
imaginary arguments. With complex arguments, the real part cannot be drawn to a position 
ahead of the Hankel function as usual with the exponential-function, since the power rules 
aren’t applied to Hankel functions anyway. It’s possible first with larger arguments z. In 
general the modified Hankel function isn’t used however. Therefore, we use for the base the 
„ordinary“ Hankel function adapting the propagation-function accordingly. To avoid 
contradictions with the classic definition of propagation rate – real-part equals attenuation 
rate, imaginary-part equals phase-rate – the propagation-function should read as follows then 
(analogously for  H— 

): 
 

(1) (1)
0 0 0 0

xH 2 t H 2 t j xc ( ) = ω − = ω − γ 
 

E E E      (216) 

 
This is not quite the classic expression for a propagation-function. Attention should be paid 
to the factor 2 which can be assigned both to the frequency, as well as the time-constant. 
With the definition of propagation rate γ = α+jβ it obviously belongs to the frequency since 
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γ depends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both 
arguments of (216) one gets then:  

 
20

0 0

2
j Z 1 Θ

c

ω
γ = − = κ −           (217) 

 
From (213) the reciprocal of c can be determined very easily. Due to (164) we get for γ: 

 

0 0
t1 1 1

cos arctan θ jsin arctan θ
c c 2 2

ω ρ  = − − 
 

          (218) 

 
2

0 0 02 2 t 1 1
j cos arctan θ jsin arctan θ

c c 2 2

ω ω ρ  γ = α + β = − = − 
 

     (219) 

 

0 0 0

1 1
Z cos arctan θ jsin arctan θ

2 2

 γ = ρ κ − 
 

          (220) 

 

 
Figure 23 

Phase-rate and attenuation rate 
in dependence on time (linear scale) 

 
 
With accurate contemplation one recognizes that α and β, evaluated by its action, are 

exchanged in fact (α = phase-rate, β = attenuation rate). This is caused thereby that a 
rotation of about 90° (j) occurs during propagation (Figure 26). x turns into y and y into –x. 
The attenuation α, starting at the point of time t=0, starting off infinity, is decreasing 
exponentially. To the present point of time, one can say that there is basically no attenuation 
anyway. This doesn’t apply however considering cosmologic time periods. 

 
At the point of time 0.897 t1 (Q = 0.947), the function β has a zero-passage. This supplies 

the somewhat particular course in logarithmic presentation (Figure 24). It’s about a phase-
jump of 180° in this case. Possibly, this is even that point, in which the wave-front, sent at 
the point of time t = 0, is passed by the faster, later transmitted. Furthermore, even the 
formation of the crystalline structure of space takes place approximately to this point of time 
(folding of parable into rotation). Up to this point of time, the space is closed, after it open. 
From the point of time 100 t1 on we are able to declare, referring to Figure 24, the following 
approximation: 
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Figure 24 
Phase rate and attenuation rate 
in dependence on time (logarithmic) 
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These relationships can be derived as well graphically from Figure 24, as explicitly using 
(217) by application of (226). However, it’s necessary to multiply (217) with j, in order to 
take account of the 90° turning (Figure 26). Then, to the approximation γ = 2ω0/c is applied. 
The factor κ0Z0 is the reciprocal of our r0 with a Q-factor of 1, marked with 1/r1. Phase rate 
and attenuation rate are the same from 100 t1 on approximately. This is the behaviour of an 
ideal conductor. Possibly a lot of known physical effects like e.g. superconductivity and 
electron conductivity of the vacuum are basing hereupon. 

 
Even interesting is the similarity of the course of the absolute propagation-velocity of 

metrics with the group delay specified in section 4.3.2. on transit of an interference through 
the discrete MLE. While the propagation-velocity of metrics is increasing near the 
singularity, the propagation-velocity of an overlaid wave is decreasing simultaneously, with 
the result of total-velocity remaining constant = c. 
 

At the world-radius, the universe expands with the maximum velocity of 0.851661c, in the 
inside with a velocity decreasing more and more. Since the wave count in the interior of a 
sphere with defined radius r(c,t) is decreasing, the deficit is balanced by an increase of 
wavelength. Outside the wave count ascends continuously due to propagation. 

 
Now, some problems appear, at which we want quickly have a look here, as well. Initially, 
the cosmos would not show the same physical qualities anyplace. We would have to do it 
with a weakened cosmologic principle then: 
 
 

 
III.  The cosmos offers the same sight to the same point of time. 
 

 



 
 

47 

This statement needs the interpretation: The universe is expanding into an even Euclidean 
space without time-definition. The calendar begins with the transit of the wave-front first. 
Therefore, the universe has a different age at different positions. The local time is always 
meant. To equations, that refer to the expansion-centre, the time is applied at this point, just 
the total-age. There is no universal world-time in this model, what agrees with the 
statements of the SRT very well. With it, the local age is a function of the distance to the 
centre, which can be determined by measurement of the local physical quantities, at least 
theoretically. The HUBBLE-constant turns into a local quantity. With it, we even would have 
solved the time-scale-problem, which would have been appeared here otherwise. There are 
just both areas being younger and such being older than the area, in which we are located 
(every time seen from the observer). If one moves in space, so one moves in time 
simultaneously. Thus the expression »space-time« is uniquely defined. 

 
The space outside would be equipped with the basic physical qualities ε0, µ0 and κ0, 

allowing even a wave-propagation in accordance with the classic MAXWELL theory for the 
vacuum. The metric wave-field is just not required for wave-propagation anyway. In what 
extent matter can exist outside, should not be examined here further. Debatable in any case 
is the question, where this, respectively any other electromagnetic radiation should come 
from. We once assume that there is none. If this should be the case but yet, no possibility 
exists to cross the singularity at the world-radius R/2, neither into the one,  nor into the other 
direction. 

 
We have the real- and imaginary-part of c assigned to propagation in x- and y-direction. 

Let’s have a look at the propagation of the wave-front now, transmitted at the point of time  
T = 0. If we figure it two-dimensionally, we will get the following track-curve (Figure 25): 

 
 
 

 
 

 Figure 25 
 Track-curve for larger values of t 

 in dependence on time 

 
 
For larger t, the expansion of the wave-front proceeds approximately rectilinear. The 

behaviour looks somewhat differently near the singularity. In Figure 26 the course of the 
track-curve of a discrete section of the wave-front near the singularity is shown. One 
discovers a sort of parable, with larger t a hyperbole. A rotation of an angle of 90° appears in 
the propagation direction. Figure 27 shows the function of the absolute distance to the 
centre. 
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Figure 26  
Track-curve near the singularity 
in dependence on time 
 

Figure 27         
Radius r as the absolute distance to the centre 
in dependence on time for smaller values of t 

 
The functions have been calculated and figured with the help of »Mathematica« by 
numerical integration in the following way: 



 
 

49 

Cd=Function[-2*I/Sqrt[#]/Sqrt[1-(HankelH1[2,Sqrt[#]]/HankelH1[0,Sqrt[#]])^2]]; 
CdI=Function[NIntegrate[Cd[a],{a,0,#}]]; 
ParametricPlot[{Re[CdI[t]], Im[CdI[t]]},{t,0,1}, AspectRatio->1] 
Plot[Abs[CdI[t]],{t,0,1}, AspectRatio->1] 

 
The locus curve of the field-wave impedance is declared in Figure 28. The value for t»0 is of 
particular interest.  Contrary to overlaid interferences of inferior frequency, to which ZF=Z0 
is applied, this value virtually becomes zero for the metrics on the other hand. Thus  
(virtually) no propagation-losses appear anyway. This „virtually“ could be the reason for the 
cosmologic red-shift. This idea should be examined in the following section. First however, 
we want to deal with the approximative solutions for larger t once again. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28 
Locus curve of the  
field-wave impedance 

 
 
4.3.4.3.2. Approximative solutions 

 
In [23] is an asymptotic formula for the Hankel function declared. It reads: 

 

( ) ( )
  

π π
j z ν

(1) 12 4
ν

2
H z    e  1 z

πz

 − −  −   = + O   for 0 < z < ∞    (223) 

 
Put into (209), one sees that nearly all expressions can be reduced. The root-expression R 
converges to a value of: 
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By expanding with [1 – O0(z-1)] and suppression of the quadratic terms we get: 
 

1/2 1/2 2 1/2 1/21 1 (t ) (t ) 2 (t ) 2 (t )− − − − − + − ≈ − 2 0 2 0R = O O O O    (225) 
 
The root-expression just only depends on the remainder terms which is tending to zero as 
well. Therefore, this base is not suitable for our purposes. 

 
For γ, we have already found an approximation, still remain c and ZF. In Figure 22 we 

have already figured the course of c. To the graphic determination of an approximation, we 

(222) 
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require the logarithmic representation however (Figure 29). To be considered is the fact, that 
the imaginary part is actually negative. 

 

 
Figure 29 
Propagation-velocity 
in dependence on time (double logarithmic) 
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4.3.4.3.3. Propagation-function 
 
Now we want to set up a propagation function. The normal form is E=Ê ejωt−γx

 with 
γ = α+jβ. But with the exact solution (221) there is a case on hand, at which α and β contain 
both damping- and phase-information and the wave function isn’t harmonic either. That way 
we aren’t able to form a reasonable propagation function.  

 
In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves 

similar to a metal. There α does not stand for a damping, but for a rotation, namely as long 
as, with vertical incidence, a value of π is reached so that the wave exits the metal in the 
opposite direction after a minimal intrusion. The depth of penetration depends on  
the material properties, the wave length and the angle of incidence. In case of this model the 
material properties aren’t constant either, γ decreases with t and x. Hence it suffices to a 
rotation of  90° only and the wave remains in the medium (vacuum). In any case, there is  
a rotation too.  
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To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a 
multiplication with ���� and we get a purely imaginary solution. So becomes α=0 and γ=jβ 
and the exponentially related attenuation vanishes. Indeed, we still have to multiply the 
result with �� and to replace x by r. Despite α=0 the amplitudes of E and H are decreasing 
continuously. That’s caused by the Hankel function alone, resp. by the radical expression in 
(229). With it amplitude and phase are firmly interlinked (minimum phase system). Now the 
rotation angle in space is equal to θ+π/4. But a separation of phase- and damping-
information isn’t possible yet. But we can work with very high precision using the 
approximation equations in this case. To the general Hankel function H 0

(1)(ωt−βx) the 
following approximation applies (analogously for H): 
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E E E      (229) 

 
Instead of γx only the product βx with the phase rate appears in the exponent, since the 
amplitude rate is already emulated by the radical expression. With t»0 the angle π/4 can be 
omitted. After rotation and transition x→r and ω→2ω0 turns out: 
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E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double 
frequency even the phase rate must be doubled) no constants at all. That means, they depend 
on t and r at the same time, limiting the manageability of the approximation very much. You 
can see that also with the phase velocity vph. It is defined in the following manner: 
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Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s 
caused by the factor 2, since phasing with double frequency propagates with double velocity 
too. For interest, also the group velocity should be stated here: 
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Except for the algebraic sign both results are equal. That means, the propagation takes place 
free from any bias. Further to the approximation. With (128) in section 4.2.4. we had already 
found a very good approximation, almost exact, for the same temporal function. 
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Now, expression (233) enables to define an equivalent- α = α0 and, with it, even an 
equivalent- γ0 = α0 + j2β0, in order to get it up to the normal form for propagation functions.  
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      (234)
 

 
That’s already a big step forward. Unfortunately, both ω0 and γ0 depend on time. It’s not 

critical for 2ω0t, because it’s multiplied by t anyway. Else with γ0, it should depend on r 
only. To the substitution of t in (229ff) we firstly put (227) left-hand into t = r/|c|. The real 
propagation velocity becomes effective here and not vph or vgr. Then we rearrange after t. 
Putting into (233) right-hand we get: 
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With it, we obtain for γ0 and the product γ0r the following expressions: 
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Last but not least the time t can be completely eliminated. The value γ0 is proportional to 

r –1/3 and, even more important, the product γ0r is proportional to r
2/3

. Unfortunately, as 
already said, we can explicitly state γ0(r) by approximation only. With the exact function 
(220) a separation, especially from t is impossible. But generally speaking, an exact solution 
is not required at all, since the approximation yields very good results until a striking 
distance to the particle horizon at Q0=1, see Figure 14. Therefore, we won’t follow up that 
matter at this point. 

 
All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But 

it’s more practicable to find a function, related to another centre. Most suitable seems to  
be the  point, where we are, the „point being“. At first we substitute the time according to 
t→T~+t. The swung dash stands for the initial value at the point t=0 (nowadays) describing an 
inertial system. Hence it’s about a constant. Because of T~ = t1Q~0

2 we are able to factor out Q~0. 
The direction of time doesn’t change. To the temporal part applies: 
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For the spatial part β0 we build up the inertial system once again using the substitution 

r1→R~ . Because of R~= r1Q~0
2, as well as r̃  Q

~
0 = −r, now we are measuring from the other end, we 

can write for 2β0:  
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Actually I should have to write r̃  instead of r. But because it’s the argument of the function 
the tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest 
increment never can be underrun. The value α0 is definitely determined by the envelope 
curve of the Hankel function, else it would be equal to zero. With it, we obtain for γ0 and the 
product γ0r:  
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With r0 we have already found one elementary length. But LANCZOS speaks about another 

one [1]. That’s the wave length of the metric wave field λ0=2π/β. The approximation of λ0 
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must be divided by 2 once again, due to the double phase velocity. Hence λ0=2π/β0 applies. 
To the comparison the expression for r0 once again: 
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Though λ0 is smaller than r0 and not identical to HEISENBERG’s elementary length with it. 

λ0 now is in the range of 10–68m. Thus, LANCZOS was wrong in that point. But it only has 
been a guess on his part. In fact, it’s about the wave length of the wave function forming the 
metric lattice itself. Expression (243) until (245) only represent the temporal functions. 
Then, the  functions of time and space read as follows. 
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The temporal course of λ0 (r=0), and of r0 (r=0) is shown in Figure 30 and 31. Figure 31 is a 
little bit deceptive. It looks like r0 is smaller than λ0. In fact, the curve of r0 cuts the one of λ0 
with an argument of 450.592 at 15.0098 r1. The phase jump, barely visible in Figure 31, 
occurs with an argument of 0.8968. 
 

 
 
Figure 30 
Exact course of λ0 logarithmic scale 
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We only know the local age T, which results from the local HUBBLE-parameter (249). It 
quasi represents the temporal distance to the expansion centre. But we are able to determine 
the spatial distance to the world radius R. This forms a spatial singularity (event horizon) 
with it. The value arises from the ansatz (250): 
 

 
 
Figure 31 
Course of λ0 exact and approximated 
as well as the one of r0 linear scale 
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Hence, the value of β0=1/r0 even can be obtained from (221), in that we replace the time 

with the HUBBLE-parameter. To R applies:  
 

26  10  c
R      –1.21880·10 m       –1.2918·10 Ly      – 3.950 Gpc

H
= − = = =    (252) 

 
26  10  c

R      –1.34803·10 m     –1.4249·10 Ly     –4.36862 Gpc     
H

= − = = =  (253) 

 
That’s about 12 billion light years according to Table 2. The result (253) has been calculated 
using (1049) and the CODATA2018 values. The local age has the character of a time-constant 
and amounts only to the half, namely 6.6/7.1 billion years. The local world radius is equal to 
cT. Longer time-like vectors up to 2cT are possible because of expansion and wave 
propagation of the metric wave field. Full particulars in section 4.5. 
 
 

The wave field examined here, forms the metrics of the universe (empty space), the real 
(nearly) MINKOVSKIan line element. We can already declare it here. Further contemplations 
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are done in section 7.2.1. We act on (0.23) in it’s differential form in that we replace the 
otherwise usual light speed c with the propagation velocity c of the metric wave field: 

 
ds2 = dx2+ dy2+ dz2 – c2dt2    or    (254) 

 
ds2 = dr2+ r2(dϑ2+ sin2ϑ  dϕ2) – c2dt2       (255) 

 
Here immediately becomes clear, which physical meaning is assigned to the MLE. For the 
exact formula, we usefully apply polar-coordinates.. We now substitute the exact expression 
for c (r=0) obtaining: 
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with φ = 2ω0t – γr. Interesting is the algebraic sign-reversal. The cone turns into a ball. The 
previous light cone however continues to be applied to overlaid signals always propagating 
with c. It adds up the local propagation-velocity (not expansion-velocity!). A(φ) and B(φ) 
determine the rotation near the singularity. The reciprocal of the expression in the 
denominator shows a behaviour like t1/2. Now still the approximation: 
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Hereafter, I’ll nominate the double-bracketed expression (263) as navigational gradient. 

Moving only in time and not in space, there is no spatial curvature at all. This type of motion 
is called time-like world-line (e.g. photons). With it, a curvature is synonymous with the 
motion of a mass. First this must be accelerated for this purpose. That type of motion is 
called space-like world-line then.  

 
Using the expansion-centre as origin of your coordinate-system, only a temporal 

dependence exists. Directly at the point r = 0 space-like world-lines aren’t possible, but in a 
striking distance of course. They are directed outside the singularity, the time-like ones 
inwards. A body would be repelled by the singularity. Thus, it’s about a particle-horizon 
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then. Another example for this type of singularity are white holes (if existing) and the local 
world-radius R/2. Therefore e.g., the latter can be passed by photons. 

 
The non-existence of space-like world-lines at this point as well is a reason for the fact 

that there is no universal spatial coordinate-system defined. Such one, if existing, needs to be 
valid at each point anyplace. If there is only one single point, at which it doesn’t apply, no 
universal spatial coordinate-system exists anyway. In contrast there are only space-like 
world-lines at the total-world-radius R. It’s about a temporal singularity then (event-horizon) 
that cannot be passed through by photons. With it, there is even no universal time defined, 
exactly as the SRT predicates. The time-like world-lines in the vicinity are defined outwards, 
the space-like ones inwards the singularity. A body would be attracted by the singularity and 
could even pass through. Examples here are e.g. black holes. 
 

Thinkable would be an universe, with the observer always located in the centre, both 
singularities equally far away, being quasi „connected“ outside space. This is strengthened 
by the fact that the product HR exactly fits the speed of light, that there is just an infinite 
curvature at both ends and even by the symmetry of the time-function of propagation-
velocity (Figure 22). Crossing the point, the phase-jump appears, you will come out at the 
„other end of the world“. Such a model would expand, speaking in behalf of a big bang. 
 

Looking at the second expression of (239) we realize that it describes exactly the just 
proposed model. For an observer, there is only his local frame of reference. We just found 
out, that a motion in space also means a motion in time. But expression (240) shows clearly, 
that it doesn’t matter, into which direction we move. The temporal direction is always the 
same, opposite to the natural time-direction (because of r2).  

 
But it still means something else: Each observer has the impression to be in the centre of 

the universe at all times. Since the natural time-vector is always larger than that caused by 
motion, the observer is always moving in the natural time-direction, but even slowed down 
and (then) delayed. There is just a temporal elongation t′/t = ( 1− ( ∫a·dt+γ0v0)

2
⁄c

2
)

1⁄2
 during 

acceleration (βr≠const), but only throughout the actual acceleration phase. Once switched-
off the engine (βr=const), time passes normally again.  

 
Because of the relative velocity to the original inertial system, induced by acceleration, 

only altered scales, like length and velocity, are observed from there — and vice versa. The 
observation however plays a greater role, than generally assumed. It is identical to the 
physical reality on the place of the observer, because impacts are observed too.   

 
The behaviour during the acceleration phase is equivalent to the behaviour during the stay 

close to greater masses, only that we cannot just turn off the gravitational field. Hence time 
dilation is a pure GR-phenomenon, with constant relative velocity only the SRT applies. 

 
With it, a lot of questions relating to the twin-paradox can be answered. The first twin 

accelerates, and time passes more slowly for him during the four acceleration phases 
(accelerate, brake, accelerate, brake). The direction of the acceleration does not carry weight. 
With activated drive he quasi „hangs behind“ the normal time vector, the EINSTEIN-train is 
behind schedule. But after the homeward journey, returned to the starting point, he is not 
younger than his brother because latter one stayed in the gravitational field in the inhibited 
free fall with 1g all the time. The first twin would only be younger if it had been accelerated 
by more than 1g on average or if its brother had been in uninhibited free fall (microgravity) 
all the time. 
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4.3.4.4. Solution for a loss-affected medium with expansion and overlaid wave 
 
 
4.3.4.4.1. Model 

 
We assumed, that the vacuum is not loss-free by introduction of a specific conductance κ0. 

With it, we could find a maximally rational solution of the MAXWELL equations, which fills 
the requests to a metrics, being not in contradiction to Special Relativity. According to [1], 
the propagation of photons happens as an interference of this wave-field. Furthermore we 
had determined, that this takes place exactly with the speed of light. That agrees with the 
observations and experiments very well. Solution 4.3.4.1. (Classic solution for a loss-less 
medium) very well describes the propagation-behaviour of photons without metrics, but the 
cosmologic red-shift cannot be explained however. To do so, we are forced to favour 
another solution. For this, solution 4.3.4.2. (Classic solution for a loss-affected medium) at 
first comes into question. 

 
If we simply equate κ=κ0, we will obtain a solution  with a wave-propagation-velocity 

close to zero, which doesn’t agree with reality quite obviously. Solution 4.3.4.2. even only 
describes wave-propagation in absence of a metrics. In section 4.6.5.4.1. will be analyzed , 
how such a wave would behave. The wave persists in the aperiodic borderline case state, it 
does not really propagates. There is only an expansion, and it survives even only the first 
periods.  

 
However other circumstances are on hand with a propagation as an interference of a 

metric wave-field according to 4.3.4.3. Solution 4.3.4.2. as you know, can be obtained even 
as solution of equation (72) without expansion, which bases on the equivalent circuit Figure 
11, when R0→∞. With solution 4.3.4.3. R0 depends on place and time  and is also close to 
infinite. Doing a reverse-calculation with the base κ=κ0 we get a value, which is close to 
zero. In order to come again in correspondence with reality, we are just forced to use another 
model. 

 
In section 4.3.2. we had determined that the MLE as per Figure 11 behaves like a low pass 

of 2nd order for overlaid signals. Therefore, we want to transform the equivalent circuit of 
the MLE into a low pass. The exact procedure is presented in Figure 32. First we disconnect 
the circuit at the marked position elevating the coil L0. Thus, the proper low pass (centre 
right) is ready. Although, the therein contained loss-resistor R0 characterizes only the losses 
within the MLE. If we now want to model wave-propagation, we must daisy-chain a lot of 
these elements (Figure 33).    

 
We consider the coupling of two line-elements in the interval r0, at which point the 

coupling-factor should be equal to 1. The coupling itself takes place via the magnetic field 
(Figure 4).  And exactly with that coupling there’s going to be more losses, which are not 
characterized by the impedance R0. It’s possible to interpret it as exclusive losses of the 
capacity C0,  

 
For the coupling-losses, we now introduce another impedance R0R, which we already 

know from Figure 10, assigning it to the inductivity L0. It are about losses with the inductive 
transfer indeed. The value of R0R calculates generally by analogy with (48). The interesting 
is now, that all these values R0, R0R, L0, C0 and G0 change over time, but only very slowly, 
so that we speak of a quasistatic process. But quasistatic changes can be neglected with the 
solution of differential equations, describing the real wave propagation (E(t,r)). Nevertheless 
they have an effect all in all, as we will see later. 
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Figure 32 
Conversion of the equivalent-circuit of the MLE into a low-pass 
under consideration of the additional coupling losses 

 

 
 

 Figure 33 
 Line-equivalent-circuit with shunt-resistor 

 
Thus we use the model of a conduction to the description of wave propagation in the 
vacuum. As a result, we hope to find a propagation function similar to that, we found by 
application of the classic solution for a loss-free medium (□=0), which is not in contra-
diction to the observations.  
 
At least, we already transform the impedance R0R into an a second parallel loss-resistor R0, 
with the help of (47), bunching both together to the total-loss-conductance G0 with which 
G0 = 2/R0 applies. Figure 32 centre and right are equivalent. 

 
 
 

4.3.4.4.2. Approximative solution 
 
First we want to check, whether we cannot use solution 4.3.4.2., if we apply a substitution 

to κ0. This is the case indeed. But we don’t get a constant in this case, since R0 is not static. 
We introduce a substitutive value κ0R to it. With the help of (53), (59), (221) and (250) we 
obtain: 

0
0R 1 0 1 0 0R

0 0 0 0 0 0 0

1 1 2t
R r r r Q R

r Z 2 t
µ

= = = = =
κ κ κ µ κ

  (264) 
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2

R 0
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(265) 

 

κ 0R =
2

Z 0Q 0r0

 =  
2

Z 0R
 =  

2
Z 0 2ct

 =  
ε0

t
κ 0 R =  2ε0H  =  

2κ 0

Q 0
2

     (266) 

 
R is the world-radius 2ct. Then, inserting (266) into (176) we obtain for the complex 
propagation-velocity c and the field-wave-impedance ZF: 

 

F 0

j t j t
c c Z Z

1 j t 1 j t

ω ω
= =

+ ω + ω
    (267) 

 
Now light speed is achieved in infinite time only. Nevertheless, the propagation-velocity is 
close to c.  The remainder is filled up by the propagation-velocity cM of the metrics so that 
the total-velocity is equal to c in turn, which was a basic assumption of this work. The same  
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result we get by solving the telegraph equation [5] (268) for the transient state (c1 = 0) using 
the values for C0, L0, G0 as well as R0 = 0. Figure 33 shows the associated equivalent circuit. 
In addition we still derive with respect to ∂ r, i.e. each low pass-gate now represents the 
properties of a conducting-section of the length ∂r. The discrete components turn into the 
capacity, inductivity and conductance covering C′0, L′0 and G′0. Since the vacuum in this 
model has a finite structure with the smallest increment r0, applies ∂r → r0. Fortunately r0 is 
sufficiently small, so that we can work with the difference-quotient. Then, we get 
C′0 = C0/r0 = ε0, L′0 = L0/r0 = µ0 and G′0 = ε0/t = κ0R for the coverings. With it, the fundamental 
physical constants ε0, µ0 and the substitutive value κ0R are identical to the capacity, 
inductivity and conductance covering of our „conduction“, i.e. the vacuum. 

 
∂2u
∂t 2 = c 2 ∂2u

∂r 2 + c1

∂u
∂r

+ c 2

∂u
∂t

+ c 3u    with    (268) 
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        analogously for i  (269) 
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This corresponds to a loss-affected line in general. Because of E = –u/r0 as well as H = –i/r0 
we obtain after division by r0: 
 

∂E

∂r
=  µ0

∂H

∂t
  ˆ = curlE   ∂H

∂r
=  κ 0R + ε0

∂
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  E     ˆ = curl H      (272) 

 
In this way the MAXWELL equations can be derived directly. Unlike 4.3.4.2. the parameter 
κ0R however decreases steadily in this case. The solution itself is not loss-free. An 
attenuation-factor, different from zero, which can be attributed to the variable parameter κ0R 
Therefore, it is also named parametric attenuation. Starting with (269), we get for the line-
/field-wave-impedance (ZL = ZF): 
 

ZL =  

′ R 0 + jω ′ L 0
′ G 0 + jω ′ C 0

 =   

jωµ 0

ε0 t + jωε0

 =  Z 0   

jωt
1 + jωt

    (273) 

 
That’s the same solution as (267). Because of Z0=µ0c, even the expression for c applies. 

Altogether it’s about an autonomous solution with different properties as the hitherto 
introduced ones. Since no discrete components are involved, the attenuation takes place 
completely free of noise. The solution is distortion-free. Even no scatter occurs with it. 
Because of the currently low value of κ0R (2.1779·10–29 Sm–1), the attenuation is not 
detectable nowadays. Thus, it seems, that wave-propagation would proceed according to the 
classic loss-less solution. But strictly speaking, it applies only in a universe without 
expansion (κ0 = κ0R = 0) and figures a special-case of the solution introduced here. Now, let’s 
have a look at the propagation-velocity c in detail. 

 
 
IV. The metric wave-field behaves for overlaid electromagnetic radiation-fields 
 like a conduction with variable coefficients. This conduction behaves in the 
 first approximation like the classic loss-less vacuum solution of MAXWELL’s 
 equations.  
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M
0

1 j t
c c c c c

j2 t 1 j tλ

 ω
= + = +  ω + ω 

    (274) 

 
Now let’s have a look at the value-function: 
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ω 
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   (275) 

 
This expression is even achieved from the MLE (262) after division by dt2 with c2 = ds2/dt2. 
cM is the propagation-velocity of the metrics. With it, the overlaid wave is moving always 
rectangular to the metrics with exact c (Figure 34). After rearrangement of (274) we obtain 
the following relations: 

 

2 2
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1 2H
t

1 1
1 1 1 1
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       (276) 

 
Since with expression (276) it’s about an approximative solution, we want to try, whether  it 
already can be simplified. With y = 1/(2ω0t) we get for 2ω0t »1: 
 

2

2

2H 1 2y 1
2H 2H 1

2y 2y2y y
1 2y y

−
ω = ≈ = −

−
− +

   (277) 

 
We finally receive after substitution: 
 

0 02H t 1 2H 2 tω = ω − ≈ ω       (278) 

 
Because of H = 1/2t the frequency is decreasing according to ω ~ t–3/4. We are particularly 
interested in the wavelength λ =��π/β =��πc/ω. The sign of (253) has been neglected. The 
factor �� stands here instead of 2, as even already with λ0, to cancel rotation around π/4 of 
the coordinate-system up taken with the definition of the approximative formula of γ(r). 
Then we get the following result: 
 

3/4

0 0

c 1 R
~ t

H 2 t 2 t

π
λ = π = λ

ω ω
        (279) 

 
To this we must remark that we have assumed, for the previous contemplation, the 
expansion-centre as basis of the coordinate-system, at which no length is actually defined. 
More essential qualities result from it for the two singular points. 
 

 
For the spatial singularity (expansion-centre) applies: Each length, measured 
from this point, always has the quantity R/2. Each period, measured at this point, 
always has the amount T, each frequency 2H. It’s about an event-horizon. It’s a drain 
of the electromagnetic field. To the approximation applies r=∞, t=∞. 
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For the temporal singularity (wave-front) applies: Each length, measured 
from this point, always has the quantity r1/2. Each period, measured at this point, 
always has the amount t1, each frequency 2ω1. It’s about a particle-horizon. 
It’s a source of the electromagnetic field. To the approximation applies r=0, t=0. 
 

 
A particle horizon inside is an event horizon outside and vice-versa. The spatial 

singularity only is suitable as basis of a space-independent temporal, the temporal singularity 
only as basis of a time-independent spatial coordinate-system. As basis of a four-dimen-
sional space-temporal coordinate-system, both singularities are equally inappropriate. Seen 
from the spatial singularity, all time-like vectors have an equal frequency and wavelength. 
We must pay attention to this on a coordinate-transformation to our local coordinates. It 
applies for t = T+ t´ and for the wavelength λ:′ 
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C is an arbitrary constant, it disappears on a retransformation. Expression (281) represents 
the temporal dependence. To the determination of spatial dependence, we must visualize that 
this case differs from the preceding λ0 and r0.  

 
Having to do until now with a wave-field which shows different conditions at different 

places (quantity of r0, propagation-velocity etc. – therefore different dependences of space 
and time), the circumstances are deviating in this case. It is about a purely time-like vector, 
which propagates everywhere with the same velocity, namely c. The dependence on space 
and time is identical to it, following the same function. Even R/2 expands time-like with a 
constant velocity of c. Just only, we have to replace t by r. Therefore we expand the fraction 
in (281) with 2c obtaining: 
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             (282) 

 
With it, the overlaid wave doesn’t behave like the metrics r0 as well as λ0 concerning 

wavelength and frequency. But differences exist also between r0 and λ0. There are even more 
differences then again. So, the distance, the light covers from the source to the observer, is 
different from the distance, a material body must cover. Latter one amounts to R/2 
maximally, while theoretically whatever large distances are possible in the first case. This is 
clearly the behaviour of a particle-horizon. We call the first one time-like, that second one as 
space-like distance (see also section 7.5.2.). The conversion takes place in the following 
manner: 

 

2 2
R T
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          (283) 

 
We got both expressions, in that we have taken up a bond at the SRT with c=R/(2t) and 
v=r/t. With help from (282) we can also find a substitution for the expression β, that is 
applied to signals, which are overlaid the metrics. In contrast to (239) that applies to the 
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metrics itself, we get for the phase rate β of the overlaid wave (not equal to the phase rate of 
the metrics β0) because of λ  = 2π c/ω  = 2π/β: 
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˜ ω 
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    (284) 

 
We introduce the two right functions to the better presentation. With the propagation of 

overlaid waves, β is not identical to α obviously. We obtain α and β from (180, 181) by 
replacement of κ0 with κ0R  
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     (286) 

 
For ωt »1 outside the near field of a beaming dipole (inside other relationships apply 

anyway), with help of the approximations arsinh ε ≈ ε, sinh ε ≈ ε, cosh ε ≈ 1+ ε
2
/2 follows: 

 

0 0

1

R c

ω
α = β = = ± ω µ ε        (287) 

 
Here, we get for the phase rate β a deviant result, namely the same, as with the classic 

solution for a loss-free medium. The cosmologic red-shift is not just caused by the electric 
qualities of the line as well as the space but by the line itself. Just once imagine the 
following: A line is flowed through by an alternating current. A certain wavelength appears. 
If this line is manufactured from an ideally elastic material now and one pulls at an end, so 
the line is stretched. Simultaneously, also an enlargement of the wavelength occurs with 
simultaneous diminution of the conducting-velocity (c in sum). 

 
Since α≠0, even an attenuation of the amplitude appears. It is however so small, that it 

becomes effective only in cosmologic time periods. For the electric and magnetic field-
strength applies (amplitude response): 
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Figure 34 

Propagation velocity of the metrics and  
of an overlaid electromagnetic wave 

 
 

or A′ =  –1Np/R. Because of c = const, both expressions are equivalent. With it, the half-life 
period (–6dB) is about 1.382T, the half-life width about 0.691R. The attenuation is just so 
small, that it can be neglected mainly, it is far below the geometrical attenuation however. It 
obviously also appears with the metrics included. With it, it is unattached from the metrics 
indeed, as one easily can realize in (273). The influence of the metrics is given by r0 and, as 
one sees, all r0 cancel each other. With it, our solution completely emulates wave-
propagation and -attenuation admittedly, but not the cosmologic red-shift. Therefore, we 
divide the portion β (the attenuation rate α is not affected) by the bracketed expression of 
(282) obtaining our substitute-γ, c and ZL, it applies R = r0Q0: 
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γ =  

˜ H 
c

+ j
˜ ω 
c

Ξ(r)       c = c   ZL = Z0      (290) 

 
Expression (290) is the propagation rate for signals, that are overlaid the metrics, (γ = α+jβ). 
The geometrical attenuation of course still appears. It cannot be neglected, but it’s not 
figured here. The solution is applied to the entire domain r»r0, however not in the proximity 
of the (of a) temporal singularity and with very strong gravitational-fields (black holes). We 
require the complete solution 4.3.4.4.4 to it. 

 
 
 

4.3.4.4.3. Propagation-function 
 

We assume the solution of the telegraph equation for the transient state [5]. The equation-
system is also known as conducting-equations. 
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In this connection, the index means the input-signal 1, the index 2 the output-signal. We now 
replace in the following manner: 
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er is the unit-vector. Furthermore, ZL ≈ Z0 applies (transient state) and u = i Z0. Then we get as 
solution of (291): 

 
j t r j t re e Ξ(t)ω − γ ω − γ= = ω = ω2 1 2 1E E H H ɶ       (293) 

 
This solution is identical to (165) but it considers the cosmologic red-shift only for γ (290). 
We also must notice the temporal dependence of the expression jωt, i.e. at the source of the 
signal. The right expression of (293) is used for it. With it, we have found a solution 
explaining as well the propagation as the cosmologic red-shift of electromagnetic waves. 
 
 

 
4.3.4.4.4. Complete solution 

 
If we want to find a solution, being valid even in the proximity of very strong gravitational 

fields  and/or of the temporal singularity, we are forced to calculate with the complete 
formula. In section 4.3.2. we had noticed that the space owns also an upper cut-off 
frequency. Solution (293) shows all-pass behaviour and doesn’t reflect the real circ-
umstances anyway, but it’s adequate for more than 99% of all cases. A solution with consi-
deration of the cut-off frequency (downward the frequency is really restricted by the age 
only) must be a complete solution. Therefore, let’s try to find first an approach for a comp-
lete solution with and without consideration of the cut-off frequency. We go out from (274), 
however using the correct expression for the propagation-velocity cM of the metrics (213): 
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We look at the value-function again, at which point it’s however necessary to pay attention 
to the fact, that the angle α, depending also on θ, may be unequal to π/2 (Figure 104). 
Therefore, the cosine-rule applies:  
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analogously for Z0=µ0c. After reiterated substitution, we get the following solutions: 
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The second solution is applied to space-like photons. Similarities exist obviously with the 
reciprocal of (277). The value of y tends to 1 for Q0 »1. Since the real transfer-function is 
independent from the metrics, (287) is also applied to the complete solution in the far field 
ωt »1. We continue as in 4.3.5.4.2. To that purpose we first transform: 
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The transition from the exact solution to the approximation will be descripted more exactly 
in section 5.3.1. The factor 2 turns out by itself with it, that means, with the exact solution 
the rotation of the coordinate-system is automatically done by the function. We are 
interested in the wavelength λ=2π/β=2πc/ω once again: 
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C is that arbitrary constant to the conversion upon the R4-coordinate system once more. The 
function R(r) describes the exact dependence of R concerning the phase-angle/Q-factor Q.  
The definition of A and B can be taken from (211). We were already able to set R(t) =1+ t ˜ T  
in the approximation. With the complete solution it is unfortunately impossible, because R is 
propagating and expanding at the same time (see section 6.2.2.1). The relation R = r1Q0

2 
exactly applies only for Q0 »1. The spatial and temporary dependence of R for zero-vectors 
is given by the right expression of (300). Furthermore ˜ Q = ˜ Q 0 and R( ˜ Q ) = ˜ R  applies. Finally, 
we get for the wavelength and frequency: 
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All values except c and ω are a function of the phase-angle/Q-factor Q0 = 2ω0t. For just two 
kinds of photons and neutrinos we define the eight functions2 Ξx(r) and  Ξx(t): 
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4 −1

  Ξγ (r) = Ξγ (t) =  

R( ˜ Q )

R(Q)

 
˜ β γ 

4 −1

 βγ 
4 −1

 

(302) 

Ξν (r) = Ξν (t) =  

R( ˜ Q )

R(Q)

 
˜ β ν

4 −1
 βν

4 −1
  Ξν (r) = Ξν (t) =  

R( ˜ Q )

R(Q)

 
˜ β ν 

4 −1
 βν 

4 −1
 

                                                
1
 See (621) relativistic dilatation factor β with v=cM, see also section 5.3. 

2
 See section 5.3.1. 
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Responsible for the insertion of the right relationships (substitution r = ct) is the reader 
himself. But the function is explicitly calculable yet. (290) and (293) are applied. This is the 
complete transfer-function without consideration of the cut-off frequency. It is valid even in 
strong gravitational fields and at the „edge“ of the universe. 
 
 
 
4.3.4.4.5. The cut-off frequency 

 
In section 4.3.2. we have worked out the transfer-function of a single MLE of the size r0. 

The solution has been applied to the metric wave-field itself. But it’s valid even for overlaid 
waves however, if we understand the overlaid wave as an interference of the differential 
equation (76). In this case, we have to use ω0 for σ in (144) instead of ω1, it applies 
Ω = ω/ω0. First, let’s have a look at the part of the total attenuation factor α, caused by ωg, 
which can be calculated from the amplitude response A(ω). Only the real part is being 
transferred. In connection with the phase-angle φγ in reference to the length r0 = c/ω0 applies:   

 

( ) ln A ( j ) ln (A ( ) cos )γΨ ω = ω = ω ϕ           (303) 
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Ω
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 ωΩ = + Ξ ω  ɶ
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 (304) 

 
2

2
2 2

1
( ) ln 1 ln cos arctan

1 12
( )  Ω ΩΨ ω = − + Ω + + Ω − + Ω + Ω 

    (305) 

 
0H ( )

c c
ωα = − Ψ ω

ɶ ɶ            Ψ(ω) = 0   for     ω«ω0   (306)           

 
The part Ψ(ω) depends on space and time indeed, since it depends on Ω too, on the ratio of 
two frequencies, changing according to different functions (ω~ t–3/4, ω0~ t–1/2). The negative 
sign arises from the re-exchange of the integration limits. With it the change doesn’t cancel 
out. In the approximation Ω~ t–1/4 applies. 
 

But the cut-off frequency affects the phase rate β. The more approaching the cut-off 
frequency, all the more the phase-shift φγ (149) is making noticeable, caused by the  ascen-
ding phase delay TPh (151) during the transfer from one MLE to the other (t1�t0). Since the 
phase-defects add up, there’s going to be a retardation of the overall phase-shift Φ(ω). This 
causes a ramp down of the propagation-velocity onto values smaller than c (permitted), so 
that ω remains unchanged and λ declines on the other hand. The smaller value of |c| affects 
α and β in the same manner. With the nowadays manageable frequencies however, the 
phase-defect is practically equal to zero.  Before we can calculate on, we already have to 
convert the phase-shift Φ(ω) into units of wavelength however. It applies Φ(ω) = 1+TPh/Tω, 
at which point Tω is the period of ω: 

 

2

1
( ) 1 arctan

12

  ΩΦ ω = − Ω −  + Ωπ   
  Φ(ω) = 1   for ω«ω0   (307) 

 
With it, we can declare the following universal propagation-function for the vacuum: 

 
             ω = ˜ ω  Ξ(t)    (308) 

 

γ =  

˜ H 
c

+
˜ ω 0
c

Ψ(ω)
 

 
 

 

 
 + j

˜ ω 
c

Ξ(r)
 

 
 

 

 
  Φ(ω)        |c|  ≤  c  |ZL| ≤  Z0  (309) 

 
The complete solution with frequency response is not required in most cases. With later 
contemplations we will still work with (309) however. In cases, the cut-off frequency plays 
no role, applies Φ(ω) = 1.  

E 2 = E1  e jωt − γr
H2 = H1  ejωt − γr
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One quality of the universal propagation-function is that electromagnetic waves with 
critical frequency, i.e. with a frequency near ω0, have only a small-scale reach, since with 
approach to ω0 both, the phase- and group velocity are degrading with different value. This 
is however synonymous with the appearance of non-linear distortions, finally causing a total 
destructive interference to the wave. The behaviour resembles the one of the wave-
propagation in an ionized plasma. The signal factually dissolves in noise, an effect, as it 
everyone knows, who has been observed or executed radio-traffic on shortwave before now. 

 
Theoretically, waves would be possible with hypercritical frequency as well. For these 

applies the same, said in the preceding paragraph. Even a propagation without aid of the 
metrics doesn’t work across longer distances because of the giant conductivity κ0. If you 
should be interested, please look up in section 4.6.5. 

 
 
 

4.3.4.4.6. The cosmologic red-shift 
 
From (282) an expression for the cosmologic red-shift can be derived directly: 
 

λ  =  ˜ λ  1+
2r
˜ R 
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r =  
˜ R ↑

2  
z + 1( )

4

3 −1
 

 
 

 

 
         v↑ =  c  z +1( )

4

3 −1
 

 
 

 

 
    (312) 

 
v is the escape velocity. Now one often claims in the literature that this could be also larger 
than c. But this is not the case. Reason for the wrong claim is a cardinal-mistake that is liked 
to do even by experts again and again and, I don’t want to exclude myself here, in the first 
edition also by myself. One simply substitutes ˜ R  with the current value at the observer, 
obtaining escape-velocities larger c then.  

 
As further wrong conclusion arises that signals with z > 1.28 should have come from areas 

behind the event-horizon ˜ R = 2c ˜ T  or better, they should have covered a distance longer than 
˜ R . This stands in contradiction to the observations indeed. 

 
While the options of observation were restricted to smaller z-values, it has not been 

attracted attention to. Meanwhile, already objects with a red-shift of z =  6 have been found 
and the red-shift of the cosmologic background-radiation has even a value of 
z = (2Q0)3/2

  ≈ 1090, as described in section 4.6.4.2.3. Now, the reason for such giant values of 
z is not an universe which is, in reality, much larger than assumed — even if it would be so, 
there could not exist zero-vectors with a length larger than ˜ R = 2c ˜ T , because they would 
return to their starting point after this distance, i.e. they are closed in itself. 

 
The real mistake is the misinterpretation of (312). The expressions are namely based on 

the propagation-function (293) and this is always being related to the starting point of the 
wave, the signal-source. So it applies to outgoing vectors only. Therefore, we must always 
substitute ˜ R  with the value at the source to the point of time of radiation, and all distances 
and the velocity v↑ are always been referred to the source then. The expansion of the 
universe since the point of time of radiation is namely already included in the exponent 4/3, 
as one easily can recognize with the help from (280) . By the way, this is applied also to 
calculations according to the classic model of cosmology, even if the exponent can differ 
from 4/3 there. For this reason, I have marked both values with the upward-arrow ↑ for 
outgoing vectors. It reminds something to the wiring sign of a transmitting aerial, which may 
serve as mnemonic device. 
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Now we don’t know the exact value of ˜ R ↑ indeed, which is associated with the distance 
between the source and the observer, the value we want to determine originally. What we 
however know, is the value ˜ R ↓. Since the distances r↑ and r↓ as well as the velocities c↑ and 
c↓ are equal, a simple relationship, that works with the value ˜ R ↓ at the observer, can be 
found. We do the following approach: 

 

( ) ( ) ( ) 
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    (314) 

 
After reducing to r, we get the following expressions for r and v: 
 

r =  
˜ R ↓

2  
1− z + 1( )–

4
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         v↓ =  c  1 − z + 1( )–

4
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    (315) 

 
The expressions (312) and (315) yield the same result when substituting the right values. 
The contradiction has been solved with it. But it is not yet the whole thing. What applies to 
the value r, applies also to ˜ R , ˜ r 0, ˜ H , ˜ ω 0  and  ˜ ω  in the propagation-function, i.e. if we are 
working with ˜ R ↓, also these values must be corrected. One always only reckons either with 
the values at the source or with those at the observer. In more final case, the expressions γ 
and ω must be multiplied with a correction-factor. For the world-radius R applies: 
 

4/3r
R 2c (T t) 2c T R 2r R R (1 (z 1) )
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By using of (311) can be shown that the expression (z+1) is corresponding to the relativistic 
dilatation factor β. Then further (z+1)2/3

 ~ β2/3
 ~ Q0

–1 applies and on the basis of Table 5: 
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Z
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κ ε
ɶ ɶ ɶ ɶ   (319) 

 
An exception forms the frequency ω. In contrast to H~Q0

–2 resp. ω0~Q0
–1 applies ω~Q0

–3/2:  
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To the correction of γ and ω, we next consider the product αr: 

 
4 4 4
3 3 3

 4
3–

H 1 R 1 1 R 1
r z 1 1   1 z 1     z 1 1

c 2 2 2R R z 1
(( ) ) ( ( ) ) (( ) )

( )

↑ ↓
−

↑ ↓
= + − = − + = + −

+

ɶ ɶ ɶ

ɶ ɶ
 (321) 

 
4
34 4

3 3
2 2
3 3

0 0 0 0
– –

0 0

1 z 1r Q Q1 R 1 1
r z 1 1     z 1 1

c 2 2 2r r z 1 z 1

( ( ) )(( ) ) (( ) )
( ) ( )

−↓ ↑ ↑↑

↑ ↓

− +ω
= + − = = + −

+ +

ɶ ɶɶ ɶɶ

ɶ ɶ
 (322) 



 
 

68 

With it, the parametric attenuation is really unattached from the frame of reference, exactly, 
as determined by the solution of the telegraph equation. The remaining quantities depend on 
the respective frame of reference however. With it, we can define the universal propagation-
function using the values at the observer. At first however once again correctly with arrows 
for the values at the source: 
 

E 2 = E1  e jωt − γr           H 2 = H1  e jωt −γr   ω = ˜ ω ↑  Ξ(t)     (323) 
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  Φ(ω)  |c|  ≤  c  |ZL| ≤  Z0  (324) 

 
These expressions are even applied to passing through signals, that are followed up into 
future. In this case, one inserts the values of the observer instead those of the source, doing 
just so, as if the observer would be the source. The distance r indeed is defined in reference 
to the observer then. The same applies even to z. At the place of the observer applies z = 0, 
which is not favourable straightaway, since z is defined absolutely in general, namely on the 
basis of the red-shift of the absorption-lines of stars. Therefore, a propagation-function, 
using the values of the observer, with which r and z are however defined in reference to the 
source, would be suitable better. This arises to: 
 

E 2 = E1  e jωt − γr           H 2 = H1  e jωt −γr   ω = ˜ ω ↓(z +1)  Ξ(t)    (325) 
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  Φ(ω)          …  (326) 

 
After having figured the real relations extensively once again, it was simply necessary, we 

now come to the real topic. In Table 1, which has been gathered from [27] in excerpts, some 
quasi-stellar radio-sources are figured with distance-information. The values marked with an 
* have been taken from the original, the rest has been calculated. 
 

*              

         
Source 

*         

          
z 

 
Escape 
velocity 
[v/c]↑ 

 
Escape 
velocity 
[v/c]↓ 

* Distance
photo-
metric  
[Gpc] ↑  

Distance  
[Gpc]  

Eq.(312)  

[H=76]
 ↑  

Distance  
[Gpc] 

Eq.(312)  

[H=55]
 ↑  

*            
Distance  
geometric 
[Gpc]

  

Distance  
[Gpc] 

Eq. (315)  

[H=76]
 ↓  

3C  273B 0.158 0.108 0.089 0.470 0.427 0.588 0.420 0.484 

3C   48 0.367 0.259 0.170 1.100 1.023 1.408 0.800 0.928 

3C   47 0.425 0.302 0.188 1.270 1.194 1.644 0.900 1.025 

3C  279 0.536 0.386 0.218 1.610 1.528 2.103 1.070 1.187 

3C  147 0.545 0.393 0.220 1.630 1.555 2.141 1.090 1.198 

3C  254 0.734 0.542 0.260 2.200 2.143 2.950 1.310 1.416 

3C  138 0.759 0.562 0.265 2.280 2.222 3.059 1.340 1.441 

3C  196 0.871 0.653 0.283 2.610 2.583 3.555 1.450 1.542 

3C  245 1.028 0.783 0.305 3.080 3.100 4.267 1.590 1.662 

CTA 102 1.037 0.791 0.306 3.110 3.130 4.308 1.600 1.668 

3C  287 1.055 0.806 0.309 3.160 3.190 4.391 1.620 1.681 

3C  208 1.109 0.852 0.315 3.320 3.372 4.642 1.660 1.716 

3C  446 1.404 1.110 0.345 4.200 4.392 6.046 1.870 1.877 

3C  298 1.436 1.139 0.347 4.300 4.506 6.202 1.890 1.892 

3C 270,1 1.519 1.214 0.354 4.550 4.802 6.610 1.940 1.929 
3C  191 1.946 1.612 0.382 5.830 6.376 8.777 2.160 2.078 
3C    9 2.012 1.675 0.385 6.030 6.627 9.122 2.190 2.097 

 
Table 1: Some quasi-stellar radio sources 

 
For the interpretation of the measuring results, the author used, willy-nilly, the classic 

model of cosmology with several parameters (parabolic and elliptical). Since the elliptical 
model with q=1 has the best fit with my model, the elliptical values have been taken over. 
Therefore, one must not expect an exact agreement with the values calculated by me. In 
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order to document the mistake in the first edition more exactly, in column 3 have been 
figured the escape-velocities >c calculated with the wrong value of 

� 

˜ R . Column 4 is 
containing the right values. 

 
Column 7 shows the incorrectly calculated distances according to (312) for a value of 

H = 55 kms–1Mpc–1. One can see, that the values are too high, H has been estimated too low. 
One furthermore sees, that the author of [27] has committed the same cardinal-mistake obvi-
ously. Indeed, the values are only shifted in reference to the photometric distance in the 
logarithmic representation (Figure 35), which corresponds to a multiplication. The 
corresponding factor has been determined with statistical methods. It amounts to 1.38±0.08. 
That results in a probable value of the HUBBLE-parameter of 75.9±4.4 kms–1Mpc–1 (column 
6). The correlation-coefficient to the photometric values is 0.792. The value of H is within 
the limits determined with modern methods. Obviously, one can achieve right results even 
with wrong data comparing two wrong results…  
 

All results of Table 1 are visualized in Figure 35. One sees that the values, calculated cor-
rectly according to expression (315) with H = 75.9 kms–1Mpc–1 also fit well the geometrical 
distance (light-way) calculated by the author of [27]. The correlation-coefficient between 
this two data-series amounts to 0.795. This corresponds to the one of the incorrectly 
calculated values approximately. In the further course of the work, we will use a value of the 
HUBBLE-parameter of H = 75.9 kms–1Mpc–1 therefore. This will be specified in section 7.5. 
once again. 

 

 
 
Figure 35  
Distance in dependence on the 
red-shift for elliptical models (q=1) 
 

 
The difference in the ascend of both pairs of curves is to be attributed to the application of 

the classic model of cosmology. 
 

 
4.3.4.4.7. The HERTZian dipole 

 
In the section 4.3.4.4.2. we have worked out an expression for the line-wave impedance of 

the vacuum (267). Furthermore we have determined that the spatial singularity behaves like 
a HERTZian dipole. The HERTZian dipole is the interface between an electronic system and 
the vacuum. Both can be figured also as a four-terminal network. We just expect circ-
umstances analogical as with a voltage divider. From [20] we understand the legalities in the 
near field of a beaming HERTZian dipole. The coordinate-system is descripted in Figure 36. 
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HERTZian field-equations (complex) � radiation-field in the point P: 
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For the two electric field-strength-vectors applies: 
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Figure 36 
The HERTZian dipole 

 
Looking at these equations more exactly, one recognizes that they implicitly contain the 
expression for the field-wave impedance ZF of the vacuum (267) found by us, namely in the 
spatial part. We try to depict these equations as a function of ZF without changing the 
physical content therefore. It applies ωr / c = ωt as well as I= U / Z0 
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These are the relationships for a HERTZian dipole of the length ∆l in the matching-case (Z0). 
Actually certain similarities exist with the voltage divider rule with complex impedances. 
Applying Z0 (classic loss-free solution) instead of ZF, we would get a result, with which the 
wave seamlessly passes over to space. Because this never has been observed in reality, it is 
an indication, that wave propagation rather takes place according to the model presented 
here. In the case of the spatial singularity,  on the basis of the particular qualities, becomes  
∆l = R/2 as well as K/2. It appears due to it, that the dipole shows equal dimensions into all 
directions, it has been mutated to a ball-emitter. Therefore, the metric wave-field is not 
polarized anyway. 
 
 

4.4. Current values of the universal nature-constants 
 
Having updated the value of the HUBBLE-parameter, it is opportune to depict an overview 

of all dependent and independent universal fundamental »constants« (Table 2). Invariables 
are marked with the symbols (• ). One sees that there are actually only five universal 
fundamental (•) physical constants (µ0, ε0, κ0, ℏi and k). 

 
The speed of light is also a genuine constant admittedly, however not fundamentally at all, 

since it can be combined from µ0  and ε0, just as r1, ω1 and t1. The initial value of PLANCK’s 
quantity of action ℏi as well as some other values will be described later for the first time. 
These and all other ones are no genuine constants. They can be figured by combination of 
the five fundamental values as well as the corresponding space-time-coordinates.  

 
 

 
  Constant Symbol C Value 

Unit of 
measurement 

 

 Speed of light c  2.99792458·108 m s–1  
 Induction-constant µ0 • 4π·10–7 Vs A–1m–1  
 Influence-constant ε0 • 8.854187817·10–12 As V–1m–1  
 Conductivity-constant κ0 • 1.23879·1093 A V–1m–1  
 Boltzmann-constant k • 1.380658·10–23 J K–1  
 Planck’s init. quant. of action ℏ1 • 7.95297·1026 J s  
 Planck’s quantity of action ℏ  1.05457266·10–34 J s  
 Gravitational-constant (init.) G1  1.55558·10–193 

m3kg–1s–2  
 Gravitational-constant (Nwt.) G  6.67259·10–11 m3kg–1s–2  
 Poynting-vector metrics (init.) S1  3.3907·10426 W m–2  
 Poynting-vector metrics S0  1.38959·10122 W m–2  
 Fine-structure-constant α  7.2973530·10–3 1  
 Q-factor/phase metrics (g00

–1
) Q0  7.5419·1060 1  

 Planck’s mass m0  2.17661·10–8 kg  
 Planck’s energy W0  1.95624·109 J  
 Planck’s length r0  1.61612·10–35 m  
 Planck’s time-unit t0  2.6954·10–44 s  
 Circular frequency of metrics ω0  1.85501·1043 s–1  
 Wave impedance vacuum Z0  376.73  ≈  2π· 60 Ω  
 Cut-off frequency vacuum ω1  1.3991·10104 s–1  
 Smallest time-unit vacuum t1  3.57372·10–105 s  
 Smallest length vacuum r1  2.14127·10–96 m  
 Hubble parameter H  75.9 ± 4.4 km s–1M pc–1  
 Hubble parameter H0 (ω–1)  2.45972·10–18 s–1  
 Total age 2T  1.291818·1010 a  
 Local age T  6.45909·109 a 

Table 2:      Local age T (t–1)  2.03275·1017 s 
Fundamental 

 Local world-radius R  3.9500 Gpc physical constants 

 Local world-radius R (r–1)  1.21881·1026 m standard model 
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4.5. Supplementary contemplations to the metrics 
 
 
In section 4.3.4.3. we found with (246) an expression for the temporal and spatial 

dependence of PLANCK’s elementary-length r0, figuring at least locally a scale for the 
proportions (distance). On this occasion I refer once again to the fact that this is also applied 
to the size of material bodies, which is changing in the same measure as r0. Otherwise we 
could not observe any expansion either. 

 
Just particularly is this a matter of the mutual distances of material bodies. These follow a 

function, which differ with the considered distance, since quantity and expansion-velocity of 
the PLANCK elementary-length is changing with ascending distance to the coordinate-origin. 
But only distances with their starting-point in the origin should will be considered here. Of 
considerable importance for deeper contemplations is even the number of line elements 
(MLEs) along an imagined line with the length r (wave count vector Λ). We distinguish two 
cases in this connection: Wave count vector with constant r and r with constant wave count 
vector. More final case to the best fits the existing circumstances, since we can assume that 
no point is distinguished to other points in the cosmos. The average relative velocity against 
the metrics at the coordinate-origin is equal to zero at free fall. This should be so everywhere 
then. With it, the expansion of the universe can be traced back to the expansion of the 
metrics alone. This corresponds to the case of a constant wave count vector. 

 
 
 
 
 

4.5.1. Constant distance 
 
Because of the real lattice constant r0 the wave count vector Λ for smaller distances r is 

defined in the following manner: 
 

0

r

r
= rΛ e              (333) 

 
er is the unit-vector. In the following, we consider only the figure Λ however. For larger 
distances, we have to replace Λ by dΛ and r by dr using the corresponding expression (248) 
for r0: 
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To the solution we replace as follows (it applies �� ���� 	 
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Figure 37    
Wave count vector as function 
of distance r and t 

 
The wave count Λ follows the blue function depicted in Figure 37. Approaching to half 

the world radius (R/2), it seems to be, that Λ strives towards infinity. If we want to define a 
finite wave count Λ0, we take only a certain part of the world radius to calculate the wave 
count for it. Because of R/(2r0) =�
0/2 we opt for that value. The value amounts to 
0.273965 R, that is 54.79% of the distance to the particle horizon (cT). In total however an 
infinite value will not be reached, since r0 becomes smaller and smaller going to r1. Out 
there, at Q=1 is the back of beyond, we reached the particle horizon. At first I guessed the 
value to be Λ1=Q0

2
, since even R=r1Q0

2
 applies. But that’s not the case. The little more 

ambitious calculation for r = 
 R/2−r1 → 1−10−120 under application of the power series for 

(1−x)⅓, multiple substitutions up to the transformation of the function artanh �  arsinh � ln, 
turns out Λ1 = �⁄� 
� �� 
�  ����
�  = 1.58461·��63 using the values from Table 2. For Λ1 
applies t’ ≡ t ≡ 0 i.e. a constant wave count vector. But by expansion and wave propagation 
„outwards“ the phase angle 2ω�T = 
0 ∼ t½ increases continuously. And because of (53) 
Λ1(T) = �⁄� ��	 �� ��	 applies with b = 2κ0/ε0. 

 

 
Figure 38 
Temporal dependence of the wave count vector 
for several distances r 
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The temporal dependence for several initial distances r is shown in Figure 38. The larger 
the considered length, the later on the point of time, the wave count vector is defined from. 
That’s easy to understand, we can regard a length as existent only then, when the world-
radius is larger or equal to. If the world-radius is smaller, so such a length doesn’t exist. 
Therefore, lengths larger than 0.5R aren’t defined at present and function (337) does not 
have a real solution before a value of e.g. t = 0.75T is reached (t = 0 is the present point of 
time). Altogether, the wave count decreases. That results from the fact that we are 
considering a constant length with expanding r0. So it happens, that MLEs are permanently 
„scrolled out“ at the „tail“ leading to a degradation of the wave count vector at the same 
time.  

 
4.5.2. Constant wave count vector 
 
4.5.2.1.  Solution 

 
At first we start with the left expression of (337) for t = 0 (a = 1). It specifies the quantity of 

the wave count vector at the present point and at each point of time, if we want to assume it 
as constant. We just look for the function F(a, ) being nothing other as the temporal 
dependence on a given length .  

 

( )   0 0

3 3 r F
  Q artanh r r    Q a artanh r F     const

2 2 a

′ ′ ′ ′Λ = − = − = 
 

ɶ
ɶ ɶɶ ɶ ɶ     (338) 

 
An explicit reduction by differentiating and zero-setting (the left expression turns to zero 

on this occasion) leads to the trivial solution F = 0. Otherwise, only an implicit solution can 
be found as solution of the equation: 

 

a  artanh  

′ ˜ r F
a

− artanh  ′ ˜ r − ′ ˜ r (F −1) =   0     r (t) =  ˜ r F3 (t)   (339) 

 
or in »Mathematica«-notation F1[t,r]: 

 
Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 

#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];      (340) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial 
value. There was a problem using secant method. The temporal course is shown in Figure 
39. 
 
 

Figure 39         
Temporal dependence  

′ ˜ r 
′ ˜ r 
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of a given distance r 

There is only a limited definition-range for the solution. It is temporally bounded below by 
the spatial singularity, the considered length is greater than the world-radius and doesn’t 
exist yet. The greater the considered length, the smaller the definition range. With world-
radius the space-like vector R/2 = cT is meant. 
 
 
 
4.5.2.2.  Approximative solutions 

 
A simple solution for small r explicitly arises from (339) under application of the two first 

terms of the TAYLOR series for the function artanh: 
 

1
2t 1 t

r r 1 r 1
T 2 T

   = + ≈ +   
   
ɶ ɶ

ɶ ɶ
    for   r ̃≤ 0,01 R̃      (341) 

 
This exactly corresponds to the behaviour of PLANCK’s elementary-length (MLE) and is 
valid until 0.01R approximately. For larger distances, the ascend is larger. First we examine 
the course in the proximity of t = 0 (Figure 40) as well as the ascend ∆r/∆t with ∆t = 2·10–3. 
With root-functions the ascend (dr/dt) is equal to the exponent m in this point: 

 
mt t

r r 1 r 1 m
T T

   = + ≈ +   
   
ɶ ɶ

ɶ ɶ
          (342) 

  
This is shown in Figure 40. It is in the range of 1/2…3/4. Using the function Fit[] approxi-
mations of different precision for the exponent m can be found: 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40 
Ascend of several 
given distances in 
the proximity of t=0 

 
 
mmm = {{0, .5}};  
For[x = 0; i = 0, x < .499, (++i), x += 0.01;  
AppendTo[mmm, {x, N[F1[0.0001, x] - F1[0, x]]/0.0001}]]    (343) 
Fit[mmm, {1, m, m^2, m^3, …}, m] 

        

m ≈ 0.513536 + 0.17937r + 0.490927r
2      with  r = r/ R

~ 
 
m ≈ 0.500(980) + 0.50052r  − 1.13082r

2 + 2.16233r
3         (344) 

 
m ≈ 0.500(1002) + 0.598206r − 3.45991r

2 + 18.3227r
3 − 42.6995r

4 + 38.0733r
5 
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The third equation of (344) has an accuracy of ±4.83·10−3 and is suitable even for 
calculations with more extreme demands. It is better to leave out the contents inside brackets 
at close range. Indeed, there is a need to consider the restricted definition-range, which is not 
being co emulated automatically by the approximative solution. It is pointed out here once 
again that the distances and velocities, regarded in this section, are a matter of space-like 
vectors having nothing to do with the time-like vectors considered in section 4.3.4.4.6. 
Cosmologic red-shift. 
 
 
 
 
4.5.2.3. The HUBBLE-parameter 

 
Having defined the HUBBLE-parameter only for small lengths and PLANCK’s elementary-

length (r0) until now, which are following the relationships for a radiation-cosmos (m = 1/2), 
we have to correct our statements for larger distances. With m = m (r) the HUBBLE-parameter 

H = ṙ�r becomes also a function of distance: 
 

0

m m
H H

T t T
= =

+ɶ ɶ
    (345) 

 
The course is shown in Figure 41. The metrics examined by this model is a non-linear 
metrics. With it, the question has become unnecessary, whether our universe is a radiation- 
or dust-cosmos. The answer is – as well, as. It’s a question of the dimensions of the 
considered area. For small lengths, the distance behaves like a radiation-cosmos, in the range 
between zero and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics. 
 

 
 
Figure 41 
HUBBLE-parameter as a function of the 
distance for t=0, the values r>0.5R are extrapolated. 

 
However, more latter distance is not an area of infinite red-shift as in other models. It 

shows with the dilatory-factor q very well  The course is depicted in Figure 42. 
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Figure 42 
Dilatory-factor as a function of the 
distance for t=0, the values r>0.5R are extrapolated 

 
We get the expansion-velocity by differentiation of expression (342) with respect to the time 
t. At close range m = ½ applies, leading to the well-known expression H0=1/(2T). The 
approximation is valid for t�T, that’s actually always the case, because we don’t get that 
old. 
 

m m 1 m 1d t r t t
v r 1 m 1 H r 1 H r

dt T T T T

− −
     = + = + = + ≈     
     

ɶ
ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶ
      (347) 

 
The course of Hr as a function of distance is shown in Figure 43. The speed of light is 
reached in an essentially minor distance as with the standard-models, but only on paper. 
While the size of r0 at R/2 = cT tends to r1, the expansion speed along the time-like world line 
at this point is not infinite, rather it’s smaller than c (0.75c).  
 

 

 
 
Figure 43 
Expansion-velocity as a function of the 
distance for t=0, the values r>0.5R are extrapolated 



 
 78 

Otherwise we found out, that the maximum propagation speed ǀcmaxǀ of the metric wave field 
amounts to 0.851661c only. But furthermore the world-radius should be cT, whereas time-
like vectors with up to 2cT should be possible. So we have to do with four different 
distances resp. velocities, which all does not seem to fit together anyhow. But using this 
model it’s possible to solve this conflict. Let’s have a look on Figure 44, which except for 
rK, is a true-to-scale representation. 

 

 
Figure 44a    
Expansion-velocity and world-radius in the model 

 
 
We assume, that the wave front of the metric wave field propagates straight-forward with 
0.851661c (propagation share). Then, the share rM of the world-radius caused by it would 
amount to 0.851661cT. However, other values are given in the figure, why, we will see later. 
As noticed furthermore, the constant wave count vector rK up to the vicinity of R/2 is 
running on the same track as the incoming time-like vector rT with 0.75 c (arc length 
0.75 cT). But it’s tilted about the angle α1, so that we have to sum geometrically. In addition 
the partial vector 4 is curved. But the object we are looking for is the space-like vector rR 
(expansion share 2). Next we flatten the partial vector 4 bending it up to 5. Then we 
project it onto rR, it applies rR = −rK cosφ with the angle φ = arg c = α − π/2 = 48.6231° of the 
metric wave function. With a phase angle of � = 0.8652911138 we obtain with the angle 
α = 2.419430697 ��138.6231678° the following solution: 
 

2 2 2 2 2 2 2 2
M R M Kc c c c c cos c 0.85166 0.75 cos 2.41943= + = + α = +

  (348) 
 

2 2 2c c 0.85166 0.562784 1.02081c = 2.08 10−= + = ∆ + ⋅   (349) 
 

This result isn’t notably exact and even worse than that in [52], which is barely correct btw. 
since there values for β, φ and cM have been used, misfitting Q = 1. We will see, if we are 
able to get a more exact result. If we get granular on Figure 44a, we see, that rK is curved 
and, even in this state, protrudes significantly beyond rR. As the case may be, we have to 
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impose it with a correction factor, if we want to get a correct relation. On the one hand there 
is the ratio RS = rK ⁄ rN, which we can calculate. On the other hand there will be a similar case 
with the classic electron radius in section 6.2.5. (835), where we defined a correction factor 
ζ = 1.01619033. Since I wonder about it exactly, I calculated a great many of alternatives, but 
neither the correction factor ζ nor RS = rK ⁄ rN proved to be particularly helpful. 
 
But there is a version, which delivers an acceptable result even without a correction factor. 
That’s the case, with which the real part of the wave function cM (209) has a zero-crossing 
(phase-jump). Since it’s the simplest variant, it’s probably the right one and I will prioritize 
it. See [52] for details. Here the exact parameters for this variant: 
 

Q = 0.95013820167858442645 cM = 0.8485439825230016 c cR = 0.529124852680352 c cK  = 0.75 c 
α  = 134.86993657768931460° β   = 31.94634370109298° φ  = 44.8699365776893146° RS = 1.02469672804290424 

 
2 2 2 2 2
M Kc c c cos c 0.848544 0.529125= + α = + 1.0000000c 0.000000= ∆ = ±  (350) 

 
The conclusion is, the universe expands behind the particle horizon at Q = 0.9501382. That’s 
between the point with the maximum expansion velocity and Q = 1. It is reminiscent of a 
surfer, who does not run on the crest of waves, but always a little off. With it, we have 
clarified the contradictions between the various world radii and expansion velocities. It’s 
about a so called LEH-universe (Light speed Expanding Hyper spherical Universe). Please 
find more information about the time-like vector rT in section 7.5.2. The knowledge gained 
here has a significant influence on the calculation of the entropy of the metric wave field. 
 
 
 

 
Figure 44b        
Expansion-velocity and world-radius  
without correction factor 
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4.6. Energy and entropy 
 

4.6.1. Entropy 
 
Now we will consider the discrete MLE and our model from the energetic point of view. 

Since entropy is much more important than energy for the thermodynamician, we will take it 
into account by examining entropy first. We want to mark entropy with S henceforth. In 
order to avoid confusions with the POYNTING-vector, we will always figure it bold as vector 
(S). If we write S, we always mean entropy and with S always the POYNTING-vector. 

 
From the statistic point of view, the entropy of a system is defined by (351) where k is the 

BOLTZMANN-constant and N the number of all possible inner configurations. 
 
S = k ln N          (351) 

 
With a single MLE (N = 1) entropy would be equal to zero theoretically, by application of 

(352). That’s wrong of course, since statistics necessitates a minimum number of N to be 
applied at all. With N = 1 the result, mathematically can take on a whatever value without 
offending the „statistics“. Therefore we want to try to find out, if there is another possibility 
to determine the entropy of this single MLE. 

 
Strictly speaking the MLE is a matter of a ball-capacitor with the mass m0 (29) moving in 

its inherent magnetic field. We don’t know what happens inside the capacitor. Basically it 
behaves like a (primordial) black hole. According to [5] the SCHWARZSCHILD-radius of such 
a BH is defined as: 

 

          (352) 

 
Now let’s substitute m with m0 here (29). We get rs = 2r0, substantiating our foregoing 
assumption. The surface of this black hole yields with it to A = 4π r0

2. It’s interesting that the 
expression for the SCHWARZSCHILD-radius can be derived even without aid of the SRT or 
URT. Because both, SRT and URT according to this model are only emulated by the metric 
fundamental lattice. Such relationships must be basic qualities of the lattice itself. They 
apply as well microscopically as macroscopically then. 

 
In [4] pp. 211 a method is figured to determine the entropy of a black hole. It is based on 
quantum physical considerations fitting our MLE very well. The author assumes the KERR-
NEWMAN-solution of the EINSTEIN-vacuum-equations Rik =0 with stationary rotating, 
electrically loaded source and external electromagnetic field (353) with R≡ r2

 – 2mr + a2  
and ρ2≡  r2

 + a2cos2ϑ, M =  mGc–2 und a = Lm–1c–1; m is the mass and L the moment of 
momentum. 

 

  

2 2
2 22 2 2 2 2 2 2

2 2

R ρ sin
ds  cdt asin dφ dr ρ d (r a ) dφ adt

ρ R ρ
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J J

     
     (353) 

 
We don’t want to engross it here. The author finally comes to the following statements for 
the radius r± of the black hole and its surface A: 

 

   
2 2 2 2 2r  M M a           A  8 M M M a±

 = ± − = π ± −
 

       (354) 
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   (355) 

 
The result depends thereon, if the MLE disposes of a moment of momentum or not. With 
m =  m0 under application of (29), (53), (59) and (794) we obtain the following values for the 
SCHWARZSCHILD-radius: Without moment of momentum (L =  0) for r−= 0, r+= rs= 2r0 as well 
as A = 4π r0

2. With moment of momentum L =  ħ, here the brackets apply, we get two identical 
solutions r± = r0. The surface yields A = π r0

2.  

rs  =  
2mG

c2
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Furthermore, the author refers to a work of BEKENSTEIN (1973), according to which the 
entropy of a black hole should be proportionally to its surface. The exact proportionality-
factor has been determined by HAWKING (1974) in a quantum physical manner to: 

 

  

Sb =     
kc 3

4Gℏ
A  =           k

A
4r0

2 =       k
A

(4) rs
2     (356) 

 
k is the BOLTZMANN-constant, the bracketed number applies to L =  ħ. Interestingly enough, 
the expression contains PLANCK’s elementary-length and even with ħ according to our 
definition instead of h. If we now re-insert the values, we get: 

 
Sb = 4π k  for L =  0 as well as    Sb = πk    for L = ħ  (357) 

 
Now we want to examine, whether the MLE actually owns a moment of momentum. We are 
based on our model (effective-value) developed in section 3.3. For the moment of momen-
tum L applies generally: 

 
L =  r × p =  m ⋅ (r × v)        (358) 

 
With m  =  m0, r  =  r0, v = c, c ⊥ r we get after application of (27) and (29) for the amount L: 

 

  
L =  m0cr0  =  ℏ    and because of    c = ω0r0           (359) 

 
2

0 0 0W m c= = ωℏ          (360) 
 

Expression (360) is apparently right. With it, we have explicitly proven, that the MLE owns 
a moment of momentum. It’s equal to PLANCK’s quantity of action or vice-versa: 

 
The PLANCK’s quantity of action is defined by the effective-value of the 
moment of momentum of the Metric line-element. The inherent moment 
of momentum (spin) is identical to the track moment of momentum. 

 
The last statement is justified by the fact that it’s a matter of effective-value here. In reality, 
r0, m0 and the track- and inherent moment of momentum are temporally variable, almost 
periodic functions. PLANCK’s quantity of action is the sum of track- and inherent moment of 
momentum then. It’s equal to ℏ, at which point one time the track-, the other time the 
inherent moment of momentum becomes zero. Such an interdependence even is called 
dualism. Naturally, PLANCK’s quantity of action can be defined not only as moment of 
momentum. Another possibility is e.g. q0ϕ0. 

 
Going back to entropy. We see that the BOLTZMANN-constant figures an elementary 

quality of our metric fundamental lattice, as elementary as ε0, µ0 and κ0. Here, someone may 
say, this cannot be correct, since k is a purely statistical constant. Just we can answer this 
interjection: »The BOLTZMANN-constant is so elementary because it’s statistical«. Even π 
allows to be defined statistically. 

 
We have determined the entropy of one discrete MLE. How does it look with a larger length 
then again? Since the single-entropy is a multiple of the BOLTZMANN-constant, we can 
calculate-on with the already known statistical relationships (351). In this connection the 
(absolute) maximum number of possible inner configurations within a volume with the 
radius r is given by the number of MLE’s contained in this volume. With a cubic-face-cen-
tred crystal-lattice, the number of MLE’s within a cube with the edge length d is defined as: 
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ρ is the lattice constant in this case. The fc-cube just contains 4 elements in total. Then, 
within a ball with the diameter d = Λr0 and the volume π/6 d3 there are 

 
33

30

0

Λr2 d 2 2
N π π πΛ

3 3 r 3

  
= = =  ρ   

      (362) 

 
individual MLE’s. As long as ρ is not too large, we can insert (333) for Λ, otherwise (337): 

 
31 11 1

3 3 34 4
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N πQ 1 artanh 1
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ɶ
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       or  (363) 

3
3
0 1 1N πQ artanh 2K 2K( ) ( )

−  
= −     

1 1 1 1

4 4 3 3t t r rɶ        with  r = r/ R~ 
  and   K1 = 1 (364) 

 
That’s the number of elements within a sphere with the radius r. The course is shown  

in Figure 45 curve 1. If we insert the expression Λ1 = �⁄� 
� �� 
��into (362), we obtain even  
a result for N1. Here t ≡ 0 reapplies. Then, the whole universe would contain altoge- 
ther N1 = �⁄� ��
������
� = 8.35202·10189 elements. Because of the propagation of the metric 
wave field this value is increasing continuously too (see Figure 47), and that according to 
N1(T)  = �⁄� �����	
� ��� ��	 with b = 2 κ0/ε0.  

 
 

     
 
Figure 45 
Number of MLE´s in dependence on the radius linear and logarithmic 

 
But for the calculation of the entropy S these values are sparsely helpful. As is known S is 
about a statistical value and (364) violates a basic rule of the statistics: A value must not be 
counted repeatedly. The relations (341ff) namely apply for a „normal“ 3D-sphere only.  
 

But at the universe we have to take into account the particular 4D-topology. An observer 
in the free fall only imagines to be located in the spatial centre of the universe. In reality he 
is situated at a temporally singularity, the event horizon {0,0,0,T}. He is unable to overcome 
it, because beyond there is the future. Indeed, it’s not about a point, but about a hyper-
surface. All other observers at their own 3D-locations reside widespread at the same surface. 
Since T proceeds steadily, the temporal radius increases too and the observers are quasi 
„surfing“ on the „time wave“. If one observer wants to visit another, he must accelerate. 
Thus, his temporally course is slowing down. Indeed, he does not travel to the past, but he is 
only „broken away“ from the unbraked time lapse. He suddenly finds himself inside the 
sphere. With v = c the time stands still for him. Now he is situated at the real spatial centre, 
but only, because it came up to him. 

 
That means, the spatial 4D-centre is not with the observer, but in the distance cT at the 

coordinates {cT,cT,cT,0}. More correct would be t1 instead of zero here. With the spatial 
centre it’s also about a hyper-surface, a spatial singularity, the particle horizon. We cannot 
overcome even that. Like the temporal radius it’s expanding steadily. Altogether it’s about a 
closed system. 
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If two observers could swap their positions, they would find the same conditions on both 
locations. Since overall in the universe the same physical laws apply. Interesting thereat is, 
that we observe different conditions in a definite distance r. The reason is the finite speed of 
light. The universe is not hot-wired, there is no instantaneous interconnection between 
whatever points (except for quantum entanglement). For all observers the universe consists 
of the local conditions plus all forces and signals resulting from prior states, delayed by 
t ≥ r/c. The farther, the elder the condition, that caused the impact. 
 

  
Figure 46  
Factor K in dependence on the radius for 
the 3 solutions (schematic presentation) 

 
And exactly that is the reason, why 
we cannot use expression (364). 
Approaching the distance cT, the 
MLE-density within Λ is increasing 
enormously indeed. But similarly, 
the universe in that distance, at that 
time has had an essentially smaller 
world radius, a smaller surface. 
That means, the cross section must 
be smaller than at solution 1. The 
larger the distance r, the smaller 
the surface A, the opposite way 
around, as with a „normal“ sphere. 
 
Even e.g. the spherical shell in the 
distance R/2−r1 namely consists of 
only one single element. If its con-
dition changes, it has a simulta-
neous effect on all vectors coming 
from all directions. But we are 
allowed to count only one element. 
 
 

 
In fact that’s good for MACH’s principle, spatial damping cancels out, the strongest force 

is coming from the „edge“, but not for the statistics. That’s why we are forced to find a 
function, which considers these special conditions. In doing so the reference to the time t 
should not get lost. Because I’m not a topology-expert, I tried to find such a function, at least 
roughly by introduction of a correction factor K; the whole by trial and error. So it’s not 
about a correct derivation here. With small r a possible solution should run similarly as with 
a 3D-sphere, likewise as solution 1. In the vicinity of R/2 it should flatten out however. 
Either the border R/2 should not be passed. 

 
In addition to 1 two more possible solutions are depicted in Figure 46 to the correction of 

one single coordinate. With solution 2 (365) I assumed the volume of the inverse sphere to 
decrease with r. Solution 3 (366) additionally considers the curvature in the vicinity of R/2 
under consideration of the angle α. 
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−  
= −     
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4 4 3 3t t r rɶ with  2K 1= − 2r    (365) 

3
3
0 3 3N πQ artanh 2K 2K( ) ( )

−  
= −     

1 1 1 1

4 4 3 3t t r rɶ with  2
3K cos 1 sin= α+ − α2r r  (366) 

 
The angle α(r) calculates as follows (applies only in connection with (366)!!!) 
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2 2
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1
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      (367) 
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It’s even only a rule of thumb. The course of both functions is depicted in Figure 45. As 
we can see, function (365) is less suitable, because it exceeds the R/2-border at 
N = 2/3π (1.1955·
0)

3
 = 2/3π (2.3909·Λ0)

3
 – a crooked value. There isn’t a flattening either, 

but a pole outside R/2.  
 
Function (366) on the contrary fulfils all demands. It proceeds as with a 3D-sphere, like 

solution 1 at small r and there is a flattening in the direct vicinity of R/2. Indeed, the 
function is defined beyond R/2, but without pole, and the value re-drops to zero at 2cT. That 
means, it’s about a time-like vector remaining inside the world radius. That’s easy to 
understand. When rushing through the 4D-centre {cT,cT,cT,0} or passing it within spitting 
distance, the vector re-approaches the observer and N has to decline again. The maximum is 
at the „magic“ value N0 = 2/3π (
0/2)3

 = 2/3π Λ0
3

 = 1.12308·10
182

. The reason, why the func-
tion hits its maximum already on the verge of R/2, is its curvature. The arc-length becomes 
effective here.  

 
By the way, all time-like vectors with the length 2cT, regardless of continuous or discon-

tinuous (virtual), are coming from a point with the coordinates {r1/2, r1/2, r1/2, t1/4}. That’s 
behind the particle horizon, previous to the phase jump at Q = 1, from a time, at which event- 
and particle-horizon still overlapped each other (Q = 1/2). The real world age is T, the length 
2cT is the result of curvature, propagation and expansion (see Figure 152). 

 
Thus I’m sure, that (366) fits the actual conditions to the best. Then, N0 would be identical 

to the total number of possible micro-states of the universe and candidate for the calculation 
of the entropy S0. The temporal dependence of N according to (366) for several constant 
distances is depicted in Figure 47. The course of N0(T) and N1(T) in the comparison is 
shown top right. The rule of N1 has been scaled down about 108, because both values gape 
apart too much.  

 

 
Figure 47 
Number of MLEs in dependence on time 
according to solution 3 

 
Needless to say, the temporal functions are defined from N0 on only, above they are 
cropped. Solution 1 proceeds similarly, but N1 is orders of magnitude greater, so that the 
crop takes place much higher in a range running nearly vertical up, which can no longer be 
processed by the plot program. And there is another difference. Distances >R/2 aren’t 
postponed into future with solution 1 and 2 similar to the dashed blue line (not to scale). 
That’s correct. In contrast, solution 3 shows them, as if it’s about a distance <R/2, which is 
also correct. Of course, there is even such a line with solution 3 (example 0.8Rʹ), but it’s 
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not being emulated by expression (366). That’s correct too, since there is a nearly infinite 
number of solutions already in the example range 0.5…0.8R and beyond, depending on Rʹ. 

 
Now let’s get down to the entropy. Generally (351) applies here. As determined more 

above, the entropy of the MLE calculates similar to that of a black hole according to (357) 
right (Sb). Thus, we have to multiply (351) with π. However, that applies to the metric wave 
field only and not to the CMBR. All other problems may be calculated with the conventional 
ansatz and (351). In doubt just divide the results by π. 

 
The course of the entropy S in dependence on the radius is shown in Figure 48. Starting 

with a value of zero at r = r0/2 the entropy without consideration of curvature 1 rises 
continuously with increasing r, runs through a phase of minor ascend and skyrockets 
towards infinite with r → cT. But an infinite value will not be achieved, since the number of 
line elements until the edge is limited to N1. 
 

 
Figure 48 
Entropy in dependence on the radius 
 

Because of the pole solution 2 is less suitable. For solution 1 we obtain the huge value of 
S1 = 3π k (⅔ + ln �0 + ln ln �0)  ≈ 1312 πk = 1.89701·��−20 J K−1. For solution 3 the entropy 
S0 applies. It’s defined as follows:  

 
3 3 20 1

0 0 0

2 1
S πk ln π Λ πk ln π Q 1.81821 10 J K

3 12
− −   = = = ⋅   

   
ɶ      (368) 

 
The temporal dependence of S0 for the case r = const is depicted in Figure 49. Interestingly 
enough the values of regions with fixed size decrease steadily. Maybe that’s the „motor” of 
the evolution from the lower to the higher. In the case constant wave count vector the 
entropy S(r ≠ R/2) remains constant across the whole definition range. It calculates according 
to (369) on the left. For S0 the right expression applies: 

 

0 0 0

t
S S 6π k lnS   π S 3π k ln 1k n 

T
 l N

 = + = + + 


=


tɶ ɶ
ɶ

    (369) 

 
To calculate S1 we advantageously substitute �0 with �̃0 t

2 in the expression in the paragraph 
below Figure 48. The entropy with constant wave count vector isn’t defined across all times 
for all radii either. Certain distances don’t exist, until the radius of the expanding universe 
has reached that length. Then S gets the value S0 resp. S1 exactly on entry. It applies: The 
later the entry, the higher starting entropy. Curves are being cropped even here in turn. 
Solution 1 looks similar like Figure 49. The curve S1 proceeds far beyond the plot however. 
Initial distances > R/2 are moved into future too, with solution 3 into the range < R/2, just 
like with N1 and N0. 
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Figure 49           
Temporal dependence of the entropy 
for r=const (linear scale) 

 
The temporal functions S0 and S1 are tending to ∞, as we can easily see by application of the 
limit theorems. Concerning the future of the universe we can say, that we don’t have to fear 
a heat death. A thermodynamic equilibrium will never occur. The reason is the propagation 
of the metric wave field, as well as the expansion of the universe. That was a close shave! 
 
 
 
4.6.2. Particle horizon 

 
As shown in section 4.6.1. the MLE disposes of an inner SCHWARZSCHILD-radius with the 

value r± = r0. It has the property of a particle horizon. Because of the relations R = r0Q0 and 
r1 = r0/Q0 it may be possible, that such a particle horizon also exists on a macroscopic scale, 
for the cosmos as a whole. The HUBBLE-parameter H0 = ω0 Q0

−1 has the character of an 
angular frequency, just as ω0 = ω1 Q0

−1. Thus, it may be possible, that even the whole universe 
owns an angular momentum in the amount of ħ1 = ħ Q0. The MLE with its spin 2 lets 
suppose, that the universe also owns a spin of the size 2. That would explain a lot of 
phenomena. Therefore, with this information, we want to try, to calculate such a hypothetic 
SCHWARZSCHILD-radius R± with (L = ħ1 = ħQ0). 

 
We start, in that we multiply (355) with Q0 resetting the bracketed expression to the 
definition a = ħ m–1c–1. The value M1 is determined using the right-hand ansatz and (794): 

 
2

0 12
0

1

Q
R Q r R R

2M c± ±

 
= = ± −  

 

ℏ
      with     1

1 0 0 0 02

M G
2ct M m Q

c
= = = µ κ ℏ  (370) 

 
2 2 2 2 2

0 0R R R Q r R R R R±= ± − = ± − =            (371) 
 

As result a double solution with R± = R turns out, exactly as with the MLE but on a larger 
scale. The universe inside is larger then outside apparently, maybe due to the curvature of 
the time-like vectors. Notably interesting is the value M1=1.73068·1053

 kg (Q0 as per Table 
11). That’s the total mass of the metric wave field and identical to MACH’s counter mass. 
Dividing it by the volume V1 = ����π R

3
 we obtain a value of 1.94676·10−29

 kg dm−3 for the 
density. This one is about 3/2 times greater than the value G11(R/2) calculated in section 
7.2.7.2. Well, we are living in a black hole actually and we can use nearly 100% thereof. Or 
is there yet an „outside“ and the universe is nothing other than a huge line element? 
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4.6.3. Temperature 
 

Now we want to assign a temperature to the discrete MLE. According to [4] it arises from 
GIBBS’ fundamental equation as well as from (23) and (32) to: 

 
2

b bT dS d(mc L) d= − ω           (372) 
 

  
TbdSb =  d(m 0c

2) − d(ℏω 0 )  =  0 Tb ≡  0  K     (373) 
 
because of ω0 ≠ const. This agrees with the observations very well. The famous expression 
mc2 = ℏω is just nothing other than a special case of the GIBBS fundamental equation for 
Tb = 0 on the level of the metric wave-field. This one, thermally seen does not comes into 
picture – For the case L= 0 namely following expression would arise for the temperature: 
 

  

Tb =  
ℏc3

8πm0Gk
 =  

W0

8πk
 Tb =  5.638 ⋅1030K    (374) 

 
The result (374) deviates from the one which we would obtain using WIENs displacement 
law. The magnitude is correct however. Indeed this is even only applied to black radiation, 
whereas, in our case it’s about a discrete, very narrow spectral-line. The temperature would 
be proportional Tb~ t–1. Since this is not the case, it applies: 
 

1. The temperature of the metric wave-field is equal to zero.  
2. The discrete MLE owns the moment of momentum of  ℏ. 
3. The inner SCHWARZSCHILD-radius of the MLE is equal to r0 . 
4. The inner SCHWARZSCHILD-radius of the local universe is equal to 2cT. 

 
For this reason PLANCK’s quantity of action is also a fundamental quality of the metric 

wave-field. However it is not a constant, so that we will dedicate an individual chapter to it 
(4.6.4.1.). 

 
Because of the integer spin, the MLE is subject to the BOSE-EINSTEIN-statistics formally. 

In what extent this is of meaning, cannot be said here. It is possible however that effects like 
e.g. superconductivity are based on the existence of the metric wave-field still owns the 
MLE a charge, its effective-value is near the electron charge:  

 

0
0

19q 5.29081769 10 As = 3.30226866e
Z

−= = ⋅
ℏ

          (375) 

 
With the superconductivity, it works around the shape of Cooper-pairs consisting of two 

electrons with inversely directional spin and FERMI-velocity, just having a charge of 2e and 
integer spin of zero quantity. They are likewise Bosons with it. So it would be possible that 
such a COOPER-pair occupies the position of the ball-capacitor in our model. On this 
occasion the charge-difference would amount only approximately 39% of the total-charge of 
the MLE, so that the electrons can tunnel into the conducting band, how it is the case with 
semiconductors e.g.. The width of the conducting band results directly from the 
HEISENBERG’s uncertainty principle of energy and time as well as from (23) and (24) to: 

 

  

∆W∆t  ≥  
ℏ

2
           as well as  

  

∆W0 ∆τ0  ≥  
ℏ

2
  (376) 
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Then the lower limit of the conducting band amounts to 2.134e so that the charge of the 
COOPER-pair with 2e is only 2% (q0) below the conducting band. By the way, the equality-
sign in (377) applies only then, when a GAUSSian normal-distribution of the charge is on 
hand, which is not given for N=1, so we can do well without a tunnel-effect at the worst. 
Like that, a conduction could take place directly on the level of the metric wave-field, at 
which point the specific impedance 1/κ0 = 7.30045·10–94 Ωm2/m is so extremely small that it 
is factually equal to zero. At all, an instrumentational determination of κ0 in this way would 
be far outside our technical possibilities. 

 
 
 

4.6.4. Energy 
 
Before we do broader contemplations in this direction, we first turn to the PLANCK’s 

quantity of action, since it is joined narrowly with the electromagnetic energy. 
 
 
 

4.6.4.1. The PLANCK’s quantity of action 
 
 

4.6.4.1.1. Temporal dependence 
 
We have seen that PLANCK’s quantity of action is equal to the product of electric charge 

and magnetic flux. First, we want to put the time-function for the value of ℏ, which is 
applied to t»0, (approximative solution). Because of (122) we can immediately write down 
for ϕ0: 

 

00 0
i

0

ˆ
(cos 2 t sin 2 t)

2 t
ϕ

= ω + ωϕ
πω

       (378) 

 
Furthermore applies: u0 = φ· 

0 (self-induction). We assume the exact formula more safely. 
During differentiation we have to pay attention once again that ω0 is a time-dependent value. 
One works just useful using equ. (114)  

0 i 0 0J ( t)ˆ 2=ϕ ωϕ    0 i 0
0

0

2 t
Jˆϕ

κ
=

ε
ϕ     (379) 
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0i 00 1u J (2ˆ t)− ϕ= ω ω              (381) 
 

For q0 we obtain because of (123): 
 

0 0 0 00 0q C u r u= = ε                  (382) 
 

0 0 0 0 0 00 i 1 i 1q r J (2 t) c J (2 t)ˆ ˆϕ ϕ= − ε ω ω = − ε ω          (383) 
 

0 i 01
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Now, we get for PLANCK’s quantity of action: 
 

i i
0 0

2 2
0

0 0

ˆ ˆ
(t) (cos 2 t sin 2 t ) cos 4 t

2 t 2 t
= ω − ω = ω

πω πω
ℏ ℏ

ℏ     (386) 

 
              is the amplitude (peak value) of ℏ at the point, at which the time-function of ℏ has 
the value 1. Now, PLANCK’s quantity of action itself is actually not an (almost) periodic 
time-function but its effective-value, albeit this is on the other hand even a function of time. 
The effective-value is defined as the quadratic median value across one period: 
 

k 1

k

2

tk 1 k

t
1QM F (t)dtt t

+

+
= − ∫             (387) 

 
For periodic functions, the lower limit is zero in general, the upper limit a multiple of π, 

mostly 2π. That e.g. leads to an effective-value of ½ �� for the sine- and cosine-function. 
The effective-value of the product of two functions is equal to the quadratic median value of 
this product or equal to the product of the effective-values of both functions. 

 
Unfortunately, we don’t have to do with periodic functions here. Because of the root in the 

argument frequency is constantly changing and with it the period. Equation (387) is 
analytically solvable in our case admittedly, even for the Bessel (exact) solution. However 
we cannot do anything with the result so much, particularly if t is near to zero, since 
frequency is changing there more quickly than the coverage of median value. That means, in 
the time immediately after big bang, across the first two or three periods, the PLANCK’s 
quantity of action as such is not defined. Only the exact time-functions apply here. Now it is 
opportune however, to have a function, which can be applied back up to the point of time 
t=0, just, in order to determine ℏi.  

 
Therefore we set the effective-value of charge and magnetic flux to ½ �� of the amplitude. 

This is not quite exact admittedly, at least with small arguments, it’s about an approximative 
solution then again anyway. We get for t»0 then: 

  

0

0 0

i i i
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ℏ ℏ ℏ

ℏ            (388) 

 
The quantity of ℏi (peak- and effective-value) allows to be determined from it easily: 
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This value is very much larger than the present. This has enormous effects onto the 
circumstances in the time just after big bang.  We will defer to it in this chapter even near. 
For flux and charge applies analogously (24) and (36) according to Table 11:  
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    (391)  

 
In future we will use the value ℏ1 instead of ℏi, since it can be reckoned with it much better. 
On the basis of the anyway inaccurate value of the HUBBLE-parameter and with it of Q0 the 
approximative solution (388) is sufficient for the bulk of all cases. 

i i i
ˆ q̂ ˆ= ϕℏ
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Figure 50 
Miscellaneous approximative solutions for 
PLANCK’s quantity of action, larger scale 
 
 
 

 
Figure 51 
Miscellaneous approximative solutions for 
PLANCK’s quantity of action, smaller scale 

 
 

For examinations of the period immediately after big bang it’s however opportune to work 
with the time-function. This is as follows: 

 

0i 0 1 0
ˆ J (2 t) J (2 t)= − ω ωℏ ℏ  (392) 
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Another expression for the effective-value h can be found with it. Whether this is better than 
(389), one can see in Figure 50 and 51 – the approximation (388) is well almost down to t=0. 
Even the associated functions are declared. One sees, the application of Bessel functions 
lead to no increase in precision opposite to (388), rather to the contrary. The Bessel 
functions of 0th and a mix of 0th and 1st order turn out even more inaccurate solutions. In 
future we’ll therefore only use expression (388) that still has the additional advantage, to be 
better integrable. Also the dependence on the present values is interesting. We take up the 
known transformation 2ω0t → t/T once again obtaining: 

 
1 1
2 2

0

1 t t
1 1

T TQ

− −   = + = +   
   

ℏ
ɶℏ ℏ

ɶ ɶ ɶ
 (393) 

 
The temporal dependence of PLANCK’s quantity of action has also effects on the value of the 
electromagnetic energy. That means, beside the cosmologic red-shift, an additional 
debasement arises by decrease of ℏ, so that Wγ ~ t–5/4 applies. 

 
 
4.6.4.1.2. Spatial dependence 

 
If PLANCK’s quantity of action is a function of time, so it is also a function of the location. 

This is applied to each local space-temporal coordinate-system. One gets the function, as 
handled in the preceding sections already several times, by expansion of (393) to: 
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     (394) 

 
That is the value of ℏ, valid for a process in the distance r of the observer, seen by the 
observer. According to this definition ℏ can take on even negative values, which cor-
responds to the appearance of negative energy. At the place of sign-change, there is a spatial 
singularity with proper certainty. We obtain the course figured in Figure 52 which is a 
function of  distance.  
 

 
 
Figure 52 
PLANCK’s quantity of action 
as a function of distance for t=0 
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Figure 53  
PLANCK’s quantity of action 
as a function of time for r=const 

 
Near the half world-radius (cT) there’s going to be an extreme ascend towards infinite. It is 
to be considered that the maximum-value by definition as median value is restricted to ℏi. 

 
With the temporal dependence, the two cases constant distance and constant wave count 
vector are to be distinguished again. The course for different distances in the case r=const 
shows Figure 53. In the case of constant wave count vector the quantity of PLANCK’s 
quantity of action doesn’t remain unchanged however, it’s decreasing too. The course is 
figured in Figure 54. 

 

 
 
Figure 54 
PLANCK’s quantity of action as function 
of time with constant wave count vector 
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It will be obtained by application of (343) and (346) without consideration of the restricted 
definition range by replacement of r (395).  However the value of ℏ over a long time period 
(approximately one age) remains virtually constant (Figure 55).  With small distances 
applies (393) as approximation, that means, ℏ depends only on time. For larger distances, the 
time period ℏ ≈ const is shorter admittedly, however the end already soon will be situated 
behind the particle-horizon, so that ℏ even can be regarded here to be constant over the 
whole definition range. 
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  (395) 

 

 
 
Figure 55 
PLANCK’s quantity of action with constant wave count vector 
for several initially distances (time calculated from nowadays) 
 

 
Obviously, even a dependence between entropy and PLANCK’s quantity of action can be 

constructed with it. This can take place with help of equation (368) and (394) by substitution 
of r. Analytically, the problem can be solved only in one direction as function S(ℏ) however. 
This dependence does not figure a contradiction. Seen from information theory, entropy is a 
measure for the disorganizedness of a system. The larger the entropy, all the larger the 
uncertainty of the inner conditions, even that a previously existing order will be replaced by 
an accidental order.  
 

The quantity of PLANCK’s quantity of action on the other hand determines the limit 
between micro- and macrocosm on reason of HEISENBERG’s uncertainty principle for 
impulse and place: 
 

p x (mv) x
2 2

∆ ⋅∆ ≥ ∆ ⋅∆ ≥
ℏ ℏ      (396) 

 
As test-particle, we use the most lightweight subatomic particle with a rest mass different 

from zero, the electron. Under the assumption, that the maximum velocity is c, we obtain as 
upper limit for the microcosm ∆x:  
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   (397) 

 
If the rest mass of the electron doesn’t change according to the BIRKHOFF-theorem, a 

larger value of ℏ means nothing other, than an upward shift of this limit. In the period just 
after big bang, this limit has been in the magnitude of the entire universe (quantum 
universe). But even in the proximity of the inner SCHWARZSCHILD-radius of our local 
universe and near time-like singularities, like black holes, this effect is to be observed or 
should have to be to be observed.  
 

How can we interpret this? According to the SRT a coordinate-transformation between 
frames of reference, their relative velocity to each other oversteps c, is impossible. Even 
with strong gravitational-fields (URT) is this the case. According to the classic theory, is the 
transition transformation possible� transformation impossible abrupt. According to the 
present theory, this transition is gliding however. The closer we come to the 
SCHWARZSCHILD-radius with its escape-velocity c, the larger will be spatial curvature, 
entropy and the value of PLANCK’s quantity of action. The limit of the microcosm shifts with 
it upward and there’s going to be the appearance of quantum-effects even with macroscopic 
bodies (not with time-like vectors!). Then, a simultaneous, exact determination of impulse 
and place is impossible even for macroscopic bodies. These can be localized only by the 
electromagnetic radiation sent out by them. Since time-like vectors spreads on different 
world-lines having another „length“, time-like and space-like coordinates of the source don’t 
coincide and the uncertainty remains. 
 

Near the point cT the uncertainty oversteps the magnitude of distance finally. As a result, 
each transformation, even if it should be mathematically possible, becomes pointless.  
Because of the limit of ℏ, there is also a maximum-value of uncertainty ∆x. For the electron 
this amounts to (updated value): 
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This value is for our present frame of reference only of theoretical interest however. In a 
distance, that amounts to R/2 exactly, actually (R–r1)/2, the uncertainty is so extreme indeed. 
But only about the classic BOHR’s hydrogen-radius (5.28·10–11

 m) beside it – the bodies we 
are considering, doesn’t have the diameter zero – the local uncertainty for the very same 
atom amounts to 3.64·1020

 m only, as we can easily check using (394) and (397). Also the 
value of ℏ is essentially lower there. In the distance R/2–1 m we obtain for the hydrogen-
atom a value of ∆x= 1.936·1010

 m, for a body with the mass 1t (e.g. 1m3 water = cube with 
the edge length 1m) only 3.2·10–20

 m.  
 

For macroscopic bodies, it’s just about a rather abrupt transition, not so for microscopic 
bodies. So, the uncertainty in 1000 km distance for the hydrogen-atom still amounts to  
1.936·104

 m, for the electron even 3.529·107
 m. The uncertainty always refers to our local 

frame of reference only, just on a very large distance. Quite other, lower values would be 
applied to an observer being located at the place.  
 

In the time just after big bang, i.e. seen from the spatial singularity as well as in their 
proximity, the temporal and spatial dependence of PLANCK’s quantity of action plays a much 
more essential role.  Moreover it’s to be noticed that the spatial singularity, the expansion-
centre, is located outside the world-radius determined by our space-time-coordinates . 
Exactly seen is this point outside each possible space-temporal coordinate-system, since it’s 
inaccessible for space-like vectors. 

 
However this doesn’t apply for „intellectual vectors“. If we would have a look at the 

expansion out of the spatial singularity, so the temporal course of the expansion of the 
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universe as a whole, figured in Figure 57, would turn out. The course of the expansion-
velocity of the wave-front (Figure 56) corresponds, up to the maximum at 0.851661c, to the 
one in Figure 21 and 22. Up to a radius of 1.978 m with 7.747 ns, it’s about a quantum 
universe, after that about a gravitational universe. As border-criterion has been assumed the 
equality of world-radius and uncertainty ∆x for the electron (372;2).  

 
 

         
Figure 56 
Velocity of the wave-front at the total-world-radius K 
 

 
Figure 57 
Quantum universe and gravitational universe 

 
 
4.6.4.2. Energy of the metric wave-field  

 
What happens then now with the energy „consumed“ in R0? In section 4.3.2. we have 

proven that the MLE is showing a non-adiabatic behaviour. It is this an irreversible process, 
that off-goes by absorption or emission of energy. We will already exclude the first case, 
energy-absorption, from obvious reasons. The second case, a process, that proceeds under 
energy-emission, remains. One possibility would be the conversion into mechanical work, 
another, the conversion into electromagnetic radiation (heat). The first case, conversion into 
mechanical work, doesn’t come into question, since there is no change, neither in 
temperature,  nor in entropy. 
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 Also, there are no material bodies, at which said work could be performed, since we 
considered empty space only until now. We’ll now assume, that the energy doesn’t vanish 
anywhere but it’s emitted into space as cosmologic background radiation (CMBR) instead: 
 
 

 
V. The energy released with the expansion of the metrics is emitted as cosmic 

 background-radiation into space.. 
 

 
 
It propagates according to the legalities derived in section 4.3.4.4. with light speed as 
overlaid interference of the metric wave-field. A part of this radiation-energy is transformed 
in the course of expansion into particles as well as material bodies, that fill our space little 
by little, so that it is no longer empty. Details are reserved to a later section. This matter  
however doesn’t have a noticeable effect on the metrics as whole, since its mass is far below 
the mass of the metric wave-field. The interferences of said field, caused by the material 
bodies, also propagate with speed of light and are cause of the gravitative interaction. 
According to [24] statement VI is described by the energy-conservation-rule of the 
MAXWELL equations 
 

  div   =  0w + −S i Eɺ          (399) 
 
In this case 0wɺ is the shift of the energy-density, S the POYNTING-Vector, i the current-density 
and E the electric field-strength. This process should still take place even today then. 
However, on reason of the extreme Q-factor, the amount of the emitted energy would be so 
low that it is factually not verifiable then. 
 
 
 
 
4.6.4.2.1. Energy of the Metric line-element (MLE) 

 
Let’s have a look at the discrete MLE first. The energy of the electromagnetic radiation is 

defined as W0 = ℏω0. As well ℏ as ω0 are functions of time and place. First, we want to figure 
the temporal dependence. Under application of (388) we obtain: 

 

W0  =     
  

ˆ ℏ i

4 πt
      =        ℏ1H       =       ℏQ0H      =      ℏω0                 (400) 

 
Everything in all a very simple expression, that doesn’t allow further simplification. This 
applies, if we assume the expansion-centre as zero of a purely temporal coordinate-system. 
In the expression, the effective lattice constant π appears interestingly enough. The course is 
shown in Figure 58. There is also a maximum-energy (Q = 1/2): 
 

Wi   =     
  

ˆ ℏ i

4πt i

      =       
  

ℏ iω i

π
      =     4 ℏ1ω1     =      4,4508·10131 Js   (401) 

 
No  MLE’s exist at an earlier point of time. If we want to figure the spatial dependence 
(Figure 59), we have to rearrange (400) a little bit. We replace ω0 = c/r0 :   

            (402) 
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Figure 58 
Energy of the Metric line-element  
temporal dependence 

 
 
 
The third expression in (402) clearly shows that ħ is also a moment of momentum as well as 
a part of the definition of mechanical and electromagnetic energy. On the basis of the 
quadratic expression in the denominator the energy of the MLE is always defined positively, 
even behind the spatial singularity. The course immediately behind the particle-horizon as 
well as the one up to the event-horizon is figured in Figure 60 and 61. 
 

 

 
 

Figure 59 
 Energy of the Metric line-element  

spatial dependence up to the particle-horizon 
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Figure 60 
Energy of the Metric line-element 
 spatial dependence at the particle-horizon 

 

 
Figure 61 
Energy of the Metric line-element 
spatial dependence up to the event-horizon 

 
 
 
4.6.4.2.2. Power dissipation 

 
According to our model (Figure 12) a power dissipation Pv appears at the impedance R0. 

This is a function of time again and should be, according to assumption VI., reason for the 
cosmologic background-radiation. Since we don’t know exactly, as Pv behaves, whether it 
suffices, like hitherto, to consider the average value only, we first want to put the exact time-
function. It applies: 
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Figure 62  
Square of the Bessel function of  
1st order during the first period 

 
 
 

  
Figure 63 
Power dissipation of the Metric 
line-element during the first maximum 
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Minima and maxima are fixed only by the Bessel function. The first two periods are 
interesting particularly. Therefore, in Figure 62 is first figured the course of the Bessel 
function alone, since, because of the rapid decrease of amplitude, it’s impossible to 
recognize the null in the representation of the entire function (Figure 63). The estimation 
yields 15 t1 for the first and 50 t1 for the second null. 

 
Exactly seen with both maxima it’s only about the first period, since a frequency 

duplication is caused by the square. We have to do with a case here, at which it’s necessary 
to calculate with the exact time-function, as already indicated in the previous section. The 
course of power dissipation during the first maximum is mainly determined by the quotient 
in front of the Bessel function. No similarities exist with Figure 62. The median- and energy-
value have been determined by numerical integration using the »Mathematica«-function 
NIntegrate. There is a problem in that the power dissipation is directed against infinity in the 
zero point. As attempts with the lower integration-limit emerged, the integral converges to 
the value stated in Figure 63 fortunately. 
 

Before we examine-on the first maximum, let’s have a quick look at the second one 
(Figure 64). One can see that as well the power as the energy of this maximum is far below 
the first one (–21.6 dB= 1/143). That means: If the cosmologic background-radiation is really 
the action of the power dissipation, accumulating in R0, so it is (almost) exclusively the first 
maximum, the qualities of this radiation are defined by. Conceivably, an action of the second 
maximum can be proven yet with the present-day technical methods. 

 
 

 
Figure 64 
Power dissipation of the Metric  
line-element during the second maximum 

 
 

We want now to examine the first maximum more. It’s about a discrete impulse with a 
defined length T incipient in the point t = 0. The LAPLACE-transformation is at the best 
suitable to it. With it, one first determines the figure-function G(p) as already done in section 
4.3.2. Using the transition p → σ + jω we are able to determine the spectrum of our impulse 
then. With a single-impulse, we get a continuous spectrum. Since we doesn’t know the 
figure-function of (404) and, to the transformation, would have to solve the convolution-
integral with (143) first, what works out quite difficult, we will choose another way: We 
split the function into 64 discreet values calculating the figure-function with help of the Fast-
FOURIER-Transformation (FFT). The current FFT-algorithms are been suitable to it, as e.g. 
the »Mathematica«-function Fourier[{List}]. With it, we must however multiply either the 
result or the initial-values with the root of 2π, since it’s about a LAPLACE-transformation.  
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As a result, we get a list of 64 complex values in turn, with which the last 32 ones 
correspond to negative frequencies. The first value corresponds to the DC component and 
after transition to σ. We want to take up an estimation of bandwidth and Q-factor. We set 
σ = 1 therefore (resetting). First, we calculate the amounts of the figure-functions however. 
These are figured in Figure 65 and 66 (only positive frequencies ωk = 2π/T).  

 

 
Figure 65 
Continuous spectrum (first maximum) 

 
 

 
Figure 66  
Continuous spectrum (second maximum) 

 
Simultaneously, the transfer-functions of a loss-affected oscillatory circuit of 1st order with 
various Q-factors are figured. We can take up an estimation of the bandwidth of the 
cosmologic background-radiation with it. For the transfer-function applies: 
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  (405) 

 
For the first maximum, the Q-factor is at ½, with the second maximum at 1. The curves does 
not quite come to cover. The cause is the low resolution (64 values) on the one hand, on the 
other hand, it only scratches the mark of being a minimum-phase-system. In fact, it’s about a 
borderline case. This is also named critically stable. 
 
The Q-factor of  ½ corresponds exactly to the circumstances at the point of time t1/4 as well 
as r1/2, just at our coupling-length. With the second maximum, we have to do it with a larger 
Q-factor. That means, should the emission of the cosmologic background-radiation occur 
„continuously“ according to the quantum-mechanical understanding, we would have to do it 
with a very narrow spectral-line at the present point of time, which overlaps in the area of 
the maximum of the cosmologic background-radiation. Unfortunately, many other spectral-
lines are in this area at 160 GHz, caused by organic radicals like e.g.  CN–, CH3

–, so that a 
proof is difficult. 
 
Expression (405) comes from electrical engineering and describes the power dissipation Pv 
of an oscillating circuit of the Q-factor Q at frequency ω, V is the discord. The Q-factor is 
well known and amounts to Q = ½ with ωs = 2ω1. The expression on the right follows directly 
from the sampling theorem. The cutoff-frequency of subspace ω1 is the value ω0 with Q =1. 
We shall continue to consider this point further on. Next, however, we want to deal with the 
properties and the conditions during in-coupling into the metric transport lattice. 

 
 
 
 

4.6.4.2.3. Qualities of the cosmologic background-radiation 
 
The following calculations are based on the newly determined value of the HUBBLE-

parameter of 68.6241 kms–1Mpc–1. The cosmologic background-radiation disposes of three 
further essential qualities: Firstly it’s isotropic, secondly it’s not polarized and thirdly it’s 
black, as has been determined with detailed examinations clearly. The third quality is 
especially important. The cosmologic background-radiation seems to behave such as would 
it be emitted by an ideal black body. On the basis of this quality, the PLANCK’s radiation-
rules can be applied. However, with thermal radiation, it’s not about a discrete spectral-line 
but with a steady spectral-function. 

 
 

The intensity of the radiation-field is a function of the frequency being clearly described by 
PLANCK’s radiation-rule. However, various versions exist, which only differ in the factor in 
front of the expression [68]. Firstly, there is the half-space, which is a hemisphere with the 
radius r being applied to emission-issues. The hollow-space is a cube with edge length r 
being used when the radiation is in equilibrium, e.g. inside the black body. We choose the 
last form because the CMBR is in equilibrium and the current field strength can only be 
determined via the energy density wk in J/m3 in [59]. Using ℏ and ω instead of h and ν we get 
the following expression: 
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T is the temperature here and es the unit-vector. For very low temperatures (ħω » kT ) 
expression (407) changes into the WIEN radiation-rule (approximation). But it’s no mistake 
to calculate always with (407). We want even to do this. 
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The course of intensity for a temperature of 2.725436 K is depicted in Figure 67 (curve 6). 
One can see, that there is a definite maximum. This on the other hand, can be determined 
with the help of WIEN’s displacement law:  
 

ħωmax =  �� kT  = 2.8214393721 kT      WIEN’s displacement law   (408) 
 

The integral of the intensity over the entire frequency range [Wm−2], the POYNTING-vector, 
is also of interest. That’s the STEFAN-BOLTZMANN radiation law:  

 

  

S k  =   Wωdω∫   =   σT
4e s   =   

π 2k 4
T

4

60  c 2
ℏ

3  e s
    STEFAN-BOLTZMANN radiation law     (409) 

 
with σ = 5.67037·10–8Wm–2 K–4. Because of the constant of integration, (409) applies to 
both the half- and the hollow-space. In Figure 67 I superimposed the frequency response of 
an oscillating circuit with the Q-factor 1/2 (curve 1). Because of the logarithmic presentation 
a multiplication of the frequency response with the maximum value resp. an attenuation 
(damping) corresponds to a displacement in y-direction only, so that we can already make a 
comparison without knowing the value itself. Thus, curve 1 corresponds to the emission 
spectrum at the moment of in-coupling into the metric transport lattice. I choosed the 
maximum value such, that both curves come to cover. But Figure 67 shows only an approxi-
mation. 

 
We can see, it’s possible to achieve a full coverage of both curves in the lower domain.  

But there is a descent at the higher frequencies of the CMBR-spectrum, which does not 
correspond to the behaviour of such an oscillating circuit. Such a curve cannot be achieved 
with a higher-order low-pass either. Thus, that could be the result of the upper cut-off-
frequency of the metrics only. To the verification we need the exact frequency the CMBR has 
been emitted with, in order to determine the value z of redshift. This frequency must be 
somewhere in the range of ω1. The upper cut-off-frequency really would  come into effect in 
this case (see also [46]). On the one hand that follows from the length T of the first 
maximum, on the other hand we have to do it with two frequencies, which are changing 
temporarily according to different functions. There is once the metric wave field with 
ω0~t−1/2

~Q0
−1 and the CMBR with ωk~t−3/4

~Q0
−3/2 on the other hand. That means, these func-

tions must have intersected each other at some point in the past having the same value ω. 
 
As is known we have determined the frequency ω0 very precisely. Therefore we also 

know ω0.5 exactly so that we can calculate the frequency of the peak of the CMBR and in turn 
its temperature. Even the band-width of the LAPLACE-transform of the first maximum 
suggests a Q-factor of ½. This would correspond to the conditions at the point of time t1/4 
with Q0.5 = ½, ωU = ω0.5 as well as r1/2, just our coupling-length. The frequency to this point 
of time amounts to:  
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    (410) 

 
This does not quite correspond to the value that results from the pulse length of the first 
maximum, but is in the order of magnitude. Now the conditions at this time are shaped by a 
very large uncertainty and a part of the emitted frequencies are, because of the large 
bandwidth, anyway above, others below (410), so that it is well possible that the in-coupling 
of the cosmologic background-radiation takes place right at this point of time with exactly 
this centre frequency. 
 

The following considerations on in-coupling relate specifically to the CMBR. Maybe it 
seems to be a little bit complicated, but it’s just a model, which should reflect reality as well 
as possible, not the other way round. Now – up to the moment t1/4 of input coupling, the 
already emitted energy exists as a free wave. The conditions at this point of time are  
analyzed in detail in section 4.6.5.2. »The aperiodic borderline case«. Now there’s going to 
be the construction of the metric lattice and the signal is coupled in. With the input coupling, 
a compression of the wavelength occurs i.e. an increase in frequency about the factor �� due 
to a rotation of the coordinate system about 45°, which we have done in section 4.3.4.3.3. 
(the metric wave moves in r-direction, the overlaid signals in x-direction).  



 
 

104 

 
Figure 67  
Intensity of the cosmic microwave  
background radiation with approximation 

 
Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up 

to the moment t1/4, both with ω0~ωU~t−1/2
~Q0

−1. But with in-coupling ωU�ωs the temporal 
dependence changes into ωs~t−3/4

~Q0
−3/2. This results in a transformation corresponding to a 

multiplication by a factor ⅔, comparable with the transition from one medium to another 
with different refraction indices.  

 
But there is yet another, additional effect: In section 4.6.1. we found, that a cube with the  

edge length r0 contains four MLE´s altogether. Hence, the energy must be divided among 
these four MLE´s. With it, the in-coupling frequency decreases additionally with the effect, 
that ωs is smaller than ω1/2 now. The first two effects are depicted in Figure 68. The split we 
have to take into account elsewhere. 

 
Altogether, to the frequency at the moment of in-coupling the following factor is applied 

ωs = �⅔�� ωU� 	 ���⅔�� ω1 = �����ω1 �0.4714 ω1 =  7.29281·10103s–1. With respect to the 
energy ℏUωU = 4 ℏ1ω1 only a share of 94.28% incorporated, since ℏ is neither rotated, divided, 
nor transformed, it is a property of the metric wave field itself. The split has no effect onto 
the energy balance. The 94.28% relate to a coefficient of absorption of εν = 0.9428 	 ⅔��. 
Therefore we are dealing with a grey body [47]. The black body is only a model, which 
doesn’t exist in nature. The reflected share yields a further decrease of ωs and with it even of 
ωk. So we also have to multiply with εν. Interestingly enough the value εν = 0.9428 	 ⅔�� is 
close to δ = 0,93786. However, this is a dead end. 

 
Now to the transfer itself. According to (281) the frequency of time-like vectors is 

proportional to ω ~ t−3/4. That equals ω ~ Q−3/2� for the Q-factor. We do the following ansatz: 
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The factor 2�� has nearly the same size as the factor x� = 2.8214’ from WIEN’s displacement 
law.  In section 4.6.4.2.5. we will notice that using x� instead of 2��, actually intended as an 
approximation, leads to the only result (477) that is within the error margins of the COBE 
measurement. Then (413) should read as follows: 
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This would correspond to a slightly different refractive index and the factor x� in (414) does 
not seem implausible either, as it is closely linked to the radiation laws. Apart from that we 
can see, that it’s better to relate to ω1 or ωU. The components z1b are describing the frequency 
related, the z2b however the energy related redshift. For ωk (414) we obtain a value of 
1.00673·1012s–1.  Curve 1 in Figure 67 corresponds to the signal ωs redshifted by x� Q0

3/2 with 
the frequency response of a 1st order filter with the Q-factor Q = ½. Except for the decline in 
the upper-frequent range it is identical with ωk (Curve 6). The conditions before, during and 
after in-coupling are shown in Figure 68. 
 

According to (414), the CMBR redshift has a value of z = 6.79605·1091, which is orders of 
magnitude higher than z = 1100, as »generally« assumed. On the one hand, this is due to the 
fact that this model works with variable natural »constants«. Due to the expansion, i.e. the 
increase of r0 ~ Q0 (the viewer grows with it) the impression is given, that z is only proportio-
nal to Q0

1/2. This would correspond to a value of z = 8.14828·1030 and is still well above 1100. 
On the other hand, one assumes today that the physical laws shortly after Big Bang did not 
differ significantly from those of today. So the origin of the CMBR is said to be around 
3000 K, the recombination temperature of hydrogen, at a point in time 379000 years after 
Big Bang. However, the exact results of the calculation of the CMBR temperature in relation 
to the time t1/4 suggest that we must slowly get used to the idea that it must have been 
different at that time. 

 
 

 
Figure 68  
In-coupling process and expansion 

 
Let us now assume that the decline at the higher frequencies is really caused by the exi-

stence of a cut-off frequency. In any case, such a specific course cannot be achieved with a 
normal LC-low-pass filter of any order. Then the intensity of the cosmological background 
radiation would have to follow exactly PLANCK’s radiation formula. We therefore want to 
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see whether PLANCK’s curve 6 in Figure 67 can be approximated from the original curve 1, 
initially only as an estimate. 

 
We have already realized that a single MLE owns a cut-off frequency (147), which 

changes during expansion. During propagation, only the active-part A(ω)·cosϕγ with 
ϕγ = B(ω) is been transferred (real part). Thus we exactly get the value ωg = 2ω1, it applies 
Ω = ω /(2ω1). With more exact contemplation we can see, the cut-off frequency may become 
effective in the first moments of propagation only. 

 
Let’s have a look at the moment of in-coupling now:  The signal ωs (curve 1) is multiplied 
with the frequency response A(ω)·cosϕγ after in-coupling. As a result, we obtain curve 2, 
which already comes very close to the PLANCK-curve. Now the signal is transferred to 
another MLE, at which point the frequency has decreased to a value of ωs /�� within this 
period. We now re-apply the frequency response to the signal obtaining curve 3 (We 
considered the frequency to be constant at the presentation scaling up the upper cut-off-
frequency accordingly instead). Curve 3 comes even closer to the targeted result. We repeat 
the entire process twice again obtaining graph 4 (ωs /1) and finally graph 5 (ωs /2), which 
figures a very good approximation of PLANCK’s graph. 

 
It could be so just thoroughly that PLANCK’s radiation-rules are really the result of the 

existence of an upper cut-off frequency of the vacuum. In this connection is to be paid 
attention to the fact, that that, being applied to time-like vectors emitted directly after Big 
Bang, must apply to time-like vectors, emitted at a later point of time (e.g. today) too. With 
time-like vectors, it is impossible to determine exactly, when and where they have been 
emitted. Since no vector can be marked with respect to a second one, each thermal emission 
must run according to the same legalities (PLANCK’s radiation-rule) then. 

 
After we were able to confirm our suspicion with the estimate, we now want to carry out 

an exact calculation. Please find the complete article in [46]. Let’s deal with the source 
function first. We continue with (405) and rearrange: 
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   (416) 

 
You can find that expression more often, among other things even with the group delay TGr 
(152) however for a frequency ω1. For a frequency 2ω1 applies for TGr and the energy Wv: 
 

  

2 2

Gr v Gr2 2
1 1

s
s

PdB( ) 1 1 2
T  =     W  P T   

d 1 6 3 1

ω Ω Ω   = = =   ω ω + Ω ω + Ω   
  (417) 

 
The factor �⁄� comes from the splitting of energy onto 4 line-elements, as well as from the 
multiplication with the factor �⁄� because of refraction during the in-coupling into the metric 
transport lattice. It oftenly occurs in thermodynamic relations, which is not surprising. Thus, 
total-energy of the CMBR during input coupling is equal to the product of power dissipation 
and group delay, that is the average time, the wave stays within the MLE, but only for what 
it’s worth. But this only by the by. With the help of (416) we obtain: 
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b is a factor, we want to determine later on. Let’s equate it to one at first. We determined the 
value Ps with the help of (410) using the values of the point of time Q = ½. Interestingly 
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than ω1 and ω0. For an individual 
line-element applies: 
 

ω0.5 =  
ω1

Q0.5

 =  
ω1

1
2

 =  2ω1              H0.5 =  
ω1

Q0.5
2  =  

ω1
1
4

 =  4ω1  (419) 
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2 Q 0.5

4  =  
ˆ ℏ i

2π
25

4t 0.5
2  =  32ℏ1H 0.5

2  =  128ℏ1ω1
2          

  

ˆ ℏ i

2π
= ℏ1 =

ℏ 0.5

2
    (420) 

 
Expression (418) is very well-suited for the description of the conditions at the signal-
source. Here, the power makes more sense than the POYNTING-vector Sk. But for a 
comparison with (406) we just need an expression for Sk, quasi a sort of PLANCK’s radiation-
rule for technical signals with the bandwidth 2ω1/Q0.5 = 4ω1. Then, this would look like this 
approximately: 
 

dSk =   4bA  

Ω
1+ Ω2

 

 
 

 

 
 

2

 e s  dΩ         (421) 

 
We determine the factor A by a comparison of coefficients. We assume, the WIEN 
displacement law (408) would apply and substitute as follows: 
 

  

A =  
1

4π 2

k 4
T

4

ℏ
3c2      c = ω1Q

−1r1Q   (422) 

 
We put in 2�� ω1 as initial-frequency into the expression k4

T
4. This frequency is not a metric 

indeed (ωx~Q–1), but an overlaid frequency (ω~Q–3/2). During the red-shift of the source-
signal, likewise not the factor x� = 2.821439372 but the factor 2�� becomes effective. 
Alternatively, we can calculate with x� ω1 for both values, which makes no difference. Thus 
applies: 
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Indeed, that submits only the expression without consideration of red-shift. We determine 
the real values to the point of time of input coupling, in that we apply the values for Q = ½ in 
turn. It applies: 
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b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a 
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per 
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definition. Omitting the surface, we would get the transmitting-power Pv directly. In the 
above-mentioned expressions the parametric attenuation of 1 Np/R (Np = Neper), which 
occurs during propagation in space, is unaccounted for. This must be considered separately 
if necessary. 
 

Now we have framed the essential requirements and can dare the next step, the proof of 
the validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was 
just, that the Planck’s radiation-rule (406) should emerge as the result of the application of 
the metrics’ cut-off frequency (302) to the function of power dissipation Pv of an oscillatory 
circuit with the Q-factor Q = ½ (405). We find the extrema of the source function, in that we 
equate the first derivative of the bracketed expression (428) to zero. It applies: 
 

d
dΩ
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1+ Ω2

 

 
 

 

 
 

2

=  
2Ω

(1+ Ω2)2
−

4Ω3

(1+ Ω2)3
 =  

2Ω  (1− Ω2)
(1+ Ω2)3

 =  0    (429) 

 
2Ω  (1− Ω2)  =  0       Ω1 = 0    Minimum             Ω2,3 = ±1   Maximum  (430) 

 
The first solution is trivial, the second and third are identical, if we tolerate negative 

frequencies (incoming and outgoing vector). Now, we must only find a substitution for Ω, 
with which (410) and (428) come to congruence in the lower range. This would be the 
displacement law for the source-signal then (427). Since the ascend of both functions has the 
same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both 
maxima should be settled at the same frequency. The displacement law for the source-signal 
would be then as follows: 
 

ћωmax  =  a kT             Displacement law source-signal   (431) 
 
at which point we still need to determine the factor a. As turns out, we still have to multiply 
even the output-function itself, with a certain factor b, in order to achieve a congruence. The 
4 we had already pulled out. We apply the value 2�� and x� for a one after the other and 
determine b numerically with the help of the relation and the function FindRoot[#] using the 
substitution 2x = ay: 
 

a y
2( )3

ea y
2 −1

− 4b  

y
2

1+ ( y
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2

 =  0   y =10–5 b → 2                      for  a = 2 2              
b → 2.009918917   for  a = 2.821439372

 (432) 

 
The maxima overlap accurately in both cases. The lower value a is equal to the factor in 

(413). Thus it seems, that with references, except for those to the origin of each wave with 
2ω1, multiplied with ��, which is caused by the rotation of the coordinate-system about π/4, 
rather the approximative solutions with the factor 2�� apply. With lower frequencies, the 
factor 2.821439372 of the WIEN displacement law applies then again.  
 

But to the exact proof of the validity of the WIEN displacement law in the presence of 
strong gravitational-fields this ansatz is not enough. We must also show that the maximum 
of the PLANCK’s radiation-function behaves exactly according to the WIEN displacement 
law, that means the approximation and the target-function must come accurately to the 
congruence. Since the difference between a factor 2�� and 2.821439372 amounts to 0.5% 
after all, we will execute the examination with both values. Only the relations for a = 2�� are 
depicted. Now, we can set about to write down the individual relations: 
 

ћωmax  =  2 2 kT        Displacement law source-signal      (433) 
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Thus, we have found our source-function. In y it reads as follows: 
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But we aren’t interested in the absolute value but in the relative level only: 
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We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 

dS3  
=  

(2, 821439
y
2)3

e2,821439 y
2 −1

 dy         (437) 

 
In figure 69 are presented the course of the source-function and the PLANCK’s graph. 
 

 
 

Figure 69  
Planck’s radiation-rule and source-function 

in the superposition (logarithmic, relative level) 

 
 

Of course, there is no shift-information y(Q) contained in these relations. Since the 
considered system is a minimum phase system, we now have to multiply the source-function 
dS1 with the amplitude response A(ω).The result is our approximation dS2. It is merely 
applied to a single line-element, which is traversed by the signal in the time r0/c. Thereat r0 is 
equal to the PLANCK’s length and identical to the wavelength of the above-mentioned metric 
wave-function. D.h. That means, we have to execute the multiplication with A(ω) as often as 
we like, unless the result (almost) no longer changes. 
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency 
response) decrease continuously. Therefore it’s opportune, to take up the displacement 
(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on 
and on the location of the source-function. For the proof of our hypothesis indeed this last 
shift is not of interest. There is another problem with the amplitude response A(ω) and with 
the phase-angle φ. Since the cut-off frequency ω0 = ƒ(Q, ω1) and the frequency ω are varying 
according to different functions, it causes difficulties to formulate a practicable algorithm. 
Thus we use the fact that there is no difference, whether we reduce the frequency of the 
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2y
2

2 y 2
2

dS 8
1 ( )

 
=  

+ �
Q0

½ 

A(y) cos φ(y) đy dy          (438) 

input-function with constant cut-off frequency or if we shift upward the cut-off frequency 
with constant input-frequency. But this corresponds to a transposition of integration limits. 
We choose this second way incl. the displacement of the approximation at the end of 
calculation. This all the more, since we would be concerned with two time-dependent 
quantities (input-frequency and cut-off frequency) otherwise. To the approximation applies: 

Expression (438) looks a little bit strange maybe. It’s about a so called product integral, i.e. 
you have to multiply instead of summate. Then, the letter đ isn’t the differential-, but the… 
let’s call it divisional-operator. I don’t want to amplify that, because we anyway have to 
convert expression (438) to continue. We use Q0 = 8.34047113224285·1060 as the updated 
value of the Q-factor and the phase-angle of the metric wave-function. It determines the 
upper limit of the multiplication resp. summation. Fortunately the frequency response can be 
depicted as e-function, so that the product changes into a sum. We simply have to integrate 
the exponent quite normally then. We obtain the frequency response inclusive phase-
correction with the help of the complex transfer-function (150) to: 
 

 
( )A( )   ecos ( ) B( )Ψ ωω ⋅ = ϕ =ϕ ωω         Frequency response of a line element (439) 

 
The fact, that only the real component is transferred, is taken into account by the 
multiplication of A(ω) with the expression cos φ. We use (305) for Ψ(ω). 
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    (305) 

 
As next, we substitute Ω by y with the help of (434): 
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     (440) 

 
The value ω in the numerator of y figures the respective frequency of the cosmic 
background-radiation, for which we just want to determine the amplitude. It is identical to 
the ω in PLANCK’s  radiation-rule. Thereat, it’s  about an overlaid frequency, which is 
proportional to Q–3/2 in the approximation. The frequency ω0 is exactly proportional to Q–1. 
 
Instead of the value ω1 in the denominator actually the PLANCK’s frequency ω0 should be 
written with the frequency response. That is also the cut-off frequency for the transfer from 
one line-element to another. But with Q = 1 the value ω0  is right equal to ω1, at which point 
ω0 varies with time, ω1  on the other hand is strictly defined by quantities of subspace having 
an invariable value therefore. It applies ω0 = ω1/Q. That means, that even y depends on time, 
being proportional to Q–1/2. 
 
Now however, we want to freeze the value ω, at least up to the end of the calculation, with 
the consequence, that we must divide y by a supplementary function ξ, which is proportional 
to Q1/2. It applies ξ = ccQ1/2 and 
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The factor c arises from the initial conditions at Q = ½ (resonance-frequency 2ω1, cut-off fre-
quency ω1) to c = 4 (In the program cc = y/2): 
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Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (436). Then, the approximation dS2 calculates as follows: 
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    (443) 

 
The negative sign before the integral results from the re-exchange of the integration limits. 

For the determination of the integral, a value of 103 as upper limit suffices indeed. Over and 
above this, it changes very little. Therefore, I worked with an upper limit of 3·103 in the 
following representations. The integral only can be determined numerically, namely with the 
help of the function NIntegrate[ƒ(Q), Q, 1/2, 3×103]. The quotient of y/2 and ξ expression 
(442) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to (208), (299) and (582) applies: 
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The factor b arises from the demand, that the exact function ξ and its approximation 

should be of the same size with larger values of Q. The factor a we will determine later on in 
turn. 

 
Problematic in (444) rhs and (447) is the integral, which can be determined even only by 
numerical methods. In order to avoid the numerical calculation of an integral within the 
numerical calculation of another integral, it’s opportune, to replace the integrand by an 
interpolation-function (BRQ1), and that inclusive the factor b. The value r1 cancels itself 
because of (444) lhs. We choose sampling points with logarithmic spacing: 
 

BRQP=Function[Rk[#] Sqrt[(Sin[AlphaQ[#]]/Sin[GammaPQ[#]])^4-1]]; 
BGN=Sqrt[2]*BRQP[.5]/3; 
brq = {{0, 0}};   
For[x = −8; i = 0, x < 50, (++i), x += .05;  

 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 

BRQ0 = Interpolation[brq]; 

BRQ1 = Function[If[# < 10^4, BRQ0[#], Sqrt[#]]]; 

 
The functions Rk, AlphaQ and GammaPQ are defined in the annex. The function BRQP 
equals the product of Q, root-expression and integral in the denominator of (447). The value 
BGN is the starting value of the same product at Q = ½. For the factor b 2.50703 turns out. 
According to (211), (492) and (616) further applies: 
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c is the complex propagation-velocity of the metric wave-field. As next, we want to take up 
a comparison of the two functions Q1/2 and BRQ1. Figure 70 shows the course of both 
functions, which describe, multiplied with Q3/2, the exact course of the world radius (Figure 
147 rhs): 
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Figure 70 
Function BRQ1 exactly and approximation 

 
On the basis of the demand, that the result of both functions must be identical with Q»1 

we choose the factor a to ��. As I have found out by trial and error, the value �� leads to the 
result with the smallest difference, so that we obtain the following final relation for ξ:  
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The bracketed expression corresponds to the factor Q1/2 in the approximation. The course of 
the dynamic cumulative frequency response Ages(ω) = e–∫Ψ(ω)dQ you can see in figure 71. For 
your information the amount of the complex frequency response |Xn(jω)| of subspace is 
plotted, that’s the medium, in which the metric wave field propagates (ΩU = Ω). We use a 
logarithmic scale and the unit decibel [dB], and since we are talking about power per m2, 
with a factor of 10. 
 

n

1 1 1
X ( j ) 1

2 1 j 1 j

 
ω = + + Ω + Ω 

     Complex spectraal function      (558) 

 
It applies to EM-waves propagating simultaneously with the metric wave field but not to the 
metric wave field itself. They achieve the aperiodic borderline case at Q = ½. 
 
 

 
 
Figure 71 
Cumulative frequency response Ages(ω)  
and |Xn(jω)| of the metric wave field 
and subspace 

 
 
Figure 72 
Relative offset between    
approximation and radiation-rule in  
dependency of the function ξ used 
 

Thus, all requirements are filled and we are able to demonstrate the course of the 
approximation (443) in comparison with the target-function (437) and that as well for the 
approximation as for the exact function ξ. The result is a curve with a correlation factor of 
0.99928 for the approximation and 0.999748 for the exact function ξ (both not shown). 
Figure 72 shows that using the exact function ξ brings an improvement, but there is still a 
certain residual deviation. If you look at the progression in the second quadrant, you can see 
a „gap“ here, into which an already known function, multiplied by ½, fits quite exactly. This 
is the group delay TGr of the metric wave field (152) from Section 4.3.2. While the phase 
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delay affects the shape of the carrier frequency (ω1 or ω0), the group delay affects the shape 
of the envelope. The expression reads: 
 

22

Gr 2
1 1

2 θd
T B( ) 2

1d

Ω = ω = − = − ω ω+ Ωω  
 (152) 

 
With Ω=ω/ω1. The factor 2 cancels out because it’s a Spin2 system in which all time 
constants are 2T instead of T (double phase/group velocity). While the group delay is 
constantly equal to zero over almost all decades, this is not the case near ω1 or today at ω0. A 
frequency-dependent group delay always leads to a distortion of the envelope. 
 
As you can see, the group delay is negative. This is also common in engineering and is not a 
breach of causality. See [50] for details. So far we have considered the frequency response 
A(ω) and the phase response B(ω), only the group delay correction Θ(ω) = ½ ω1Tgr is 
missing, realized by the function gdc[ω]:   
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The powers of ten are important when calculating in dB. The course is depicted in Figure 72. 
The group delay correction Θ(ω) is applied to dS2 only once:  
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Plot[{  
 10 Log10[S3[10^y]],  
 10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) + 10 Log10[gdc[10^y]],  

Xline[y, Log10[2]]          (473) 
}, {y, -3, 3}, PlotRange -> {-51, 4.5}, ImageSize -> Full,  
LabelStyle -> {FontFamily -> „Chicago“, 10, GrayLevel[0]}] 

 
The almost perfect result function (472) for an exact ξ with group delay correction can be 
seen in Figure 73. The maximum frequency Ω�� is downshifted about –7.00% (0.93003). 
That value is far in excess of the –0,0016 % deviation between measured and calculated 
CMBR-temperature.  The maximum amplitude deviation Δ A ⌆ is at about –0.58954 dB, 
between both maxima Δ A⊼ is at –0.02762 dB (–0.64%). Of particular interest is the 
extremely high correlation coefficient of 0.999835 between both curves. Due to the limited 
calculation accuracy for small values, a phantom branch (vertical line) is displayed at 250 ω1, 
which has been removed from the graphic. The missing functions in (473) are defined in the 
annex in the section »Functions used for calculations in article«.  

 
Thus, we have  proved that the PLANCK curve may actually be approximated from the 

source function, i.e. its course is the result of the existence of an upper cut-off frequency and 
does not contradict this model. It only remains to determine which way the CMBR has 
traveled up to the present time. By inserting (414) into (315) we get for the distance r: 
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23 3
0

R R
r ((z 1) 1) z 2RQ
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So the cosmological background radiation has covered the maximum possible time-like 
distance R. Hence it comes from the point where we are and from every other point on the 
4D-hypersurface. In terms of time, it comes from the period immediately after the Big Bang 
(t1/4). 
 

 
 
Figure 73 
PLANCK’s radiation-rule and approximation 
with group delay correction under application 
of the exact function ξ (relative level) 

 
 

 
4.6.4.2.4. The WIEN displacement 

 
Now let’s move on to the actual displacement. In doing so, the WIEN displacement law 
applies. Most publications do not explain why it is called displacement law. Usually a 
graphic of nested curves for the wavelength λ is shown in a linear presentation. It should 
also  be noted that the usual formula λ

 

=
 

c/ν cannot be used for the conversion ωmax
 

→
 

λmax

 for thermal spectra. The reason is the different radiation distribution. According to [67] applies 
λmax = 0.6 c/νmax. 
 

The name can only be properly understood in double logarithmic representation, e.g. in 
dB. Then you can see that the curves are really down-shifted along the left slope as  tempe-
rature/frequency decreases (Figure 74). This can be achieved in a graphics program by 
moving the top right corner of the curve to the bottom left while holding down the Shift key. 
This results in a simultaneous reduction in frequency and amplitude. However, the 
prerequisite is that the aspect ratio is equal to 1. Then the factor x� describes exactly the 
distance between the peak value and the edge.�

 
In principle, an explicit peak value is assigned to each peak frequency, including to the 
integral of the intensity over the entire frequency range, i.e. to the POYNTING vector ͞Sk. 
Before calculating the value ͞SkU, we first determine ͞Sk1 by extrapolating ͞Sk0. The values of 
Q0, ω1 and Tk are known or can be calculated exactly. However, one peculiarity of the CMBR 
should be noted: 
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VI. The cosmological background radiation CMBR is subject to the parametric 
 damping, but not to the geometric damping. 
 

 
The reason is that the entire universe is permeated by the radiation affecting the observer 
from all sides (state of equilibrium). We calculate the value ͞SkU using the STEFAN-
BOLTZMANN radiation law (409). 
 

 
Figure 74 
The WIEN displacement law 
schematic presentation 

 
However, this requires an exact determination of Tk. Of course we could use the COBE value 
for it, but we want to set up an accurate relation to Q0 indeed. Therefore, at first, we will deal 
with Tk in the next section. All relevant frequencies are listed in Table 3, the values for 
H0 >70  are for information only.  
 
 Emission frequency  (H0=68.6) ωU 3.09408·10104 s–1 fe 4.92438·10103Hz 

 Immission frequency  (H0=68.6) ωs 6.85874·10103s–1 fs 1.09160·10103Hz 

 CMBR-frequency  (H0=75.9) ωk 1.12584·1012s–1 fk 179.18259 GHz 

 CMBR-frequency  (H0=72.0) ωk 1.09639·1012s–1 fk 174.49511 GHz 

 CMBR-frequency (477)  (H0=68.6) ωk 1.00673·1012s–1 fk 160.22630 GHz 

 CMBR-frequency  (COBE) ωk 1.00675·1012s–1 fk 160.23�0.1GHz 
 

Table 3 
Frequencies of the cosmologic 

background radiation 

 
4.6.4.2.5. Temperature of the cosmologic background radiation 

 
While the temperature of the metric wave field is equal to zero, that’s not the case for the 

CMBR. Since it’s nearly about black radiation (εν = 0.9428 	 ���), we are able to calculate 
the black temperature indeed, but we want to keep working with the gray temperature.  By 
rearranging of (408) and inserting the energy related redshift z22 = 12 εν Q0

5/2 from (413) we 
obtain for ωU = 2ω1: 
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 (476) 

 
That’s the temperature of the CMBR in consideration of the frequency response (see Figure 
75). Expression (476) lends itself as approximation, because the value �� = 3 + lx (−3e−3) is 
only 0.25% below the magic ���. lx is LAMBERT’s W-function (ProductLog[#]).  
 
With the updated value from section 6.2.4. in the amount of Q0 = 8.340471132242850·1060 
expression (476) even gives a correct result. The calculated value is within the accuracy 
limits of the 2.72548K ±0.00057K, measured by the COBE-satellite. More in [49]. 
 

–1 10
0 0

5
51

2 2 Q Q 2.725 1.6436049K =
18k 1

1
8k

258 10−− ωω
= = = −∆ ⋅kT

ℏℏ

  
 (477) 

 

 
Figure 75 
Temporal dependence of the radiation-  
temperature of the CMBR (linearly) 
 
The temporal course is shown in Figure 76 and 77. There are similarities to the energy 
density. The presentation of the spatial dependency should be omitted here.  
 

 
Figure 76 
Temporal dependence of the radiation-temperature of the  
CMBR considered from the point of time of input coupling on 
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Figure 77 
Temporal dependence of the radiation-temperature of the  
CMBR considered from the beginning of the gravitational-universe on 

 
In [4] also the existence of a background field with neutrinos is postulated, which is said 

to have a temperature of approx. 1.9 K. Dividing Tk by �� a value of 1.92717 K turns out, 
which fits well the idea underlying this model that neutrinos propagate rectangularly to 
photons. 

 

 

 
4.6.4.2.6. Energy of the cosmologic background radiation 

 
By this we mean at first the POYNTING vector  ͞Sk, but also the energy density wk over the 

entire frequency range. As said, the calculation is done with the help of the STEFAN-
BOLTZMANN radiation law (409). We do not know the values ͞Sk0.5, ͞Sk1, wk0.5 and wk1 shortly 
after Big Bang, but we want to calculate them. However, the current value of the energy 
density is given in [59], amounting to wk0 = 4.17·10–14

 J/m3. That corresponds to 411 
photons/cm3. With it we can first calculate ͞Sk0. We are only interested in the amount: 
 

14 3 2 2
k04.17 10 Jm S c 12.5013µWm [71dBpWm ]− − − −= ⋅ = =k0 k0w w  (478) 

 
Now we substitute Tk in (409) with (477) obtaining the following expression: 
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However, the expression on the left is only valid for a single MLE. However, we consider a 
cube with the edge length r0, which contains a total of 4 pcs. Therefore we need to multiply 
by 4 obtaining: 
 

4 2
7

2 2

2
71 1 1 1

k 0 02
1

4
S

6298560 1574
Q

c 640
Q

r
− −ω ωπ π
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ℏ ℏ

     (480) 

 
It is better to use /Q0

4/Q0
3 instead of 4Q0

–7 in the calculation, otherwise an underflow of values 
may occur. Interestingly enough, the BOLTZMANN constant k cancels out. That means that it 
cannot be calculated from other values. Also, it is the only constant which contains the 
Kelvin. That means, it’s really fundamental and can be fixedly defined as how it happened. 
 
Now in principle, we could calculate the value ͞Sk1 by setting Q0 in (480) equal to one. 
However, the expression is not yet complete. As already noted, the CMBR is subject to the 
parametric attenuation. Regardless of the reference frame, the damping factor α is always 



 
 

118 

equal to –1/R, at which point R varies. α affects both, E and H, so we need to multiply (480) 
by e–2r/R. Since the CMBR has always covered the maximum time-like distance r = R = 2cT, 
the expression simplifies to e–2. We expand the fraction by e2: 
 

2 2
2 7

2 2
1 1

k
2 71 1

0 02 2
1 1

1
S e Q e Q

1574640 r 21592 r
e − − − − ω ωπ

= ≈  
 

ℏ ℏ
        [21591.9850214238]  (481) 

 
Because of the imprecise value of (478), we can work with the approximation with a clear 
conscience (Δ = –6.94·10–7). With the bracketed expression ͞Sk1 is actually already defined, 
but we have to find out whether it is correct. 
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  [8.85872·10418 w1 metrics]    (483) 

 
For comparison, the energy density w1 of the metrics. Here S1 must be divided by cM[1] and 
multiplied by 4. The value wk1 is orders of magnitude below w1. Attention, both ͞Sk1 and wk1 
are the values the CMBR would have, if the curve and thus the distribution were the same as 
today. As can be seen in Figure 67, the dynamic frequency response at Q0 = 1 is not yet ready 
with its work. There is no PLANCK-distribution, but curve 4. This is quite similar to the target 
function curve 6, but not completely. However, ͞Sk1 and wk1 are very well suited as fixed 
reference points.  

 
Now we can use (481) to calculate the actual values and compare them with the measured 
ones (478): 
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That results in the local density of the CMBR background (r ≤ 0,01R):  

7 31
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22 3

1
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1 dm0
c c

− −−ω
ρ = = ⋅=k0
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The values in square brackets are those given in [59]. The deviation of –1.06·10–3 is less due 
to a calculation error than to the fact that the comparative values are only given with two 
decimal places. Rather, the calculated values are accurate and actually much more accurate: 
wk0 = 4.174403405098·10–14J m–3, but only under the assumption that the CMBR has not 
interacted with other matter losing energy in the process. Since the deviation is a maximum 
of 0.1%, it does not appear to be the case. Because the model can be used to calculate back 
to Q0 = ½ exactly, we can confidently shelve the idea of the CMBR origin 379,000 years 
after Big Bang. Then any thermal radiation would only be a narrow spectral line. 

 
However, since in-coupling did not take place at Q0 = 1 but at Q0 = ½, there are 4 additional 
values of interest: ͞Sk05, wk05, ͞SkU as well as wkU. The first two are again the values immedia-
tely after in-coupling, assuming a PLANCK distribution.To the calculation we use (482) and 
(483) by setting Q0 =½, e2 is already contained in ͞Sk1.  
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4 3161 1
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r699
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= = ⋅=k05 k1w w
ℏ   [8.85872·10418 w1 metrics] (486) 

 
In reality, the values are much larger, since the curve has not yet been clipped at this point of 
time still matching the shape of a resonant circuit with the Q-factor ½. The later POYNTING 
vector Sk results from the area ratio of the PLANCK-curve (6) and of the source curve ST (1). 
I determined this by numerical integration. 
 

 Sk  =  0.5503 ST          (487)  
 

Thus, if we want to determine the real in-coupling values ͞SkU and wkU, we have to divide by 
this value. Then we get: 
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I have reduced the accuracy here because the area method does not necessarily reflect the 
actual conditions. I don’t want to go back before the point t1/4 (aperiodic borderline case), 
since there was no real wave propagation before. However, it is possible to determine the 
total energy that was used to build the CMBR. For this we need the real world radius at time 
t1/4 (Q0 =½). This means that the volume is known and the total energy WU can be 
calculated. We have already determined the exact world radius with the help of (444) 
including expansion implemented as the function BRQ1[Q] multiplied by Q3/2 (Figure 147 
right). There all angular and speed ratios are taken into account: 
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 (491) 

 
Therefrom, the following volumina arise (spheric): 
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Important for the calculation of Wk05 is the answer to the question: How many line elements 
fit into the universe in actual fact. Regardless of whether we consider a sphere or a cube, 
because the factor 4/3π sowie r1

3 cancel out, we get the following values with r0(Q) = Q r1: 
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    (493) 

 
At the point of time t1/4 (Q0 =½), the aperiodic borderline case, just one single line element 
fits into the universe, that’s not a contradiction, while at Q0 = 1 already 780 of them fit in. 
However, the number decreases to 180 at Q0 = 2,295 in order to re-increase later approaching 
the function NU = Q0

3. Then, from 103 on the approximation applies, but not for long. Für For 
R�103

 r1, r0 decreases towards the edge and (349) from Section 4.6.1 applies. This means 
that the line elements are arranged in a different packing at the beginning. At Q0 =1 there is a 
phase jump in the propagation function and thus a rearrangement towards fc. The course of 
NU exactly and approximation is shown in Figure 78. 
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Figure 78 
Maximum possible number of line elements N  
in the universe at the beginning of expansion 
 
 

Depending on your point of view, the universe begins with a negative entropy or with zero if 
we consider the state at Q < ½ as a feasible degree of freedom. Therefore, when calculating 
the immission energy WkU we must decide whether we want to multiply the energy density 
wkU by the volume of an MLE or that of the entire universe (492), and whether we want to 
choose a sphere or a cube. According to expression (493), a cube with the edge length r1 also 
fits in, in its interior a line element with the radius r = r1/2. 
 
Since we determined the other values using a cube, we choose the (inner) cube obtaining the 
volume V� = 7.2771·10–288m3. The outer sphere has a volume of V� = 1.97988·10–287m3. For 
Wk1 we choose the approximation because it’s used as a fixed reference for larger values of 
Q0 and also the cube with an edge length of r1. With it, the following values turn out: 
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This definition of Wk1 has the advantage, that the value divided by 0.5503·2–7 gives exactly 
the value of WkU. With this we can now even calculate the costs of generating the CMBR. 
After the last price increase from my electricity provider, the kWh costs € 0.3434. There is 
almost parity to the US$. Converted WkU  amounts to 4.07177·10122kWh, the costs to  
US$ 1.398·10122 including 19% VAT, a bargain compared to the costs of the metric wave 
field. This as a little fun by the way. 
 

We now want to investigate whether we are able to derive an estimate of the current 
boson/fermion ratio from these values. It should also be possible to calculate the mean 
matter density, see Table 4. The photon number density at in-coupling looks very high but it 
applies per m3. If you multiply by the real volume r1

3, you get 0.01 only. Since in fact only 
integer n can occur, we should get used to round-up to the next integer (Ceiling[#]), then it’ll 
be fine. Please find the calculation further down. 
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Value 

 

 Poynting vector 

 

dB 

 

Energy density 

 

Symb. 

 

Definition 

 

Number/m3 

Beginning 6.0380 
.10424Wm–2 4367.81  2.014.10416  J m–3 wkU Immission   1.30.10284 

Target now  1.25145.10–5Wm–2 70.9742  4.1744.10–12J m–3 wk0 Bosons target   4.245.108 

Actual now 1.25013.10–5Wm–2 70.9696  4.17?? 

.10–14 J m–3 nγ Bosons actual   4.105.108 

Density Target now local ρk0 —  4.645.10–34g cm–3 nM Fermions 45.81948 

Density Target now local ρG0 —  7.410.10–29g cm–3 nγ ⁄nM Ratio   8.958.106 

 
Table 4 
Field strength and energy density of the 
cosmologic background radiation (H0=68,6) 

 
 

The value ρk0 (484) agrees very well with that given in [59], even if the formula stated there 
is completely unsuitable for calculation, since essential components have been omitted as 
»usual«. The same applies to the photon number density. Here the conditions are even more 
complicated.  
 
The value 411/cm3 specified there is plausible. I’ve been trying to find a formula that 
calculates this. With [59] you get a totally wrong result of 5 photons per K3. A unit of length 
does not appear there. Still best of all one fares with [4]. On p.174 in the continuous text 
nγ = 0.37 b k–1

Tγ
3 is given. Here k is the BOLTZMANN constant and b should be the STEFAN-

BOLTZMANN-constant σ, which of course is defined differently again, so that the text 
formula has to be adapted. Then, with the COBE value we get: 
 

3 38n 1.48 410.466 cm 4.10466 10 m
k c

− −
γ = = = ⋅

⋅
σ 3

k0T     (495) 

 
That’s actually only 410 photons, but we always wanted to round up in future. So I tried to 
figure out how to get to 0.37 to increase accuracy and failed miserably. After studying 
various sources, I do not refer to erroneous publications, it has been shown that the factor 
amounts to 2ζ(3)/π

2
. It results from the solution of an integral, ζ(x) is Riemann’s zeta 

function. But I don’t get a correct result with it. Rather it should be 4ζ(3)/π =1.53. There is 
probably a third, different definition of σ. We use the CODATA2018 definition. With it, we 
obtain the correct expression: 
 

3 38424.4n 4 cm 10 m
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π
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ζ 3

k0T     (496) 

 
But now, with the COBE value of Tk, it are not 411, but 425 photons. What that means I 
leave open here. It’s possible that one solution applies to the frequency, the other to the 
wavelength. Since both Tk0 (477) and σ (409) depend on the reference frame, it should be 
possible to describe the photon number density of the CMBR as a function of Q0 and thus 
also of t. Expression (477) is already correct, still σ remains. It contains ℏ–3. We define: 
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This of course eliminates the fixation of σ, which passes over to σ1, just like with ℏ. Using 
(409) and (477) we get then for the photon number density: 
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Now we only used the photons of the cosmic background radiation to determine the photon 
number density. In reality, of course, there are also photons that have nothing to do with it, 
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that originate from interaction processes or were created during the annihilation of matter 
and antimatter. A large part of the cosmic radiation spectrum comes e.g. from supernova 
explosions. So we have to correct the photon number slightly upwards. The graphical 
presentation follows further down together with the nucleon number density nM in Figure 81. 
However, before we are able to determine nM,  we need to have a look at entropy again. 
 
Since the letter S is already heavily overburden, we must exercise special caution here. We 
had already used Sb, S0 and S1 for the entropy of the metric wave field, and S0, S1 and ͞Sk0/1/U 
for the POYNTING vectors. Now we still need an expression for the specific entropy per 
nucleon. In [4] the expression ͞Sγ is used for this. Since the letters U and M can also appear in 
this context, we use  S̲γ instead. According to [4] »the specific entropy Sγ /M oder – as a 
dimensionless quantity – its entropy per nucleon  S̲γ measured in natural entropy units,  
 ̲Sγ ≡ ma4k–1 Sγ /M ... provides us with extraordinarily important information about the early 
days of the universe« . The cube is used there too, M = ρG R

3
 is the total mass of the 

fermionic matter, ma the nucleon mass, i.e. the atomic mass unit. We have to convert the 
formula given there for the calculation of  S̲γ again: 
 

21 1 3
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am16
S 2.4562 10 kgdm

3 kc
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γ
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3

kT  ([4] 4.101) 

 
To determine the matter density ρG we need the rest mass M of the incoherent matter of the 
entire universe. For this purpose, counts in the starry sky and estimates were carried out in 
the past, or one relied on a world model. I would like to expressly refrain from the 
calculation according to [4], since it uses the standard model, which this model is guaranteed 
not based on. Actually, we only need one mass and which one is the most suitable for this 
purpose? The MACH-mass M1 = µ0κ0ℏ from Section 6.2.4.1. This already represents the 
average relevant for the observer. It applies M1 = ρG R

3
. This gives us the current value for 

ρG0: 
 

3 29 3

G0 1M R 7.41028 10 kgdm− − −ρ = = ⋅       (500) 
 
The value of ρG is based on the cube and agrees reasonably with the value ρG ≈10

–30
 g/cm3 

given in [4]. Other publications indicate values of 0.3...1.1·10–30
 kg/dm3 for the density. 

However, these are only estimates. The entropy per nucleon  S̲γ0 (2.4·10–9) differs signifi-
cantly. The cause is the outdated value of H0 in the amount of 55 km s–1

 Mpc–1 and the 
standard model used there. 
 
For  S̲γ0 we use (409) and (477) once more and we first replace ma by me. Since the ratio 
mp/me has been proven to be constant [53], the same applies to ma/me and  S̲γ0 too. By 
rearranging (112) we can now substitute me by M1 and we get for the approximation: 
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In fact, all constants can be eliminated and only one constant factor and Q0 remain. Here, the 
dependency on Q0 is only considered for σ. To R(Q) the approximation R = Q0

2
 r1 applies and 

to ma the linear approximation 1822.9 me′  from Figure 15. If we want to use the exact 
functions, we need the function BRQ1[Q] for the exact world radius, the function deltaF[Q], 
and expression (112). Then, the exact expression reads: 
 

71 4/33
0 0 0 0S BRQ1[Q ] de

1
458.10754347

ltaF[Q ] Q 3.31458 10
7

− −
γ = = ⋅   (502) 

 
All non-linearities in the world radius and the nucleon mass shortly after Big Bang are taken 
into account here. The results of (501) and (502) for Q0 are identical since Q0�1.  
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Figure 79 
Entropy per nucleon and photon/nucleon- 
ratio of the CMBR large scale 

 
Now we can also calculate the nucleon number density nM. According to [4] the quotient 
nγ /nM is proportional  ̲Sγ. It applies: 
 

M

36

M
M

8.95833 10
n n

S 3.7 n 45.8
n

195 m
n

γ γ −
γ ⋅= = =  ([4] 4.102) 

 
3 3

1 119/6 14/33
M 0 0 0 0n BRQ1[Q ] deltaF[

r r

14.133123 15.0696
Q ] Q Q

23
− − −

− −

≈=   (503) 

 
Now we have determined the current values. Thus, we can calculate the course of  S̲γ for 
larger and smaller values as a function of Q. It is shown in Figure 79 and 80. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 80 
Entropy per nucleon of 
the CMBR small scale 

  

Now there is the well-known initial entropy problem with the standard model, i.e. it is 
assumed that the universe was in thermodynamic equilibrium at BB, a state of maximum 
entropy. However then, at the origin of the CMBR at 3000K the entropy must have been 
lower in order for it to increase over time, since a decrease without energy addition is 
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physically forbidden. After the BB, however, there was no more energy supply. Therefore, 
most people blame it on the influence of gravity. 
 
Now I had thought that this problem does not exist with my model, since the CMBR here is 
related to the point Q = ½, i.e. much earlier. If you take a closer look at Figure 80, however, 
you can see that there is also a section where the entropy decreases. The question is now, is 
there such a problem with my model too? The answer is: No. In reality, it is a statistical 
problem. 

 

 
 
Figure 81 
CMBR-photon-number- in comparison  
to the nucleon-number-density per m

3
 

 
Even if the mass, photon- and nucleon-number density assumes impressively high values 
shortly after BB, the number of particles involved is very small, since the world radius is 
extremely small at this time. Since entropy is a statistical variable, but statistics requires a 
minimum number of possible degrees of freedom (particles) in order to generate relevant 
results, the results are not relevant if this number is not reached, nor violations of physical 
principles. I assumed the minimum value to be 32 and marked it in picture 80. There are two 
different values, one for nucleons (Q =112), the other for photons (Q = 8238), after that, i.e. 
from 2.13·10–97s after BB on, there were no more violations and therefore no problem. 
Before that, quantum effects predominated, which defy any statistics. 
 
Therefrom follows that it is generally sufficient to use the approximation formulas. Figure 
81 shows the photon- (499) and the exact nucleon-number density (503) as a function of Q. 
As you can see, there were initially more nucleons than photons. The parity was reached at 
the point of time 8.42·10–67s after BB.  
 
Today there are more photons than nucleons. So we live in a largely radiation-dominated 
universe. How do we get the time data? Very easy, it applies t = Q2t1. In the logarithmic 
presentation the x-axis has to be multiplied by 2 only. In contrast to the impressively high 
values, Figure 82 shows the actual number of CMBR photons and nucleons in the entire 
universe. 
 
So today there are 1.19674·1080 nucleons in the universe. This value corresponds almost 
exactly to the square of the value C (1038) described by EDDINGTON, which he already 
assumed to correspond to the total number of nucleons in the universe, see Section 7.5.1. So 
it seems that the number of photons and nucleons is closely linked to the reference frame 
and thus to the age of the universe. So the universe requires the presence of a certain number 
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of particles at a certain point of time. This is ensured by a certain number of particles 
decaying into several others, as well as by virtual pairing/annihilation processes. 
 

 
 
Figure 82 
Real number of CMBR-photons 
and nucleons in the whole universe 
 

These processes are triggered by entropy. For example, you can assign a certain entropy to 
an isotope. The larger the value, the shorter the half-life. Because of (708) entropy also 
depends on the velocity. Thus atoms at high velocities not only decay more slowly because 
time passes more slowly, but also because the entropy is lower. Both statements describe the 
same fact and are equivalent. 
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3 32
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ɶ ɶ
      (708) 

 

 
 
Figure 83 
Dependence of the incoherent matter density  
considered from the time of in-coupling on 
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The only thing missing is the density of the incoherent matter ρG, which is also a function of 
time and space. The course is shown in Figure 83 and 84. The density is defined as follows: 
 
 

11/2 72 23
3 3
1

G 0 0 0
1

M M

r
BRQ1[Q ] Q Q

r
− − −=ρ ≈       (504) 

 
In contrast to (500), the value M2 (fixed) is used here instead of M1, since M1 also depends 
on the reference frame and thus on time. It applies M1 = M2/Q0. 
 
Since all previous values are dependent on Q0, one can also show the dependence on other 
quantities using (708). Figure 84 shows the dependency on the distance r using the example 
of incoherent matter density. The further away we observe, the older the condition we 
observe. However, it is relevant for us because even delayed effects are effects. 
 

 
 

Figure 84 
Spatial dependence of the incoherent matter 

 density to the point of time T (nowadays) 

 
Thus, most of the mass is located at the edge for each observer, evenly distributed over the 
particle horizon (repulsion!), so that the forces cancel each other. However, when accele-
rating, one leaves the center and must exert a force F = m·a. With it, the MACH mass M1 is 
the cause of the inertial mass, exactly as postulated by MACH. For antimatter a different 
equivalence principle applies mi = –mg, so that it is attracted by the particle horizon. 

 
At this point it should be pointed out once again that particles without a metric are always 

in the state as at Q = ½ or ⅔, depending on their type. Then, antiparticles have a mass and 
inherent frequency above, „normal“ particles below the upper cut-off frequency of the 
vacuum. Thus also results in the symmetry breaking, which means that the universe consists 
predominantly of „normal“ matter. All particles remain in this state until some kind of 
interaction occurs. Any new particles created in this way will also have the properties that 
prevail at time t1/4 (2ℏ1, 2ω1, r0/2, α1/2 etc.).  

 
The essential point is, that the observer himself is trapped in the metric. Therefore he can 
only observe the „shadows“ of the real conditions, i.e. the red-shifted relative mass such as 
mp (PLATO’s cave parable). Then, this and not the absolute mass is a function of space and 
time. 
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Figure 85 
Mass-red-shift using the  
example of the proton 

 
For this, however, it is necessary that the frequency of the metric wave field has the same 

red shift as the frequency of the cosmic background radiation (this is guaranteed for ℏ 
anyway), so that the frequency ratios also remain constant. To the frequency ω0 applies 
ω0 ~  Q0

–1. In addition, there is a difference in the propagation speed, which is approximately  
Q0

–1/2. This makes a total of Q0
–3/2, as with superimposed waves. The principle of such a red-

shift is shown in Figure 86. The metric acts here like a lens through which we look at the 
actual conditions. The resolution is exactly ℏ/2, i.e. the lens vibrates with the frequency ω0 
and the amplitude ℏ. Therefore, e.g. an electron cannot be focused properly. So this is the 
real reason for PLANCK’s uncertainty principle. 

 
The enlargement or better reduction factor changes over time but is also a function of space 
and the frame of reference. With a Q-factor of 1 at time t1, a phase jump occurs, the phase 
rate of the metric wave field has a zero crossing (Figure 23). Therefore, the frequency before 
this point of time is defined negatively, therafter positively. That the nucleons should be 
much larger than Planck’s elementary length is an error resulting from the classical atomic 
model. Because of the magnification of the wavelength, it only seems to be so. To the 
creation of particle/antiparticle pairs, only the energy difference to W0 is necessary. The 
metrics do the rest. 
 

 
 

4.6.4.2.7. Field-strength of the metric wave-field 
 
Next we want to consider the field-strength of the metric wave-field. In difference to the 

cosmologic background-radiation, the relations are not quite so simply because of the 
complex propagation-impedance and the propagation-velocity different from c. So, the 
expression c = ω0r0 applies only for the approximation equations. Here applies c = ω0r0 and 
r0 = r1Z0

2/ZF
2 with r1 = 1/κ0Z0. Normally, the POYNTING-vector is defined as S = E×H. With a 

complex approach however according to [26] applies: 
 

1
Re

2
 = × 

*S E H          (505) 

 
Re is the real-part, H— * the conjugate complex time-function. The direction of the POYNTING-
vector is always that of the propagation direction. E– and H—  we had defined as: 
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( )(1)
0 0

ˆ H 2 t= ωiE E       ( )(2)
0 0

ˆ H 2 t= ω*
iH H       (506) 

 
But this definition is only applied to a purely temporal coordinate-system (there is no 

expansion), as e.g. we can find it at the expansion-centre (coupling-length). With it, 
expression (240) as approximation equation becomes physically pointless. Now, we want to 
have a look at the relations from the point of view on which we stay, from the metrics, 
however. 
First, we replace  with 2πS1, for better calculation. Then we have to correct (506) as 
follows: 

 

( ) ( )( )1 F 0 0 0 02 S Z J 2 t jY 2 t+= π ω ω EE e      (507) 
 

( ) ( )( )1
0 0 0 0

F

2 S
J 2 t jY 2 t

Z
−

π
= ω ω*

HH e      (508) 

 
Now, there is another difference in the propagation-velocity in reference to the normal 

case however. We have to multiply the expressions with the fraction c/|c|. Following 
substitutions apply (M0(x) is the module of the Hankel-function and identical to the 
amplitude of the associated Bessel function):   

 

0 0
1/ 2 3/ 20

0 0 0
F

0 0 0

Zc 1
Q 2 t t ~ Q M (2 t) ~ Q

c Z 2
−= ω ρ ω = = ω      (509) 

 

( ) ( )( )    

1
j arctan θ
2

F0 0 1 0 0 0 0 j t 2 S Z J 2 t jY 2 t e −
= ρ ω π ω + ω EE e      (510) 

 

( ) ( )( )    

1
j arctanθ

1 2
0 0 0 0 0 0

F

2 S
  j t J 2 t jY 2 t e

Z

+π
= ρ ω ω − ω*

HH e         (511) 

 
The definition of ρ0 can be found in (211). Now, there is to pay attention to another anomaly 
however. The electric and the magnetic field-strength is defined per meter. With a red-shift 
caused by the anomalous propagation-velocity, even the „meter-rate“ is changed (stretched), 
so that the total-red-shift will be determined by the square of the product of (510) and (511) 
overall (without S1). Under application of (505) we finally get for the amount S0: 

 

2 2 4 4 4 4
0 0 0 0 0

2
4 2 2 4

0 0 0 0 01 1 0

?
S S (2 t) (J (2 t) Y (2 t)) 4 S t M (2 t)

4
π

= ω ω + ω ρ = π ρ ω ω   (512) 

 

4
0 1 0

?
S S (2 t )r −= ω β−         Approximation         (513) 

 
The approximative solution has been found by trying. Because of r0 ~ Q0 the POYNTING-

vector is also proportional to r0
–4. with it. This is the double geometrical attenuation because 

of the transformation of the propagation-velocity (ever twice per dimension), just as 
expected. By the way,  no imaginary-part appears in this case (blind-power), so that we can 
omit the Re[x] in (505). Now we want to determine the absolute value of S1 using the 
following approach: 
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e is the unit-vector, q0, ϕ0, u0 and i0 are time-functions. Finally, we get: 
 

2
50

02
0
2

0 0

* P1
( ) ~ Q !!!

2 r r
−ω

= × = =0 r rS E H e e
ℏ

  (516) 

 
Expression (516) only contains effective-values. The factor 1/2 has been integrated into the 
definition of S0 with it. But there is an aberration in reference to (512) and (513). The value 
S0 of (516) is proportional to Q0

–5 (as with overlaid photons) in contrast to Q0
–4 in (513). The 

reason for the difference is the temporal dependence of the PLANCK’S quantity of action. In 
the approximation applies ℏ ∼ Q0

–1. In section 4.6.4.1.1. we had already tried to find an exact 
time-function for it. We however do not use any function figured there but rather another. 
The problem was indeed, that PLANCK’S quantity of action is a median value, which was not 
yet defined in the first moments after big bang. Even, ℏ is a special quality of the metric 
wave-field. If the metrics doesn’t exist or does not yet have been established completely, 
even there is no PLANCK’S quantity of action as well as it would have a smaller value than 
depicted in section 4.6.4.1.1. Therefore we will use the following exact time-function: 

 
1

1 0 0 0 0 1 0t M (21.253314 t) Q2 −ρ ω ω= ≈ ℏℏℏ          (517) 
 
The value ℏ1 and the factor 1/2, turning out by expansion of 2ω0t are however already 
contained in S1, so that the correct versions of (512) and (513) read as follows: 
 

2 5 5 5
0 1 0 0 0 0(210.02651 t) MS S 2 t)2 (π ω ρ= ω        (518) 

 

( ) 5

0 1 0   S      S 2 t r −
= ω − β

   
       Approximation         (519) 

 
With it, the updated initial value S1, being applied as well for the exact function as for the 
approximation, results to: 
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Figure 86 
Temporal dependence of the electromagnetic field-strength  
of the metric wave-field exactly and approximation 
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The approximation-value of S0 to the point of time of input coupling (S0.5) is exactly 35 
times larger than according to the exact formula. With it, the field-strength of the 
cosmologic background-radiation to this point of time would be approximately as large as 
that of the metric wave-field. This one and the field-strength of the cosmologic background-
radiation here can be traced back to the same function (Figure 63). The function 
corresponding with Figure 63 is the impulse-response of the empty space to a DIRAC-
impulse as origin of the universe then. Cause of the DIRAC-impulse on the other hand is one 
single powerful quantum-fluctuation. 
 

Perhaps even this is the reason why the shape of fermionic matter occurs at all. The metric 
wave-field can take in only a specific amount of energy, so that the left-over condenses 
inevitably in form of fermionic matter. Let’s assume, that e.g. only the half of energy can be 
coupled in as radiation, the solid matter forms from the rest. Then, the ratio of both would 
not be identical to the present-day one however. Because of the strong red-shift there’s 
quickly going to be, that the metrics is in the situation to take in more radiation-energy 
however. 

 
Because of the low effective cross-section (to the point of time of input coupling it is 

equal to 1), with the initially ruling high temperatures, but only a fraction can be re-
converted to radiation, so that quickly adjusts the prevalent ratio of nowadays. The course of 
the electromagnetic field-strength of the metric wave-field (exact and approximation) in the 
first moments after big bang is shown in Figure 86. One realizes that there is still no metrics 
to the point of time of big bang. It first forms just after it. 

 
As next we want to determine the energy-density of the metric wave-field. Since the 

POYNTING-vector and the vector of propagation-velocity have the same direction, we can 
calculate with the absolute values. In this case, an essential difference exists to classic 
contemplations however. We are used that the POYNTING-vector and the energy-density with 
technical problems are joined together solidly (the proportionality-factor is 1/c). But with the 
metric wave-field it is not the case. Here we have to divide by |c|.  

 
Even here, we can use w1 for both, approximation and exact solution simultaneously 

again. Additionally to the division by |c| (to the definition of w1 we set |c1| = c) we must take 
up the transformation for the meter-rate, namely for the third spatial dimension. That does 
altogether 2π  2ω0 t ρ0 M0 (2ω0t). It applies 1.253314 2π= π : 

 
3 6 6 6

0 00 08 (2 t) M (2 t)= π ρω ω0 1w w                with    w1  =   
S1

c
   (521) 

 
0

6t r(2 )−= ω − β0 1w w              Approximation         (522) 
 

The course of the energy-density precisely and the approximation is shown in Figure 87. The 
approximation equation has been determined by trial once again. We would obtain the same 
expression even from the energy of a discrete MLE (~ Q0

–2) under consideration of the 
geometrical dilution (~ Q0

–3) and the shift of ℏ (~ Q0
–1).  

 
There is a significant difference to the approximation in the time just after big bang. The 

energy-density of the metric wave-field initiates with zero. Then it ascends quickly, gaining 
coincidence with the approximative solution, coming from infinite, descending together with 
it then. The maximum has been achieved to the point of time of input coupling. In 
comparison with the power dissipation (Figure 63) one can recognize, that the energy from 
the time immediately after big bang has been used for the construction of the metrics. Once 
completed, the excess has been emitted into the metrics i.e. coupled in. Here, it deals with 
red-shifted values again, just like we observe them from inside the metrics. 

 
Now we can finally state a solution for the problem (399), the energy-conservation-rule of 

the MAXWELL equations. Here there’s not much point in it, to calculate with approximation 
equation. For that purpose, let’s look at the derivative of the energy-density first. 
Admittedly, even an analytic solution exists for it, however it’s so complicated, that the time 
needed to calculate it would be essentially greater than the one of numerical methods. For 
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the sake of simplicity we will calculate with the difference-quotient therefore (∆t = 0.0001t1). 
It applies: 

 

 
Figure 87 
Temporal dependence of the energy-density of the  
metric wave-field exactly and approximation 

 

 

3 6 6 6 6
0 0 0 0 

d
       8 t M (2 t)

dt
= π ρ ω ωɺ ɺ

 0 1w w   with   1

1

S
3

r
=1wɺ    (523) 

 
8

0        (2 t r)−= ω − βɺ ɺ
 0 1w w              Approximation       (524) 

 
The value of ẇ1 we get by differentiation of the approximative solution (522) after time 

and subsequent check-up. The factor 3 stems from the exponent of the time of the energy-
density (it’s proportional t–3). Now to the expression iE–. For |ZF| ≈ Z0 and i = κ0E– applies:  
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Here we insert consciously the square of (510) without additional correction for ℏ as well as 
q0

2. Since the MAXWELL equations shall be LORENTZ-invariant indeed, the correction in (525) 
on both sides should cancel itself. With the following contemplations, we would get a sort of 
reference-frame-independent result then (There is only a shift of the point of view of the 
observer on the time-axis). However, I am not quite sure in this point, specifically with this 
application. But now we want to insert the values in (399) obtaining finally:  
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According to definition, a positive value of the energy-flow-density-vector div S0 
corresponds to an emission of electromagnetic energy. The expression w· 0

 (Figure 88) gives 
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information about the energy-balance of the metrics overall. One sees, first energy is taken 
in, which is required to the construction of the metric wave-field. Later the total-energy-
density decreases again and tends against +0. 

 

 
 
Figure 88 
First temporal derivative of the  
energy-density of the metric wave-field   

 

 
 
Figure 89 
Temporal course of the energy-flow-density- 
vector and ohmic losses of the metric wave-field   

 
 

Especially interesting is the energy-flow-density-vector div S0. Even this part is negative 
initially. This corresponds to an influx. Then, energy is emitted again. This is the cosmologic 
background-radiation. But this step in evolution is very short, as already determined in the 
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previous chapter. With a Q-factor of 1.5975, the energy-flow-density-vector has a further 
zero-transit. Energy is taken in again, even if the amount tends asymptotically against zero. 
These are nothing other than the dielectric losses κ0E2 during wave-propagation of overlaid 
photons. Just no energy gets lost. 

 
With large-scale values of t, the expression w· 0

 (becomes small with respect to the other 
ones, so that we can neglect it. Then applies: 

 
    for  t » 0    (530) 
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0div (2 t r )
3

−= − ω − β0S
ɺ

1w    Approximation       (531) 

 
Now we want to examine, whether the share κ0E2 for the metrics really corresponds to the 
in-taken energy of the cosmologic background-radiation. An essential criterion for it is, that 
as well the share of the metrics κ0E2 as the one of dielectric losses of the cosmologic 
background-radiation κ0REK

2 have the same temporal course. It applies: 
 

2 2
0R 0 0 02 Q ~ Q− −κ = κ    1 1

0 0~ r ~ Q− −
KE   (532) 

 
       CMBR     (533) 

 

     Metrics     (534) 
 
The electric field-strength-vector of the cosmologic background-radiation EK is subject to 
the geometrical dilution only, caused by the expansion of space. Here is the „meter-rate“ 
stretched once again. An adaptation of velocity is not necessary, since the background-
radiation always propagates with speed of light and our observations take place with speed 
of light too. Since only the red-shifted conductivity of the vacuum κ0R (see 4.3.4.4.2.) 
becomes effective for overlaid waves, the same temporal dependence arises for large t 
indeed.    

 
In normal case (positive energy-flow-density-vector), the share κ0E2 corresponds to  

ohmic losses, that lead to an additional diminution of the energy-density. A positive share 
div S0 especially describes the energy-(away-)transportation through the electromagnetic 
field. If the energy-flow-density-vector becomes negative (energy-influx) however, so this 
energy either can be added to the electromagnetic field or be changed into other energy-
forms. Because of w· 0 → 0, only the second case is possible. Since the appearance of such a 
share means a conversion into other energy-forms in general (in a conductive medium 
always a part is changed into other energy-forms) arises the question from it, into which? 

 
Once let’s be able to tell the energy-relations by the look of us more exactly, so these are 

situated approximately in the area of the difference between debit- and true-field-strength of 
the cosmologic background-radiation. That means that the energy κ0E2 would be fully 
transformed into „solid“ matter, while the share div S0 would be joined with the cosmologic 
background-radiation in principle.  

 
The particle-formation already begins with the beginning of the expansion then. The 

metrics is fully developed to the point of time t1/4 approximately and starts to emit radiation-
energy (cosmologic background-radiation) thereupon. However, it would also be possible 
that the metrics builds itself with the overlaid background-radiation in one piece quasi 
together.    

 
Approximately from the point of time 2.552t1 on the metrics commences to re-absorb a 

part of the energy of the cosmologic background-radiation again (dielectric losses). This is 
changed completely into matter then. Here, we just have answered the question, whether still 
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cosmologic background-radiation is emitted to the present point of time. The answer is no. 
However, there are areas in the universe (particle-horizon) in those an emission takes place 
even „nowadays“. 

 
If we completely assign the share κ0E

2 to the shape of matter on the one hand, the share 
div S0 to the emission/annihilation of electromagnetic radiation on the other hand, so it 
should be possible to determine the temporal course of the Boson-/Fermion-ratio. With the 
same red-shift for radiation (bosons) and particles (fermions) the following expression 
would arise for it: 
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       (535) 

 
The integration-constant has been determined with help of the function FindRoot under 

the condition that the integral is equal to zero in the maximum of w0, the integral κ0E2 by 
numerical integration (NIntegrate). The associated temporal course is shown in Figure 90. 
 

 

 
 
Figure 90 
Integrals of energy-density and dielectric  
losses of the metric wave-field 

 
 

The calculation of (535) results in a course of the boson-/fermion-ratio, as it is pictured in 
Figure 91. One recognizes, it turns out a value 6.080·108 being much greater than 
determined in section 4.6.4.2.5. But with increasing age it decreases again approaching a 
value of 2.3864·1012 to the present point of time asymptotically. 

 
The reason is that the fermion-number created by the process κ0E2 of the metric wave-field 
is not equal to the total fermion-number. The creation process of fermions taking place 
immediately after big bang does not form particles, as they occur today most frequently 
(electron, proton, neutron) but highly excited states of super-heavy subatomic particles, as 
we still not know them at all. However, these particles are having the characteristic to decay 
into a multiplicity of smaller and lighter subatomic particles with change of the outer 
relations. As a result the fermion-number increases continuously or discontinuously and the 
graph in Figure 91 descends much more intensive.     
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Figure 91 
Part of the boson-/fermion-ratio, determined by the metric wave-field  
as a function of time without consideration of the fermion-multiplication 

 
 

We cannot make any more exact statements about the magnitude of the multiplication. We 
consider it by an additional factor η, which we merge into expression (535) as follows: 
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M T T

a an 2m m0.897659
1 4.9362769 10

n 2.5939 0.34598

c cγ − = − = ⋅ ω ⋅ ω ℏ ℏ
   (537) 

 
 
It turns out a value of η = 2.5939. With high probability, the fermionic matter formed by 

the metrics doesn’t amount the total fermionic matter however. Namely, there is another 
second process, with which fermions can be formed too. The existence of such a process is 
substantiated by the following contradictions: 

 
 
1. The aberrant boson-/fermion-ratio. 
 
2. The metric wave-field is established over a time period of t1/4. Energy is taken in 

during this time continuously. To go out from a singular agitation in form of a 
DIRAC-impulse, the energy of this impulse should have to be buffered somewhere 
for this time period at least. 

 
3. The function according to Figure 91 has a negative domain, which equals to an 

annihilation of bosons. However, these already must have been existed previously, 
because where is nothing, even nothing can be destroyed. 

 
4. The prior existence implies a prior formation, to assume an empty universe to the 

point of time T = 0 by exclusion of a „creation“ of fermionic matter. 
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This process have to see temporally be before the formation of the metrics and to start 
with the point of time T = 0. It would be also reason for the additionally generated fermionic 
matter then. However, now the question arises about which process it could be. The simplest 
case for such a process would be the solution of the MAXWELL equations for a loss-affected 
medium without expansion according to 4.3.4.2, just the classic solution. On the basis of the 
high value of the specific conductivity κ0 of the vacuum this solution would have 
degenerated so strongly that the response to a DIRAC-impulse would be one single impulse, 
which would fit into our temporal screen very well. We want to call this impulse primordial 
impulse. The qualities of such a primordial impulse we will examine in the next section. 

 
 
 
 

4.6.5. The primordial impulse 
 
 

4.6.5.1. The DIRAC-impulse 
 
We assume an unique agitation by a DIRAC-impulse δ(t). This impulse is actually no func-

tion but a distribution with the following qualities: 
 

δ( t)  =  
 ∞  für  t = 0

 0  für  t ≠ 0

 
 
 

 δ(t) =  
d

dt
σ(t)  (538) 

 
σ(t) is the jump-function with the amplitude 1. Another essential quality results from the 
second expression:   

 

{ }   

  
pt

0 0

(t)dt (t)e dt  (t)   1−

− −

∞ ∞

δ = δ = δ =∫ ∫  �  (539) 

 
The integral as well as the surface below the DIRAC-impulse is equal to 1. On the basis of 
expression (538) even the LAPLACE transform is equal to 1, which corresponds to a con-
tinuous spectrum, which shows the same amplitude, namely 1, over the entire frequency 
domain 0 ≤ ω ≤ ∞. The bandwidth is infinite with it. 

 
We just assume this impulse as base of our reflections. It comes closest to the 

imaginations of a big bang too. Since it is about a degenerated case, we want to try to find a 
solution of the MAXWELL-equations for it. First, we have to quantize the space for this 
purpose. We assume our model 4.2.1. expression (70) however without expansion: 
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Since we not yet know the quantization-factor, the coupling-length, we want first to assume 
it as r1/n. Then, the „components“ are defined as follows: 
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2
0 1 0

U 0

r Z 1
R Z

n n
κ

= =             (544) 

 
This leads to the following characteristic differential equation: 

 
2

0 0
U U U

0 0

n n
n 0

 κ κ
ϕ + ϕ + ϕ = ε ε 
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U
0

nκ
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ε
    (545) 

 
2

U U U U Un 0ϕ + ω ϕ + ω ϕ =ɺɺ ɺ         (546) 
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= ω = ω  (547) 

         
2r br c 0+ + =         Characteristic equation  (548) 

 
2 2

1,2 U

b b n n
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2 4 2 4

 
= − ± − = − ω ± − 

 
 

         (549) 

 
The solution of the differential equation depends on (549) and with it on n too. For n < 2 we 
obtain the standard solution according to 4.3.4.2. and for n = 2 the aperiodic borderline case. 
That means for values n ≥ 2, a wave-propagation is no longer possible because the solution 
of expression (549) has no imaginary-part respectively there is no phase rate β defined. Of 
course, even no phase velocity exists.   
 

 
 

4.6.5.2. The aperiodic borderline case 
 
 
Since we have already examined the case 4.3.4.2. in detail, we now want to consider the 

aperiodic borderline case (n = 2) more exactly. Generally applies then: 
 

0 0 1
0

0

2
U 1 U U

0

2 2 t r
2 t (2 t) r

2
κ κ

ω = = ω ω = = ω =
ε ε

     (550) 

 
Interestingly enough, the same coupling-length r1/2 arises here as with the metric wave-

field. Also the frequency ωU is the same like the output-frequency of the metrics and of the 
cosmologic background-radiation. Obviously all interactions can be lead back on one and 
the same conditions, as they have been with the coupling-length r1/2. With it, one can 
assume with high probability, that the primordial impulse has the same coupling-length too. 
Because of the special conditions as they rule in cosmology, an exact proof is nearly 
impossible however. Rather we are always dependent on certain assumptions and can only 
check, whether the results agree with the observations or not. 

 
The middle expression of (550) is advantageous in so far as it allows an exact temporal 

comparison of primordial impulse with the metric wave-field and with the cosmologic 
background-radiation. Quite broadly seen the condition r1/2 (Q = 0.5) seems to represent a 
sort of basic condition of the „empty space without metrics“. Since the concept „empty 
space without metrics“ has appeared already frequently being somewhat hard to handle, we 
want to call it subspace in the future. It is to be supposed that also the subspace disposes of 
something like a structure. 

 
Now let’s go on to the solution of our differential equation. With the initial conditions 
ϕ(0) = ϕ↑ we get the following solution for the aperiodic borderline case: 



 
 

138 

U t
U U(1 t) e−ω

↑ϕ = + ω ϕ          (551) 
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= = = κ ϕω
µ εr r rH e e e       (552) 

 
U Ut t

U U(1 t) e (1 t) e↑
−ω ω

↑
−= + ω = + ωU UH H E E     (553) 

 
U2 t

U
2(1 t) e− ω

↑= + ωUS S         (554) 
 
 
For the transition ϕ → H— we must insert the coupling-length here again (552). The problem 

now is that we don’t know the value of ϕ↑ Therefore, we can first make general con-
templations only. Possibly the values can be derived from the boson-/fermion-ratio. 
However, with the aperiodic borderline case, it is also about a borderline case for the classic 
MAXWELL model. This is less valid for the field-strength itself as especially for the energy-
density. 

 
 
With a periodic function, the spectrum consists only of one single frequency with defined 

propagation-velocity. Therefore the value and the shift of the energy-density, as well as the 
energy-flow-density-vector can be described by this model very well. In the present case 
however the „signal“ consists of one discrete impulse of defined length with a continuous 
spectrum, whereby the different shares propagate with different velocities. Therefore, there 
is no definite energy-density, rather an energy-density-distribution, which is highly 
dependent on frequency, distance and time. This is not applied to solution 4.3.4.3.1. which is 
nearly periodic. The temporal course of solution (554) is shown in Figure 92. It corresponds 
to the requests put in the previous section (energy-storage up to the formation of the 
metrics). 

 
 
 
 

 
Figure 92 
Temporal course of the POYNTING-vector 
of the primordial impulse at the point r=0 
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4.6.5.3. Spectral-function 
 
Since it’s about a discrete impulse, which is defined from the point of time t = 0 first, a 

continuous spectral-function arises. We obtain it by solving (546) with help of the LAPLACE-
transformation once again. The initial conditions f 0

(0)
 = ϕ↑ and f 0

(1)
 = 0 we gather from the 

preceding section. 
 

U U
2

U UUn 0ϕ + ω ϕ + ω ϕ =ɺɺ ɺ  →   2
U U

2
UUp p 2p 2 0↑ ↑ϕ − ϕ + ϕ − ϕ + ω ϕ =  (555) 

 
2

U U
2
U(p 2p ) (p 2)↑ϕ + ω + ω = ϕ +         (556) 

 

U U
U 2 2

U U U

p 2 1
(p ) p (p )↑ ↑

 + ω ω
ϕ = ϕ = ϕ + + ω +ω + ω 

     (557) 

 
The retransformation leads to expression (551) again then. We are interested in the spectral-
function however. As a result of the substitution p → jω we get the frequency response of the 
medium (actually the amplitude-density), which is simultaneously our searched spectral-
function in this case (DIRAC-impulse = multiplication with 1). Neglecting the factor 1/ωU 
(amplitude-density) and scaling to the factor 1 at ω = 0 we finally get (ΩU = ω /ωU):  
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1 1 1
X (j ) 1

2 1 j 1 j

 
ω = + + +Ω Ω

   Complex spectral-function  (558) 

 

2 2
U U

n
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A ( ) 1
2 1 j 1 j

 
 ω = +

Ω +Ω + 
     Amplitude response scaled (559) 

 
The real-part of (558), the amplitude response of the magnetic flux and even the electric and 
magnetic field-strength, is painted in Figure 93 and 86. 

 
 

 
Figure 93 
Scaled spectral-function of the electric as well as of the 
magnetic field-strength of the primordial impulse (linear scale) 
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For the POYNTING-vector, we must square (558) and (559). The 3dB-cut-off frequency is 
situated at 0.776 ωU as well as 1.552 ω1. This agrees with the cut-off frequency for photons, 
overlaid to the metrics, very well (Figure 20) which stands as further argument for it, that the 
coupling-length is also r1/2 at the primordial impulse.   

 
 
 

 
 
 

Figure 94 
Scaled spectral-function of the electric as well as of the 
magnetic field-strength of the primordial impulse (logarithmic scale) 

 
 
 
 
 

4.6.5.4. Energy-density 
 
We obtain the energy-density by division of the POYNTING-vector by the propagation-

velocity. But it must be determined primarily for that purpose. Since it’s about a single 
impulse with defined length, there is no uniform propagation-velocity, because the 
individual spectral shares propagate with different velocity. Frequencies below ωU behave 
according to the standard-model 4.3.4.2. (classic solution for a loss-affected medium). In this 
connection, the propagation-velocity is depending on the frequency (178). The higher 
frequency, all the higher velocity. It doesn’t exceed the value of c however. 

 
For frequencies above ωU there is no propagation at all, albeit their energy stays  within 

the area of the metric wave-field for a certain time. The higher frequency, all the shorter the 
half period, just all the more inferior the average temporal amplitude-density. Also applies 
on the other hand, the larger frequency, all the larger energy. Therefore, we want to see, 
whether there is a median value, that it suffices, to regard in order to determine the total-
energy-density. We don’t actually want to know more at the moment. We first look at the 
energetic spectrum to it. That is the weighted amplitude-density. We get it by multiplication 
of (557) with the frequency. The course is shown in Figure 95. 

 
It shows, that the low frequencies have practically no share at the energy-content of the 

impulse. Considered about the entire frequency domain a median value can be found, which 
has the quantity 1. 
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Figure 95 
Energetic spectrum of the electric as well as of the  
magnetic field-strength of the primordial impulse 

 
With the POYNTING-vector, the maximum is situated at 4/3 by the way. The average 

temporal amplitude-density on the other hand is identical to the scaled amplitude response 
(Figure 93). If we form the quadratic median value of both, so we get the course painted in 
Figure 96. 

 

 
Figure 96 
Quadratic median value of energetic and average temporal 
amplitude-density (E- and H-field) of the primordial impulse 

 
The quadratic median value of energetic and average temporal amplitude-density is situated 
at ωU as well as 2ω1 (aperiodic borderline case). So it is suitable the best to the determination 
of the average energy-density of the primordial impulse. Now we want to determine the 
propagation-velocity for this case and want to look at another solution of the MAXWELL 
equations to it. 
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4.6.5.4.1. Solution of the MAXWELL equations for the aperiodic borderline case 
 
 
At first, we proceed like in section 4.3.4.2. but with a different approach for the magnetic 

and electric field-strength: 
 

0 0 0curl curl
t t

∂ ∂ = κ + ε = − µ ∂ ∂ 

H
H E E     (560) 

 
U Ut t

U U(1 t) e (1 t) e−ω −ω= + ω = + ωH H E E    (561) 

 
For the first derivative of the magnetic field-strength applies (always analogously for E): 
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U
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We also require the second derivatives once again: 

 

U
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U

U2
U

t2 2
U U

1 t
(1 t) e
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H
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Now, we can insert into (560) with ε0 ωU = 2 κ0: 

 

curl  H  =   κ0 −ε0ωU  

ωUt
1+ ωUt
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1+ ωUt

 E       (564) 
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On propagation in x-direction only re-applies: 

 
2 2 2 2

U U
2 2 2 2 2 2
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t t1 1

x 2c 1 t t x 2c 1 t t

ω ω∂ ∂ ∂ ∂
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    (568) 

 

U U

dx 1 dr 1
2 c 1 c 1

dt t dt t
= + = +

ω ω
     (569) 

 
The factor �� is inapplicable on mapping to the metrics, which propagates in an angle of 45° 
to it. There is just even a solution for this special-case. With the interpretation however, we 
must be very carefully. Since the solution is all-real, a propagation-velocity is not defined. It 
is rather about an expansion-velocity, as we had also already found it at the discrete Metric 
line-element (57): 
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Figure 97 
Expansion-velocity of primordial impulse and  
of the Metric line-element No. 1 

 
 

 
 
Figure 98 
Expansion of primordial impulse and the Metric  
line-element No. 1 as a function of time 
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Also, the temporal validity of the solution is strongly restricted. Let’s compare the two 
expressions stated in (570), so the course should have to be almost identical at ωU « 1 We 
can well recognize this in Figure 97. It is applied to the expansion of the primordial impulse 
as well as to the radius of the Metric line-element No. 1 (Figure 98) too. That is the first line-
element, in which the entire energy of the universe has been concentrated at the beginning. 

 
Up to the point of time t1 the expansion of the primordial impulse is approximately 

identical to that of the line-element No. 1. Then the primordial impulse exceeds the limits of 
the first line-element. Still a noticeable overlap survives however. Meanwhile, new 
adjoining line-elements, which now can also gather energy from the primordial impulse, 
have already been formed by wave-propagation. At the latest from this point of time on, 
expression (570) becomes invalid, since we are concerned with the superimposition of two 
subsystems, which are coupled together. 

 
However, we can assume that the primordial impulse doesn’t cross the outer limit of the 

universe. Even a balance of different local energy-density-values occurs over the metrics. 
Then, the same propagation-velocity for the primordial impulse like for the metric wave-
field would apply (213). 

 
 

4.6.5.4.2. Determination of the average energy-density of the primordial impulse 
 
The average energy-density is calculated by division of the expression for the POYNTING-

vector (554) by the value of the propagation-velocity (213): 
 

0
228 t2

0
2 2

002 t (1 )4 t e− ω
↑= ω + ωρUw w       with  S

c
↑

↑ =w      (572) 

 
The course is shown in Figure 99. It shows, that the lifetime of the impulse amounts to 3 t1 
exactly. After it, the entire energy has been transformed into other forms. The second zero-
transit of the function div S0 is at 2.55 t1. With it, the model fulfils the demands with respect 
to the buffering of the energy of the DIRAC-impulse. However, it must be pointed out once 
again, that it is only about an approximation. The real relations are essentially more 
complicated. 
 

 
Figure 99 
Average energy density of the primordial impulse 
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Now, we can reapply the energy-conservation-rule of the MAXWELL equations in order to 
determine the magnitude of w↑ . But now we are concerned with an „oversupply“ of energy 
at which point the outflow div SU doesn’t emerge in the accustomed manner but from the 
absorption capacity of the metric wave-field –div S0. The surplus energy is also converted 
into fermionic matter then, making it even more difficult to make a moderately reliable 
statement about the boson-/fermion-ratio for the time period immediately after big bang. It 
applies: 
 

 
divf Uw w= −0Sɺ ɺ   2

0Eκ
f

wɺ ≙Power density fermion generation   (573) 
 
 
With help of (573) at least the lower limit of w↑  can be determined. It results from the 
assumption that the value of (573) must not become negative. At the metric wave-field, there 
is a negative domain, in which energy has got from the primordial impulse. With the 
primordial impulse itself that won’t work any longer, because we otherwise should have to 
„borrow“ energy from the nothingness. The course of (573) for several values of w↑  is 
shown in Figure 100. The first derivative of wU has been determined with the help of the 
difference-quotient once again. 
 
 

 

 
Figure 100 
Power-density of the fermion-generation at the primordial impulse 

 
 
 
As lower limit for w↑  a value of 0.8533 w1 arises here. The upper limit can be derived from 
the boson-/fermion-ratio (537) assuming the fermion-multiplication-factor to be equal to 
one. Attempting to determine w↑  exactly, we observe that this is impossible, since the 
integration-constant of  ���w� dt can’t be determined. 

 
The reason is that our average energy-density in Figure 99 tends to infinity at the point t = 0 
Our model just fails in this point. However, it’s anyway only about a rough approximation. 
Hence, the most probable assumption is w↑ = w1. As substantiation may apply, that, if energy 
is converted into other forms, the total-energy-density does not change anyway. The second 
substantiation is: The metric wave-field does not yet exist at the beginning. However it 
propagates with approximately the same velocity like the primordial impulse. Here, also the 
phenomenon of the infinite velocity to the beginning becomes clear: A not (yet) existing 
field may propagate with infinite velocity perfectly well, at least mathematically. 
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Unfortunately, further statements can’t be made. Also, a determination of the total-energy of 
the universe is impossible.     

 
 

5. Light speed 
 
 
In section 4.3.4.4. we achieved good results with the calculation of the cosmologic red-

shift in that we assumed the photons propagating rectangular to the expansion-graph of the 
metrics (Figure 34). The frequency results from the product of the local growth of 
wavelength (growth of world-radius), caused by the expansion of the Metric line-element, 
and the local propagation-velocity of the metrics cM. In the approximation applies: 
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   (574) 

 
with = 1 and ��=��1 for the cosmologic background-radiation. Otherwise, even other 
values can be written here. But this is right in the approximation only and corresponds to the 
case that the angle of intersection α between time-like and metric vector in the triangle 
always amounts to π/2. However, in the time just after big bang and with it also with strong 
gravitational-fields and/or very high velocities it’s no longer about a right angle indeed. 
Then, a completely other behaviour arises with the addition of speeds. 

 
First, we want to examine the relations more exactly, as they prevailed to this point of 

time as well as near the singularity. Before however, our model of the photon, just as we 
know it today, needs to be expanded a little bit. Until now, we assumed the photon to own 
the spin ±1 (± ℏ) and the frequency ± ω, which leads to the result, that the photon is identical 
to its antiparticle (– ℏ)(–  ω). A negative frequency just does not cause any difficulties here. 
Now we have seen further, that the metrics for photons behaves like a conduction and the 
conducting-theory calculates not only with negative but also with complex frequencies.    

 
The question is now, why it should not be so even in the theory of the photon? So, 

recently a lot of models have been worked out, being based on the assumption that the rest 
mass of the photon and even of the neutrinos could be different from zero. But exactly this, 
according to the rules of the theoretical electrotechnics, corresponds to the introduction of 
complex frequencies (comp. section 5.3.2.). According to this model, the rest mass of a 
photon according to Table 11 arises to MH = ℏ H0/c2 = 2.60949·10–69

 kg. This agrees with the 
statements in literature very well. 

 
Mathematically speaking is there as well a so-called longitudinal as a purely time-like 

photon (don’t confuse with the time-like photon described here, with which the concept 
time-like refers to the propagation direction opposite to that of the space-like photon) in the 
solution of the wave-equation of the photon. These two conditions are also called ghost-
conditions and are eliminated by means of laborious mathematical methods. That may be 
applied to the purely time-like photon. What’s about the longitudinal photons however? Is 
there anything similar in nature? 

 
Really, there are the neutrinos, which show the same qualities like photons in general. But 
they are propagating in form of a „corkscrew-graph“. Let’s assume simply, that these 
longitudinal photons are the very same neutrinos. Then, they would be photons which occur 
twisted about the angle π/2 in reference to the propagation direction of the photons, i.e. they 
would propagate around the angle π/2 to the propagation direction of the photons (part cν). 
How that could look is demonstrated in Figure 101 and 98. The neutrinos would have an 
imaginary frequency and a real spin with it. That would lead to an imaginary energy too 
(blind-power). The neutrinos could perform practically no work then and the intersection 
angle with the metrics would become virtually zero, the effective cross-section extremely  
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Figure 101 
Extended photon model 

 
 
small. Exactly that are the qualities of the neutrinos however. The propagation-velocity cν in 
propagation direction of the photons would become extremely small too (cM), which would 
lead to the above-mentioned corkscrew-graph, because even in this case the geometrical sum 
is equal to c. 

 
It shows, even here the corresponding neutrino has an antiparticle, which is identical to 

itself (antineutrino and anti-antineutrino). Now however, there are actually three different 
types of neutrinos (νe, νµ and ντ). But what’s the difference between these three kinds of 
neutrinos? The answer is: it’s energy, frequency and/or character phasing. Neutrinos are 
only formed by kernel-processes (β-decay, weak interaction). Therefore, because of 
quantum-effects, the variance of energy is limited to the very same three quantities.   
 

The hypothesis, that all three kinds of neutrinos are actually only different states of one 
single particle, is substantiated by the recently executed neutrino-detection-experiments. So, 
it has been determined that the detected neutrinos, ordered by its direction of arrival, are not 
uniformly distributed. The number of neutrinos, which have traversed the earth’s core before 
detection, is more inferior, than that, coming from other directions. Thereby has turned out 
that these does not have been „vanished“ by e.g. (weak) interactions with any baryons but, 
that they have been converted into other kinds of neutrinos which cannot be detected with 
the experimental arrangement (neutrino-oscillation). 

 
How can this happen? The neutrinos already differ in a second quality from the photons, 

the spin. While the photons have an integer spin, they are bosons, the neutrinos have a half-
integer spin, they are just fermions. As long as the neutrinos move in the vacuum, this 
quality is insignificant. In the earth’s core, they move through matter however. Even if the 
effective cross-section for collisions with individual baryons is no much larger, as in the 
vacuum, so an essentially greater probability arises after all that the neutrinos hit an electron 
shell, especially since the earth’s core is compressed very strongly and with it also the 
electron shells. 

 
And in the electron shell, the fermion-qualities are suddenly no longer insignificant. If 

now two neutrinos move through an electron shell in common, they cannot occupy the same 
energy-state simultaneously. One of the two neutrinos must subordinate and shift to a 
different energy-condition, i.e. it’s converted into a different kind of neutrino. Therefore, the 
three kinds of neutrinos are actually different resonances of one and the same particle. This 
would be possible with e.g. a double or triple rotation-velocity with the same wavelength. 

 
Whenever a particle-physicist reads these lines, he will probably have a good chuckle, 

because we want to lump even neutrinos and photons together. We must first discuss the  
problem with the spin for this purpose. I personally do not see any problem in assuming the 
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spin to be a function of the phase-angle of the propagation-function of the particle anyway. 
Even if the neutrinos should have a rest mass different from zero (this would be equal to the 
one of the photon then and actually be caused by the metrics), also the neutrinos would have 
a complex frequency and with it even a real spin, i.e. the spin could take on fractured values 
too. This would be a particle with properties between photon and neutrino then. 

 
Now such particles have not been observed until now, since they are not usually formed 

with natural processes, but they would be quite possible. According to this model, they could 
have existed just after big bang and should have to be observed near black holes even today. 
That would be nor more implausible than some non-local model. One example would be 
photons with circular polarization with a very high rotation-frequency around the propa-
gation-axis. 

 
However, this model implies also the existence of a so-called space-like photon, that is a 

photon with negative propagation-velocity. That means it propagates „opposite to the propa-
gation direction“, just quasi stands still on it’s position forming a standing wave. There is 
also something similar in nature, namely the so-called DEBROGLIE-matter-waves, which are 
associated with the particles. With the exception of the standing-wave-properties these are 
subject to the same inherent laws like „normal“ photons. That is applied also to the red-shift. 

 
If you should now be of the opinion, the neutrino is definitely a different particle as the 

photon, i.e. both cannot be unified in a common model by no means, please take notice of 
the following: With this model, we have introduced only one single new particle, the space-
like photon, which is besides similar to or identical to the DEBROGLIE-matter-waves.  

 
But now, to assign a rest mass as well to the photon as to the neutrinos, considering both 

as different particles, we would wear not only one but 7 or even 15 new particles (15, if we 
would insist on three different for each individual kind of neutrino νe, νµ und ντ). Because 
then, there would be also neutrino-like photons/anti-photons and photon-like 
neutrinos/antineutrinos all at once, and these in time- and space-like implementations. I 
cannot simply believe that. 

 
Therefore it’s just the statement from photons and neutrinos. But if the just named case 

should become true, please replace the terms neutrino/antineutrino by neutrino-like as well 
as antineutrino-like photon independently. However, the said, analogously should have to be 
applied also to the neutrinos then, how much there may even be. At first, just let’s have a 
look at  the quite normal photon. 

 
 

 

5.1. Photons 
 
Near the singularity, the relations are just like shown in Figure 102. In this connection I 

must clarify a contradiction, which otherwise could be charged against me as error. Until 
now, I have always called photons as time-like vectors, although they generally are 
identified as zero-vectors (velocity c). If I speak of a time-like vector, I always mean the part 
cγ. The part cM is a space-like vector and c the zero-vector, which we measure. 

 
Now however let’s go on to our problem. Particularly we are interested in γ, the angle of 
intersection with the derivative cM along the metric expansion-graph and also the amount of 
|cγ| = cγ. Since it’s not about a rectangular triangle, the sine-rule applies: 
 

 
2 2 2

M Mc c c 2c c cosγ γ= + − α         (575) 

 
2 2 2

M Mc c (2c cos c) 0cγ γ− −α =+             (576) 

 
2 2 2
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2

Mc c cos c cos c cγ = α ± α+ −        (577) 
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Figure 102 
Vectorial speed-addition with 
photons near the singularity 
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The positive sign is applied to „generic” photons γ  (arises from the approximative solution). 
The negative sign applies to space-like photons γ*, which behave differently near the singu-
larity. 
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For the angle αγ applies in both cases (see (211)): 
 

2 21 3 1
arg c arccot θ = arg ((1 A B ) j2AB)

4 2 2 4 2γ

π π
= − = − π + − + +α   (581) 

 
The course of the individual speed-components for the two kinds of photon as well as for the 
neutrino and antineutrino is shown in Figure 103. It shows that individual components also 
can have a larger velocity than c. But just always c becomes effective. The low graph figures 
the course of the expansion-velocity of the metrics. The behaviour of the diverse particles 
and antiparticles differs all the more, the closer we come to the point Q=1 (symmetry-
breaking), to decrease again thereafter. 
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Figure 103 
Course of the individual speed-components (absolute value) 
for photons and neutrinos near the singularity 

 
 
The intersection angle γ with the metrics of the (normal) photons we get by application of 

the sine-rule (α = αγ): 
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Figure 105 shows the course. But figured is the value sin γ, which carries an essentially 
major weight as the angle itself. In order to avoid miscalculations, the function arg c always 
has been determined directly from (209). 

 
As for the rest, to the calculation of arctan q we should better work with (214), since one 

would get a partially wrong result because of the ambiguity of the arctan-function else. For 
the absolute phase-angle ϕ of the resultant c applies: 
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We will dispense with the presentation of ϕ 
here. Another approach is applied to the 
space-like photons: 
 

In the prolongation of cγ namely another 
second triangle can be constructed alongside 
cM with the angles α� (complementary-angle 
to α), γ� (angle of intersection with the 
metrics beside γ) and δ� (opposite to cM). 
This corresponds to the second solution of 
(578) and applies also for antineutrinos. 

 
 
 
 
 
 

Figure 104 
Complementary triangle and angle as 
second solution of the quadratic equations 
with reversed speed-vector cγ  

 
For the complementary angles applies: 
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Figure 105 

Course of the function sinα of the angle of intersection with the metrics 
for time-like (normal) and space-like photons near the singularity 
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The course of sin γ� is also shown in Figure 105. For the absolute phase-angle ϕ� of the 

resultant c applies: 
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5.2. Neutrinos 
 
We now look at the model according to Figure 106. Once again, it interests the angle of 

intersection γ with the derivative cM along the metric expansion-graph and even the amount 
of |cν| = cν. 

 

    
Figure 106  
Vectorial speed-addition with 
neutrinos near the singularity 

 
Since it is not about a rectangular triangle, the sine-rule applies again with the solution: 
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For the angle αν applies in both cases (see (211)): 

 

5 3 1
 argc  argc  arctanθ   
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ν γ
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 (595) 

 
The angle αν just figures a sort of complement-angle of αγ i.e. we can dispense with the 

value αν With α, we just always mean αγ. Important relationships can be obtained from the 
reduction-formula for arbitrary angles: sin αν = –cos αγ, cos αν = –sin αγ, cos αν = –sin αγ, and 
tan αν = cot αγ. The course of the functions (594) and (595) is painted in the Figure 103 
(amounts) in turn. The intersection angle γ of the neutrinos with the metrics we obtain also 
directly by application of the sine-rule (α = αγ): 
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We can see the course of sin γ  in Figure 107. It is also well to be seen that the interaction-
cross-section of the neutrinos increases with ascending energy, which corresponds to the 
present knowledge-level. For the absolute phase-angle ϕ of the neutrinos applies: 
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Yet another approach is applied to antineutrinos in turn. The angles in the triangle are 
defined as follows: �� (complementary angle to α), δ� (intersection angle with the metrics 
beside δ) and γ� (opposite to cM). It applies: 
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Figure 107 shows the course of sin γ�. For the absolute phase-angle ϕ� of the resultant c 

we finally get: 
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Figure 107 
Course of the function sinγ of the angle of intersection with  
the metrics for neutrinos and antineutrinos near the singularity 

 
 
With it, at least according to this model, we have proven that photons in the time just after 

big bang and even in very strong gravitational-fields and with very high relative velocities 
behave like neutrinos and vice-versa. To the conclusion once again a summary of the 
essential expressions: 
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5.3. Red-shift of photons and neutrinos 
 
 

5.3.1. Fundamentals 
 
Since all photons (and neutrinos) are really or/and virtually connected with the temporal 

singularity, there are two types of photons at the observer. The photons with a frequency 
above the frequency of the cosmologic background-radiation, are the first type. I would like 
to call them contemporary photons, since their origin is within our universe. The so-called 
orphan photons are the second type with a frequency below the frequency of the cosmologic 
background-radiation. Orphan, because their origin is outside our universe, i.e. in order to be 
red-shifted to their present frequency the age 2T is not enough, the origin not yet exists. 
Nevertheless they are likewise already connected with the temporal singularity, because the 
time stands still there. Past, present and future form an unit. 

 
We want to try to find an exact expression for the red-shift of photons and neutrinos 

which is independent from their frequency. As already noticed in the preceded section and in 
section 4.3.4.4.3. the relations are being determined as well by the side-relations as by the 
angles in the metric triangle. Therefore, based on (300) we consider an arbitrary frequency 
ω�= 2πc/λ at the temporal singularity, i.e. before the transformation. Since it is about a 
temporal singularity in this case, each frequency there has the value 2ω1 and ωs = ω1 2/3 
after splitting into 6 MLEs. This equals the frequency of the cosmologic background-
radiation at the input coupling by the way. The effective frequency at the observer „arises“ 
only by the application of the frame of reference. Ignoring the frame of reference, we obtain 
the desired universal relationship. Let’s employ 2ω1 for the initial-value ˜ ω  and 1/2 (γ) as 
well as 2/3 (γ ) for the associated Q-factor ˜ Q , we obtain with the help of (722) and (671c): 
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This result apparently corresponds to expression (277) with δ2

 = y = Q0
–1. We employ again: 

 

0 02H t 1 2H 2 tω = ω − ≈ ω                  3/2
0Q−ω ∼   (278) 

 
This also exactly agrees with expression (278), as not otherwise was to be expected. That 
means, there is only one approximation for time- and space-like photons, but two different 
exact expressions. With the space-like photons, there is a problem by the way. The solution 
of the phase-function Ξ at the reference point 2/3 namely is plain imaginary, so that there is 
no real reference of the space-like photons to this point, which leads, amongst other things, 
to the result that these have particular qualities. So, the rest-velocity is equal to zero and the 
photons can be shifted at will which equals the qualities of the DEBROGLIE-matter-waves.  
However, problems result from it with the application of (302) during the conversion to the 
reference point.   

 ×     ×      ×
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Figure 108  
Red-shift of photons exactly and approximation 

 
Only to determine the red-shift of a matter-wave with a start-point greater than Q = 2.318249 
(phase-jump), (302) can be applied, as it is. With the reference to the point 2/3 the 
expression must be modified indeed, namely in the following manner: 
 

 
This corresponds to an imaginary frequency at the reference point 2/3, of which we want 
only take notice for the moment. The values emerge from the necessary convergence of both 
functions for Q→∞. For the approximation function applies exactly: 
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The course of the three functions is painted in Figure 108. It shows, the approximation is 

sufficiently exact downward till Q =103. Only in very strong gravitational-fields the exact 
expressions are required. In the cosmologic scale suffices the approximation equation. 

 
With it, we have found the solution for both types of photons. What we do not know yet, 

is the solution for neutrinos and antineutrinos. This is also the reason why we have derived 
the approximation so detailed. Other rules are now applied to neutrinos. With help from 
(302) and (721) for a reference point of 1/2 we obtain: 
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Figure 109 
Red-shift of neutrinos exactly and approximation 
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For antineutrinos we obtain the same result. Obviously, the neutrinos with Q7/4 are more red-
shifted than the photons with only Q6/4. Therefore they converge even more slowly with the 
approximation function, as it shows in Figure 109. And with the antineutrinos, there is a 
similar problem like with the space-like photons. While with latter ones the numerator of the 
radicand of (302) has been negative at the reference point 2/3, that means an imaginary root-
expression, it’s exactly vice-versa with the antineutrinos. Here just a real solution arises for 
the reference point 1/2. Starting with Q = 0.54107 however all solutions become imaginary. 
Even here it becomes noticeable only if we want to determine the red-shift in reference to 
the reference point 1/2. The problem can be solved then again with an imaginary frequency, 
but negative imaginary this time: 
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For references above Q = 0.54107 however there is no effect, since then as well the 
numerator as the denominator becomes negative, the root-expression real again. Expression 
(302) can be used unchanged with it. 

 ×         ×         ×



 
 

158 

Now however, we only assumed the reference point of the antineutrinos to be at 1/2. It has 
been substantiated by the particular qualities of the space-like photons, which would refer 
exclusively to 2/3 then. Because of symmetry-reasons one should rather assume the 
reference point of „normal“ particles to be at 1/2, the one of antiparticles at 2/3 however. 

 
Then, the problem of the antineutrinos would be solved, expression (302) applies always 

and unchanged. By the way, the basic frequency of antiparticles for Q <1 is always greater 
than the metrics’ frequency w0 (summary frequency) and with it above the cut-off frequency 
of the subspace. The other way round the basic frequency of „normal“ particles is always 
below it (difference-frequency). With it, antiparticles first can exist at a later point of time. 
This is the symmetry-breaking just after big bang, which is the reason why our universe 
almost only consists of „normal“ matter. 

 
On the basis of (612) and (620) it shows that the basic frequency ω1

− , even if it’s 
imaginary, is still far above the cut-off frequency ω1 of the subspace, which also seems to 
indicate a reference point of 2/3 for the antineutrinos. Then, the particular qualities of the 
space-like photons would emerge from it that they have an imaginary basic-frequency 
exclusively, a pole of 1st order and with it no real connection to its reference point. 
Therefore, I favour the version 2/3 for antineutrinos. This has no practical effects on the 
further contemplations however. 

 
The reference of the photons and neutrinos to its origin (temporal singularity) would agree 

with the so-called pilot-ray in some non-local theories. The reference is timeless, the action 
instantaneous. It even already has been verified by experiments. Separating an entangled 
photon-pair, preserving both photons one by one as a standing wave, the matching photons 
would „feel“ each other even on a large distance. A super photonic communication would be 
possible with it – theoretically. The connection takes place via the temporal singularity. But 
the real problem is to get the one photon intact e.g. to Alpha Centauri. 

 
 

5.3.2. Propagation-function for photons and neutrinos  
 
After we have done a trip into the future of communication, now however let’s go on in 

the context. In the course of the antecedent section the term imaginary frequency has 
appeared already twice and the question is, what does this mean specifically for the wave-
propagation of photons and neutrinos? In the electrotechnics, one works with imaginary and 
complex frequencies for a long time having even no problems with it. 

 
However, let’s look at our propagation-function (308), so it shows that it describes only 

one special-case, namely the one of a flat, linearly polarized wave, which propagates in r-
direction. The electric and magnetic field-strength varies in x-direction. With it, expression 
(309) would be applicable for linearly polarized photons, however not for neutrinos, because 
they are polarized circularly. 

 
In order to depict all these additional parameters, we must extend (308). Additionally to 

the solution x(r) we require another solution in the third dimension y(r). Then, according to 
[26], the propagation-function consists of altogether 4 equations (the second solution can be 
derived by analogy with (268)). It applies: 

 
j t j t 0

y F0x0 x y 0

jˆ ˆe e Z Zω ω ωµ
= =

γ
= ≈E E E E  Input values 

            (621) 
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This is the universal propagation-function for an elliptically polarized flat wave in the 
vacuum. Here, the point r = 0 is located at the signal-source. With the reference to the 
observer, we have to insert the value of – γ instead of + γ and to take up the corrections 
according to section 4.3.4.4.6. With circular polarization applies Ex0 = Ey0, with linear 
polarization Ey0 = 0. Thereat, the magnetic field is always perpendicular to the electric one. 
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In the approximation, the most naturally originated photons are polarized purely linearly, the 
neutrinos on the other hand behave circularly, they are polarized longitudinally however. 
Since the respective field-strength-maximum with circularly polarized waves migrates 
according to a periodic function between x and y, there is even another additional frequency, 
the rotation-frequency ωHF. This depends on the angle δ = ωHFTω. The expression Tω is the 
period of the time-function. But how do we now get the rotation of the polarization direction 
into our propagation-function? This is achieved by the introduction of complex frequencies. 
We first define four complex frequencies, for each particle one, to it: 
 

(cos jsin )δ ±ω = + ω δɶ        Time-like photons  (622) 
 

(cos jsin )δ ±ω = − ω δɶ        Space-like photons  (623) 
 

(sin jcos )δ ±ω = + ω δɶ        Neutrinos   (624) 
 

(sin jcos )δ ±ω = − ω δɶ        Antineutrinos   (625) 
 

ῶ is the amount of ω. The upper sign applies to the x-coordinate, the lower sign to the y-
coordinate. The relations cannot be derived directly from (578), (593) as well as (594), since 
these are based on a universal triangle, the complex exponential-function however on a 
rectangular triangle. Instead of the real and imaginary part of the frequency ω therefore the 
projections on x and y are used as it is shown in Figure 113. 
 

For the line-up of an absolutely correct propagation-function, the complex e-function 
namely is not well-suited, one requires the Hankel-function to it. Because in reality, there are 
not any sine-functions in the nature. These would be defined up to the point of time t = –∞ 
and such a point does not exist for known reasons. With it, for small values of Q a minor 
residual error remains. But since the wavelength is correctly calculated by the factor Ξ(r), 
this does not express itself in a wrong character phasing but in a drift of the wave off the 
straight line R. But if we define the propagation-function along the arc of r, this deviation 
plays no more role. Then, the curvature of r is determined by outer influences and is not a 
component of the propagation-function. 

 
The wavelength, that we measure, is always the real-part. With the photon, this equals the 

actual wavelength, with the neutrino the rise of the „screw thread“. The imaginary-part at the 
photon on the other hand corresponds to a rotation of the direction of polarization (there are 
just actually circularly or elliptically polarized photons only), at the neutrino, it is joined 
with the „screw thread-diameter“. 
 

Figure 110 
Photon-circle, variance of the properties 
of the kinds of photon on change of Q and v 

So, the multiplication of the time-function 
with ±j means the transformation of a particle 
into a second one, i.e., the properties of the 
photons and neutrinos change with the 
occurrence of imaginary frequencies. This is 
always the case with a very small Q-factor or 
a very large velocity v, i.e. at very strong 
gravitational-fields, just after the big bang or 
when the velocity is close to c (c–10–50ms–1).  
 
 
Figure 110 shows the situation of the 
individual particles in the phase space and the 
variance with changes of Q and V. In 
principle doesn’t change the particles 
themselves but the metrics. It’s therefore only 
about an observational phenomenon, even if 
the varied properties are physically real.   

 
The transition takes place nor gradually but abruptly and that the steeper, the major the value 
Q in the frame of reference of the observer. That’s why this effect cannot be detected e.g. 
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with accelerator-experiments, neither today, nor in far future, since the energies needed are 
outside the availability of mankind. As later examinations will show, the particles, even with 
strongest curvature, doesn’t exceed essentially the coordinate-axes x and y. Therefore, a 
photon remains a photon, a neutrino a neutrino etc. That means, the reference point of the 
antineutrino is with 2/3. 
 

With technically generated circularly polarized photons the rotation-frequency ωHF can 
take on arbitrary, even negative values (right-hand screw) which depend on the discretion 
and the possibilities of the technician. This happens e.g., in that we use a circularly polarized 
transmitting-antenna or a polarization-filter in front of a light-source rotating with a certain 
velocity.     

 
According to [26] a circularly polarized wave can be depicted as the superimposition of 

two by x and y linearly polarized waves with the same amplitude which are phase-shifted by 
90° against each other. This however is the special case, when ωHF and ω are of the same 
size. Then, the direction of polarization of the wave rotates around 2π exactly one time when 
it has covered the distance λ. With a rotation-frequency aberrant there from, naturally the 
phase-shift is smaller (photons) or even greater (neutrinos). Now, with (621) we have 
already found such an equation-system, however without phase-shift. If we add these, it has 
only effects to the time-function. The actual transfer-function e–γr remains untouched, i.e. it 
doesn’t matter to the metrics, which type of signal is transferred. Although, different 
functions Ξ(r) are applied. 

 
Considering only purely linearly polarized photons or purely longitudinally polarized 

neutrinos, the rotation-frequency ωHF is defined by the angle δN. Decisive is the phase-angle, 
the argument of the complex frequency ω. It applies: 

 

δγ  =  arctan
+ sinδ
+ cosδ

 =  + arctan tanδ  =  + δ    Time-like photons (626) 

 

δ γ  =  arctan
−sinδ
−cosδ

 =  − arctan tanδ  =  − δ     Space-like photons (627) 

 

δ ν =  arctan
+ cos δ
+ sin δ

 =  + arctan cot δ  =  +
π
2

− δ
 

 
 

 

 
    Neutrinos  (628) 

 

δ ν =  arctan
−cos δ
− sin δ

 =  − arctan cot δ  =  −
π
2

− δ
 

 
 

 

 
    Antineutrinos  (629) 

 
The term ± j π/2 with the neutrinos corresponds to a rotation of the coordinate-system by 
± 90°. The transfer-function (621) namely is in the form, we used it until now, not suitable 
for neutrinos, since the neutrinos are propagating in the right angle to the photons (see 
Figure 102 and 98). Rather, the universal propagation-function ejωt–γr describes only the 
wave-propagation along the real coordinate of the phase space. Herewith, the part j ωt 
represents the time-like, the part γ r the space-like vector, both standing perpendicularly one 
against the other. In order to describe a wave-propagation along the imaginary coordinate, 
above-mentioned rotation is necessary. This happens, in that we multiply the whole time-
function with ± j. And this multiplication exactly turns out the expression ± j π/2 in the 
exponent. We just take up a transition from the real to the imaginary coordinate. With it, we 
obtain for the universal transfer-function: 
 

N Nj ( t ) j ( t )
y0x0 x y

ˆ ˆe eω δ δ+ ω += =E E E E          Time-function 
(630) 

r r
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Thereat a positive value δN corresponds to a left-hand screw, a negative to a right-hand 
screw on propagation in r-direction. With technical photons, the unnatural rotation-share 
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δK = ωHFTω adds up to the natural δN. As already mentioned more above, δN does not exceed 
the value π/4, neither with strongest curvature. Thus, the individual kinds of photon cannot 
be converted in one another. They only show similar properties then. The angle δ, different 
from zero, is also responsible for the occurrence of a rotation of the polarization direction of 
linearly polarized photons in the cosmologic time frame. This effect is however very bad to 
demonstrate, since it’s extremely weak. After we have worked out the universal 
propagation-function, as next we want to look at the „normal“, i.e. time-like photons more 
exactly. 
 
 

 
5.3.2.1. Time-like photons 

 
At first, we want to figure the expression for the propagation rate γ once again. It doesn’t 

differ from the already known expression (309): 
 

γ
γ
 =  

˜ H 

c
+

˜ ω 0
c

Ψ(ω)
 

 
 

 

 
 + j

˜ ω 
c

Ξγ (r)
 

 
 

 

 
  Φ(ω)           Phase rate   (631) 

 
The phase rate is independent from the respective coordinate. Interestingly enough, the angle 
δ doesn’t appear at all. Only the amount � of the complex frequency � is used. However, 
always only the real-part of the wavelength can be observed. The rest is  hidden in the third 
dimension y. 
 
Since the attenuation α with its share 1/R = H/c is a function of the distance r, it is because of 
r = ct a function of time too. And this dependence must express itself also in the relation jωt 
at the signal-source. It arises from the introduction of an additional cosmologic component, 
the imaginary frequency jH. With disregard of the cut-off frequency, it plays no role at the 
source, we obtain: 
 

      j t j( jH (t)) t  ( H j (t)) tγ γ γω = + ωΞ = − + ωΞɶ ɶɶ ɶ     Time-function   (632) 
 
The part –H corresponds to the time-dependent expansion and attenuation at the observer at 
the point r = 0. Of course, like each point in the universe, this is even subject to a temporal 
red-shift and attenuation. Therefore, there is also a share div S at the point r = 0, which is now 
a function of time however. Going back in time (–t), so there is also a larger amplitude, i.e. 
to an earlier point of time natural emissions took place with higher energy. The origin of the 
time-like photons is at Q = 1/2. 
 

But we have only characterized the wave-properties of the photon with it, however it 
disposes of particle-properties too. In this point I affiliate the current doctrine, with one 
exception – namely, with the help of (627), a photon rest mass different from zero can be 
defined, as it is postulated by several modern, local and non-local theories. It’s about the so 
called HUBBLE-mass MH = m0Q0

–1
. The value according to Table 11 agrees very well with the 

there made projections1: 
 

0 9
H

6

2
60949 10 kg

H
M 2.

c
−⋅= =

ɶℏ
ɶ      Rest mass photons (633) 

 
 
 
 
5.3.2.2. Space-like photons 

 
As next we look at the propagation rate γ for space-like photons. Next in turn we start 

from (309). Since space-like photons however propagate opposite to the propagation 
direction (velocity –c), we must take this into account accordingly: 

                                                
1
 By the way, in the time just after big bang and in strong gravitational fields, the photons dispose of a non-considerable rest mass. 
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γ
γ 

=  
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  Φ(ω)       (634) 
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      Phase rate  (635) 

 
Since space-like photons are moving opposite to time-like ones, they have a negative phase 
rate exclusively. Especially interesting is this in connection with the expression jωt. We 
want to determine this as next. Because finally standing waves come out, the expression 
Ψ(ω) for the cut-off frequency at the source this time cannot be disregarded: 
 

    0j t j (( jH j ( )) (t)) tγ γω = + ω Ψ ω + ω Ξɶ ɶ ɶ        (636) 
 

  0j t  (( H ( )) j (t )) tγ γω = − − ω Ψ ω + ω Ξɶ ɶ ɶ        Time- function  (637) 
 
For the difference jωt – γr with r=(–c+v) t, v=const we obtain by expansion: 
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0 0H H ( )

j t – r ( ) j (r) ct – ( ) j (r ) c v t
c c c c c c ( )

γ γ γγ

      ω ωω ω Φ ω
ω γ = − − Ψ ω + Ξ − − Ψ ω − Ξ − +       Φ ω     

ɶ ɶɶ ɶɶ ɶ  

 

    
0

0

H
j t – r  2(H ( )) t ( ) j (t) vt

c c c
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ɶ ɶ ɶ
ɶ ɶ    (639) 

 
v is the velocity, with which the wave is moved by external inducement, (translational 
motion). The positive term of H/c describes the energy-increase during acceleration, i.e. the 
relativistic mass-increase as a function of the velocity as well as the mass-increase by 
approach to the temporal singularity. The linear addition of the velocities is correct, since 
both velocities are referred to the same system. Now let’s substitute v = 0, so we receive a 
plain real result, the propagation rate has the value zero. With it it’s about a standing wave: 
 

    0 0

t t
j t – r  (2Ht 2 t ( ))  Q ( )   0 v 0

T T
γ γ γ

 ω γ = − + ω Ψ ω = − + Ψ ω ≈ − γ = = 
 

ɶɶ ɶ
ɶ ɶ

 (640) 

 
The approximation is valid for ω«ω0. Since the angle δ is untouched, a possible rotation of 
the polarization direction (spin?) survives. The occurrence of a twofold attenuation-factor 
2/R = 1/(R/2) let’s still presume, that it’s about a space-like vector in this case. 
 

With it the question arises afterwards for the actual character of the space-like photons. 
Until now we had assumed, that the fermions somehow consist of them. But it does not seem 
to be the case. So the space-like photons are bosons with integer spin, while the fermions 
have a half-integer spin. It is however hard to imagine that particles with half-integer spin 
should consist of such with integer spin, rather the other way round. 

 
Let’s further do a comparison with the time-like photons, these mediate the mutual 

electromagnetic interaction of the fermions via the metrics, the space-like photons could be 
responsible for the same interaction of the fermions with the metrics. For that purpose 
however they must move into the same direction as the fermions (space-like vector) and 
with the same velocity (arbitrary). Since the metrics is omnipresent, they even don’t need to 
cover large distances (limited lifetime). With it, the space-like photons mediate the metrical 
properties of the particles (mass, length etc). 

 
As well, as the time-like photons the space-like photons naturally dispose of particle-

properties too. These however rather resemble those of the DEBROGLIE-matter-waves than 
those of the time-like photons. It is yet about bosons. The origin of the space-like photons is 
at Q = 2/3. The rest mass equals to that of the time-like photons. 

 

(638) 
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5.3.2.3. Neutrinos 
 
Now, it is absolutely necessary to write down the relationship also for neutrinos and 

antineutrinos. We expect a behaviour similar to the one of the time-like photons, since 
neutrinos also propagate with light speed. Let’s begin with the neutrinos for one thing. We 
start with expression (309) once again looking at the relationship for γ r at first. This time 
however we have to take into account, that the wave doesn’t propagate with c but with jc, 
i.e. in the right angle to the photons, and to consider it in the denominator of γ accordingly. 
Then, the function is neither defined along the arc r, but along jr, so that the factor j cancels 
out in turn. But if we define r as the actual propagation direction of the neutrinos, we can 
assume an unchanged expression for γ: 
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   Phase rate         (643) 

 
With exception of  Ξ, the phase rate doesn’t differ from that one of the photons. This was not 
otherwise to be expected by the way, is it about the same medium after all. The neutrinos are 
also subject to the red-shift and cut-off frequency. 

 
Since the angle δν is positive because of (628), neutrinos are rotating in a mathematical 

positive manner (counter clockwise/left-hand screw) with propagation in r-direction. This 
property is also called (negative) helicity and is the substrate of the weak charge. At the 
neutrino, it has the value –1. With inversion in all dimensions the helicity survives. So the 
neutrino is its own antiparticle. By the way, this applies even to both kinds of photon. As 
next, we want to determine the time-function jωt:  

 
    j t j( jH (t)) t ( H j (t)) tν ν νω = + ωΞ = − + ωΞɶ ɶɶ ɶ              Time-function  (644) 

 
It shows, a real attenuation appears at the signal-source. Neutrinos in the same way are 
subject to the parametric attenuation, like the photons. These are only the wave-properties 
then again. The particle-properties are characterized by the fact that the neutrinos are 
fermions with half-integer spin. This seems to be associated with the location of the 
propagation direction in the complex phase space therefore. For jπ(2n)/2 an integer spin 
emerges, for jπ(2n+1)2 a half-integer spin. The sign is defined by the phase-angle jπ/2. The 
origin of the neutrinos is at Q = 1/2. The rest mass equals to that of the photons too. 
 

 
 
5.3.2.4. Antineutrinos 

 
As we know, even antineutrinos propagate with speed of light, in contrast to the neutrinos 

however along the negative imaginary axis with the velocity –jc. It applies: 
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    Phase rate     (647) 

 
Since the antineutrinos are antiparticles, they actually should have also a negative phase rate. 
According to (644) it is really the case, only it’s negative imaginary, because of 1/j = –j. But 
we can also work with the same phase rate, as with the photons, if we define the 
propagation-function along the arc r, that coincides with the real propagation direction, once 
again. The antineutrinos are subject to the red-shift and cut-off frequency once again. 
 

The only difference from the neutrinos is the negative sign of ���, see (629). Thus, antineu-
trinos rotate mathematically seen negatively (clockwise/right-hand screw) with propagation 
in r-direction. They have a positive helicity and the weak charge +1. With inversion the 
helicity survives too. So also the antineutrino is its own antiparticle, not the neutrino. This 
condition is called parity violation. As next, we want to determine the time-function jωt:  
 

(t)) t ( H jj t j( t tj ( ))H ν νν Ξ =ω = − + ωΞ+ ω ɶɶ ɶ ɶ               Time-function  (648) 
 

A real attenuation appears at the signal-source in turn, antineutrinos are subject to the 
parametric attenuation like the photons and neutrinos. The particle-properties are following: 
Antineutrinos are fermions with half-integer spin. The phase-angle is –jπ/2. Since it is about 
antiparticles, the origin is at Q = 2/3. The rest mass also equals that of the photons. 
 
With it, we have worked out a maximally efficient, contradiction-free, extended photon-
model, which is able to explain also the behaviour of the neutrinos and antineutrinos, that is 
valid even under cosmologic points of view. 

 
As one can well recognize at (637), neutrinos and antineutrinos dispose of essentially 

more degrees of freedom than the photon. Thereat, the spin is defined by the propagation 
direction, the weak charge by the helicity, just δN. We could allocate two particle properties 
with it.  

 
In section 5. I already formulated the hypothesis that with the three hitherto identified 

kinds of neutrino (νe, νµ, ντ) it’s actually only about resonances of one and the same particle, 
at which point the neutrino-oscillation prevents a violation of the PAULI-principle, if several 
neutrinos of identical „construction“ are crossing an electron shell simultaneously. 

 
In what however turns out the difference between these three kinds of neutrino, more it 

shouldn’t be indeed, in the propagation-function? We only can make guesses about it, which 
would be there: 

 
1. It’s about different particles indeed. 

 
2. It’s about the same particle with different frequency/energy.  

Neutrinos are only generated or resorbed with certain reactions  
within a definite energy band. Thereat, the value depends on the  
type of reaction. 

 
This is the simplest answer, but it wouldn’t explain the neutrino-oscillation anyway. 
 

3. It’s about different resonances of one and the same particle. With violation  
of the PAULI-principle, a particle adapts its energy to an already free  
energy level. But for neutrinos, it’s only of interest during the stay within  
an electron shell. 

 
This would be a practicable option. It would explain the neutrino-oscillation. But it remains 
the open question, in what extent this manifests in the propagation-function. A fixed additive 
phase-angle to the angle δN would be practicable (additional phase-shift). Here, an angle of 
e.g.  2/3π would be possible in order to guarantee the number of three.  
Another option would be a multiple of 2π. Then, more than 3 kinds of neutrino would be 
possible however. Perhaps, 3 kinds of neutrino are sufficient however? Another option 
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would be the occurrence of a positive or negative twofold frequency in the y-component of 
the wave-function. The neutrino-wave consists of two components x and y indeed. If one of 
it has the twofold frequency, a periodic solution occurs too. The corkscrew becomes a 
rotating 8 as with the LISSAJOUS-figures. Thereat, there are parallels to the atom, what lets 
appear this explanation quite possible. The s-orbital is also circular in the top view, the p-
orbital looks like an 8 and there are altogether four of them. But one of them is dropped, 
since it lies in propagation direction, that makes three altogether. And here still the last 
option: 

 
4. The difference between the three kinds of neutrino cannot be figured in the 

propagation-function. 
 
However, I would like to leave open the final answer to this question turning over to the 
following section as next. 
 

6. The special relativity-principle 
 
 
Originally, this topic should be treated first to a later point of time. In the next section 

however, special new, SRT related information is used, so that I decided to anticipate the 
chapter velocity and relativity. 

 
 

6.1. Velocity and relativity 
 
Having hitherto looked at the temporal and spatial dependence of different quantities, it’s 

time to examine also the dependence from the velocity. Still interesting are the relationships 
to the newly introduced quantities Q-factor (phase-angle), ω0 and κ0. As starting point, we 
assume the statements of the SRT, just as they have been formulated by EINSTEIN. 
Therefore, by velocity, we understand the relative velocity of one observer to another (frame 
of reference). 

 
 

6.1.1. Fundamentals 
 
We first of all assume an imagined Cartesian coordinate-system. In its zero is the 

observer. This coincides with the centre of the universe (each point, at which an observer is, 
is always the centre of the universe for him). With it, the relative-velocity of the observer is 
equal to zero, not only in reference to the coordinate-system but also in reference to the 
metrics, but not in reference to the empty space (cM). Furthermore, we observe a body from 
this point, moving with the relative-velocity v in reference to the coordinate-origin. We 
measure the length x´ in ratio to the rest-length x, that we determined, before we have 
accelerated the body to the velocity v. According to the just yet classic statement of the SRT 
applies to the observed length (doesn’t apply to wavelengths!): 

 
12
2

2

v
x x 1

c
 

′= − 
 

         (649) 

 
We don’t want to question this relationship in principle, is it proven by a lot of spectacular 
experiments after all. Although, these proof don’t apply to the entire range 0 ≤ v ≤ c. The 
largest hitherto reached velocity, with which measurements have been taken up, is about 
approximately 0.997c for the time being (I can be wrong here) and was achieved in a 
particle-accelerator. At this velocity, no dissents with respect to the statements of the SRT, 
especially expression (649) have been found. Nevertheless, it’s well possible that there is a 
velocity v < c from which on the statements of the classic SRT apply only restrictedly or no 
more at all. If we should come to a statement, aberrant from the SRT, in the course of the 
further contemplations, so this must be of line with the statements of the classic mechanics 
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for very small velocities, and with the statements of the SRT and the yet gained observation-
results in the range above it up to 0.997c. 
 

LANCZOS assumes in [1], that the relativistic effects first result from the existence of the 
metric lattice, with which the fermionic particles even figure autonomous spherical 
symmetrical solutions of the field-equations which exist independently from the metric 
lattice. But we observe them only via an indirection by means of bosons (photons) which 
propagate across the metric lattice, which behave like a lens with the resolution ℏ/2 
(uncertainty). 

 
If our particle now is moving in reference to the metrics and with it in reference to the ob-

server, there’s going to be the occurrence of a definite difference-frequency ω, which 
depends on the velocity, the particle moves through our „crystal“. The particle even owns 
wave properties simultaneously indeed. The frequency depends on the number of Metric 
line-elements the particle „grazes“ during its motion within a certain time period and with it 
also on the local MLE-density (age, gravitational-potential). 

 
After I have read the lecture of Professor LANCZOS, I got on the occasion of another 

physics-lecture (this is already behind a while now and herewith I would like to thank the 
lecturer Mister Dr. Propp warmly once again) an essential suggestion to this model. Subject 
of this lecture was the mechanical oscillator. 

 
With the mechanical oscillator it’s about an externally agitated system with the dif-

ferential equation [5]: 
 

2 0
0

F
x 2kx x cos t

m
+ + ω = ωɺɺ ɺ         (650) 

 
x is the deflection, ω0 the resonance-frequency, ω the frequency of the exciting oscillation, 

F0  the force and m the mass of the oscillator. By the way, the quotient F0 /m also equals to 
the gravitational-field-strength. The coefficient k is a measure of the attenuation. This is 
microscopic in general. Interestingly enough, a similarity exists with (76). A comparison 
leads to the essential statement k � H. For the amplitude A applies then:  

 
2 1/2
0

2 2 2 20F
A (( ) 4k )

m
−= ω − ω + ω  (651) 

 
With k� 0 we obtain the following expression: 

 
2 1 1

2 1 0
0 2 2

0

2 2
20 0

0

0

F F
A ( ) 1 A 1

m m

− −
−    ω ω ω

= ω − ω = − = −   ω ω   
     (652) 

 
To compare the result with (649), so are both expressions identical with exception of the 
exponents, i.e. there is a similarity between the behaviour of the mechanical oscillator and 
the relativistic mass-increase. Particularly interesting is the fact that the amplitude during an 
agitation with a frequency of zero is equal to 1, in contrast to the electric oscillatory circuit, 
where the amplitude is equal to zero, since the signal is short-circuited by the inductivity. An 
exception forms the model according to Figure 10 with input coupling over the capacitor. 
With approach to the resonance-frequency, an amplitude-increase appears. The amplitude 
tends against infinity with vanishing attenuation—in turn exactly as with the relativistic 
mass-increase. Then however, the behaviour above ω0 deviates: A phase-jump about –π 
appears while the solution (649) becomes imaginary. This is not further remarkable, in the 
one case, it’s about a deflection (energy), in the second case about a length, which cannot be 
compared without further ado. 
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6.1.2.  Velocity and length 
 

6.1.2.1. Relations between length, velocity and Q-factor  
 
Therefore I have wondered, whether a particle with acceleration not also could behave 

like a mechanical oscillator, with which is the mass proportional to the amplitude of the 
externally agitated inherent oscillation (DEBROGLIE-matter-wave). The same should be 
applied analogously even to quantities like length and time then. If ω0 is the frequency of the 
MLE at the place of the observer, the velocity-dependent frequency ω at the place of the 
particle arises to ω = v/r0. Now, we only have to insert into (652) obtaining the classic 
expression of the SRT for wavelengths, however in the square (ω0r0 = c): 

 
1 1 1

2 2 2
0 0 0

2 2 2

0 0 0 2

v v
A A 1 A 1 A 1

r c

− − −     ω
= − = − = −     ω ω     

    (653) 

 
 

6.1.2.1.1. Approximative solutions 
 
The relativistic dilatation-factor β apparently results from the reciprocal of the root of the 

bracketed expression of (653). In a lot of publications the letter γ is used instead. 
Furthermore, we require an expression, in which the velocity is joined with the Q-factor. But 
this is not so simple, as it initially appears. Therefore, next we want to try to find one or even 
more approximative solutions for it. For that purpose, we don’t simply want to adopt 
expression (651) and (652) taken from [5], but rather examine, how to acquire it in general. 
At first, we start from (650) comparing with equation (76). Then, expression (650) 
corresponds to the inhomogeneous differential equation (76), when setting x = ϕ0. It applies: 

 
2

0 0 0 00 a2H u cos tϕ + ϕ + ω ϕ = ωɺɺ ɺ ɺ        (654) 
 

To the finding of the first approximative solution, we initially want to ignore the HUBBLE-
parameter completely, since it’s extremely small (H0 = 0). Furthermore ua =  dϕ/dt =  – ω0ϕ 
applies as well as d2ϕ/dt2

 = ω0
2 ϕ. The angular frequency ω0 just works like a differential-

operator. Sought is the amplitude response A(ω). According to [5] we obtain it by solving 
the inhomogeneous differential equation (655). For the solution, we use the LAPLACE-
transformation: 

 
2 2

0 0 0 0 a cos tϕ + ω ϕ = ω ϕ ωɺɺ         (655) 
 
L { }  

2 (0 ) (1)
0 0  0  0  p pf fϕ = ϕ − −ɺɺ            (0) (1)

0 0f 0 f 0= =        (656) 
 

L { } 2
0 0  pϕ = ϕɺɺ          L { } 2 2

p
cos t   

p
ω =

+ ω
   (657) 

 
After substitution in (655) we get the following characteristic equation: 
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0 0 0 0 0 0

2
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2
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p p
p ( p )

p p
ϕ + ω ϕ = ϕ ω ϕ + ω = ϕ ω
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0

a

p
(p) (t) (p)

( p ) ( p )
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1

2 0 0 0
0 0 2 2

0 0

2

2a a

cos t cos t
(t) 2 sin t sin t 1

2 2

− ω − ω ω + ω ω − ω ω
ϕ = ϕ ω = ϕ − ω − ω ω 

 (660) 

 
The function (660) looks like a 100% amplitude-modulated signal, at which point the 
envelope traces the frequency ω both in the positive as in the negative range. Thereat, 
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there’s going to be constrictions in which the amplitude is equal to zero. With it, the energy 
is not equally distributed along the way. Rather, the transportation takes place in packages, 
the photons (particles). But then, a � and not a � should be located between both sine-
functions. With the 2 in front of the first sine the modulation rate reaches only 50%. But 
with a multiplication the function looks totally different (right figure). Most important is the 
occurrence of the sum and difference frequency. 
  

 
Amplitude modulated signal 50% (660)� 

 

 
Amplitude shifted signal (660)��� ���������� 

 
By addition of 0.46 (constant of integration) to the product of both sine-functions in the 

enumerator of (660) rhs we get a sine-function in the range {0,2} with the average 1, so that 
we can disregard the harmonic share (enumerator = 1). Only the bracketed expression 
remains then. By substitution of ω�v/r0 and ω0�c/r0 we obtain expression (661) then. But 
it’s not identical to the relativistic dilatation-factor β: 

 
2 2 11 1

3/22
0 02

2

2 2
0

a a

v v
ˆ 1 1 1 Q

c c

− − −
−     ω

ϕ = ϕ − = ϕ − = −     ω   
β


∼    (661) 

 
It’s even a contradiction. The left-hand expression applies to φ0 and that is ~ Q0

1/2 as known. 
Thus, the value Q0 = ƒ(v) cannot be determined this way. The main reason is, that Q0 is 
identical to the frame of reference whereat ω and ω0 depend on Q0 in a different manner.  

 
We have found a result, based on the solution of the inhomogeneous differential equation 

(655). But now we want to examine, whether there is another possibility to acquire a useful 
result. We have already applied the second solution-method in section 4.3.2.  It is based on 
the solution of the homogeneous differential equation with the help of the LAPLACE-
transformation with subsequent transition p→jω, at which point an inverse  transformation 
L  –1 is not necessary. We just start from (642). The approach: 

 
2

0 0 0 0ϕ + ω ϕ =ɺɺ        →     2
0 0

2
0p 0ϕ + ω ϕ =     (662)  

 
(662) at first leads to the trivial result ϕ0 = 0 only. We just have to modify the initial-
conditions, namely in the following manner: 

 
L { }  

2 (0 ) (1)
0 0  0  0  p pf fϕ = ϕ − −ɺɺ           (0) (1) 2

0 0 0 af 0 f= = ω ϕ      (663)  
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2 2
0 0 0 a  pϕ = ϕ − ω ϕɺɺ                    (664) 
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2

2

1
2v

(v) 1
c

− 
β = − 

 
      

0 c v c
(v)

v c,v c
2

− < <


φ =  π
< − >

      (668) 

 
Both solutions are just identical and we can declare also an expression for the phase-angle ϕ. 
The finally applied procedure has the advantage of a simpler calculation. However, we still 
cannot declare a function Q = ƒ(v) yet. I tested all possible variants extensively. At most we 
obtain a function that gives a reasonably accurate result until maximal ½ �� c. This is not 
surprising at first, since we ignored the product H0 �φ0. 
 
Thus, we will include the HUBBLE-parameter into the contemplation for that purpose. To the 
certainty, we apply both solution-procedures once again. For the second approximation, we 
consider H0 as a constant, since the value practically doesn’t change to the present point of 
time (adiabatic principle). Then however, the factor 2 before  �φ0 is allotted. If we assume H0 
as constant, namely the expansion-share ����� becomes equal to zero, i.e. the factor is equal 
to 1, see (72). It applies: 
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0 0 0 0 0 0 aH cos tϕ + ϕ + ω ϕ = ω ϕ ωɺɺ ɺ        (669) 
 
L { } ( 0 )
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0f 0=        (670) 

 
L { }0 0  pϕ = ϕɺ           (671) 
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2 (0 ) (1)
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L { } 2
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p
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p
ω =

+ ω
   (673) 

 
After substitution in (669) we get the following characteristic equation: 
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0
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p

(p H p ) ( p )
ϕ = ϕ ω
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           (676) 

 
Here, our endeavours already finished until now, because this expression was not contained 
in the correspondence-table and even the BRONSTEIN didn’t help. True, with the help of 
Mathematica it is now possible to make the inverse transformation, but the result is 
extremely complicated. With the introduction of Q0 using ω0=H0Q0 it cannot be rearranged 
explicitly for Q0. However, we don’t want follow up this turning to the second procedure 
immediately: 

 
2

0 0 0 00H 0ϕ + ϕ + ω ϕ =ɺɺ ɺ          (677) 
 
L { } ( 0 )
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0f 0=      (678) 

 
L { }0 0  pϕ = ϕɺ           (679) 

 
L { }  

2 (0 ) (1)
0 0  0  0  p pf fϕ = ϕ − −ɺɺ            (0) (1) 2

0 0 0 af 0 f= = ω ϕ    (680) 
 
L { } 2 2

0 0 0 a  pϕ = ϕ − ω ϕɺɺ                    (681) 
 
We substitute again in (669) obtaining finally: 
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2 22 2 2
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With the exception of the factor 4 this exactly equals the expression (651) stated in [5]. We 
have calculated just right. But expression (685) can be transformed even more (H0Q0 = ω0):  
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Thereat V (capital letter) is the detuning (405), as we know it from the electrotechnics. After 
substitution of ω by v, we receive for the dilatation-factor β: 
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The approximation (689) is identical to the EINSTEIN expression and to our first approxi-
mation. We can specify also a phase angle. Starting from (612) applies:  
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  (690) 

 

0 0B( ) arccot (Q V) arctan (Q V )
2

π
ω = − π + = − −      (691) 

 

0

?B( ) 1
( ) arctan (Q V)

2 4 2 2

ω π π
φ ω = = − − = α −        (692) 

 
The last expression is very interesting. It could give us a relation between Q-factor, velocity 
and the angle α anyway. Unfortunately this doesn’t work, since both functions have a 
different range of value. So, φ covers the range –π/4…–3/4π, but the function α–π/2 the 
range –π/4…–π.  
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If we want to determine the Q-factor, we must make another approach. The substitution 
ω = v/r0 applies to the moving. Really, we still have gotten an expression for the relativistic 
dilatation-factor β. What however we look for now, is a relation for the Q-factor. 

 
If we say Q-factor, we mean the Q-factor of the metrics at the position of the moved body 

and for this applies ω = ω0+ v/r0. Thereby we take advantage of the fact, that the resonance 
super elevation always exactly equals the value of the Q-factor. In expression (688) the 
super elevation in the case v = 0 has the value 1 and the value Q0 for v = c, exactly vice-versa 
as with the metrics. Here, the Q-factor amounts to Q0 for v = 0 and 1 for v = c. So, we have 
good reasons to assume that the Q-factor traces a sort of mirrored function (688). We obtain 
this by inserting the expression ω = ω0– v/r0 in (611) to: 
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    Mirrored function   (693) 

 
Unfortunately, this function doesn’t fulfil the set standards, since it’s not symmetrical 
concerning the y-axis. So, the value Q0(–c) amounts to 1/3, the value Q0(+c) to 1. The 
inverse relation exists at the displaced function (694) with ω = ω0+v/r0: 
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So, this is not suitable too. Now, we however know that both, the sum- as well as the 
difference-frequency, appear simultaneously with the multiplication of two frequencies. This 
approach leads to the correct solution then: 
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  (695) 

 
Expanding the left expression the approximative solution turns out: 

 
2

0 2
22

2

1 c
Q

vv1 1
c
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  − −  
  

      for    Q0�1   (696) 

 
For v = 0 expression (696) has an infinite solution, which not quite corresponds to the 
observations. However if we insert the propagation-velocity of the metrics cM  from (227) as 
basic-velocity, then we precisely receive the local Q-factor: 

 

2 1
0 0 M2

M 0

2c 1
Q Q 1

c Q
−≈ ≈ β = −  (697) 

 
But it only applies to your own frame of reference Q0 for v = 0. With acceleration you will 
leave it building a new one Q′0. The value βM forms the so called basic, as it is used e.g. to 
the calculation of the inherent time. But you must not simply insert v = cM + vM in order to 
determine Q′0, since vM is already incorporated in cM pro rata. The correct solution is 
obtained by equating (236) with 1. The term β0 is the phase rate of the propagation function 
of the metric wave field at this point. Indeed, with the conversion from one frame of 
reference to one other we have to subtract (696) from 1, since it’s about a LORENTZ-
transformation. 
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 Q3/2
 ~ t3/4

 ~ β−1
 ~ ( z +1) Q ~ t1/2

 ~ β−2/3~ ( z +1)2/3 (701) 
 
This way, we are able to calculate, the diffraction of a light ray in a gravitational field. We 
choose the ansatz using the refraction law. θ is angle of diffraction. The factor 2 arises 
directly from the SRT, since both, the temporal share g00, as well as the spatial share g11 are 
affected. Based on (700) we obtain: 
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It should be noted that, except for c, all other values also depend on the frame of reference 
Q0. With q = Q′0 /Q~0 we get under application of (698) and (794): 
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Thus, the reciprocal of Q has the character of a refraction index. Values marked with a tilde~ 
are measured/calculated from/at earth. The result equals the value predicted by EINSTEIN, 
which has been confirmed during EDDINGTON’s solar eclipse expedition on May 29th, 1919. 
The diffraction at the sun rim amounted to 1.98″ ±0.18 at one telescope and 1.60″ ±0.31 at 
the other. Because there were always doubts about the correctness of these values, 
EDDINGTON’s photo plates were re-gauged in 1979 at the Royal Greenwich Observatory 
using modern equipment. Result: 1.90″ ±0.11 [51]. The aberration is possibly caused by the 
strong flattening of the sun. 
 

The course of (695) and (700) lhs is shown in Figure 112. We can see, that both curves 
extremely differ from each other. Only at v = 0 and v = c they intersect. Therefore it’s very 
important, to distinguish, whether it’s about the Q-factor/phase angle Q0 in its own or in an 
external frame of reference.  

 
In the further course of this work repeatedly an addition of cM, v and of other expressions 

is considered. In this connection it should be noted, that the additional speed-components are 
always added pro rata only, since c cannot be exceeded under any circumstances. The best 
way to do this is to use the formula for the speed addition (943) for lower resp. (978) for 
higher velocities and/or in strong gravitational fields, cf. even (704).  
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Figure 112 
Phase angle Q0(v) in its own and with  
respect to another frame of reference 

 
In the latter case we need the value of the angle α both, in its own, as well as in further 
frames of reference. Since α and Q0 are always tightly connected, this value also can be 
calculated for other reference systems, if we know Q′0. Using (581) we get for α and c 
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Please find the definition of c, ρ0, θ, A and B at (211), it applies 2ω0t = Q0. Now it seems to 
be the case that, caused by cM, there is a maximum super elevation, e.g. of the mass during 
acceleration, of the order of Q0. Thus, it would at least theoretically be possible to surmount 
the hillock achieving a speed greater than c, for an observer in a strong gravitational field 
e.g. in the vicinity of a BH. But the hillock is always in the positive velocity range, which 
typically doesn’t exist. No matter in which direction you are moving, you are always moving 
towards the particle horizon cT, with negative speed against the expansion- and temporal 
direction. In the case of a BH indeed, there are positive velocities too, towards the event 
horizon. That would be the SCHWARZSCHILD-radius then. Here you can really reach light 
speed, namely at the very moment when you pass it. But then you will leave our universe 
and a whatever velocity is no longer defined (disconnected).  

 
Now, with (429) and (695), we have found two relations, which are independent from 

each other, describing the dependence of the Q-factor on space and time on the one hand and 
the dependence from the velocity on the other hand. Now the task consists in that we bring 
together both relations. This is done by simple multiplication. We get the following 
expression: 
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There are just four variables (Q0, T, R und c) included, which are coupled tight together. 
With it, we are able to calculate Q0 in a whatever reference frame, being at a whatever point 
in the universe, moving with a whatever speed with respect to our reference frame, at a 
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whatever point of time. Only the effect of a gravitational field is still missing. This can be 
considered via v indeed. Q0 is of central importance to this model, since it affects nearly all 
scales in the universe. The most important relations between the values of the empty space 
(left column,  all genuine constants), of the microcosm (middle column, variables) and of the 
macrocosm (right column, variables) are listed in Table 5 (not complete).  

 
 
 r1 — [× Q0] → r0 —  [× Q0] → R Spatial increment/World radius 
 
 t1 — [× Q0] → t0 —  [× Q0] → T Temporal increment/The age 
 
 G2 — [× Q0] → G1 —  [× Q0] → G  Gravitational constant 

 

 ω1 — [:  Q0] → ω0 —  [:  Q0] → H PLANCK-frequency /HUBBLE-param. 
 
  M2... M1 — [:  Q0] → m0 —  [:  Q0] → MH Init-/MACH-/PLANCK-/HUBBLE mass 

 

 � — [:  Q0] → ℏ1 —  [:  Q0] → ℏ PLANCKs quantity of action  

 

 2κ0 — [:  Q0]  ——————→ [:  Q0] → κ0R Specific conductivity vac./Metrics  

 
 

Table 5 
Relations between the fundamental values  
of space and of the micro- and macrocosm  

 
 
There is even an M2, it’s the initial mass of the universe [49]. With it, the model disposes of 
the fundamental property of logarithmic periodicity. It should also be noted, that the Q0-
related functions, depicted in this section, are being exact expressions, because there is a 
fixed assignment Q0�α. Only with the relativistic dilation factor β the angular relations must 
be considered. A more detailed consideration of this problem follows in the next section. 
 
 
 
6.1.2.1.2. Exact solution 

 
To obtain an exact relation both, for the dilatation-factor as well as for the Q-factor, we 

first of all try to solve equation (76), at which point we don’t regard H as constant this time. 
Also with other output-conditions we obtain the same result as in section 4.3.2.  

 
Neither with the variation of the integration-constants nor with other methods however it’s 

possible to get a result, which agrees even only approximately with the observations. On the 
contrary, the results are standing in a glaring contrast to it. The question is, why?  

 
The answer is in the physical content of the used equations. The solution of (76) results in 

a time-function. But we look for a function in dependence from the velocity dr/dt just the 
first derivative of the way by the time. In (78) except for t is only contained the frequency 
ω1. This is a genuine constant admitting only the introduction of an absolute velocity with it 
(in reference to the empty space), if such a one should exist. Indeed, there is an absolute 
velocity but only just one, namely the speed of light. 

 
If we just want to determine the function in dependence on another velocity, we first have 

to define a coordinate-system (frame of reference) and that’s exactly our problem. At first, 
we define a location. A definite longitudinal ruler (r0) applies at this and also an associated 
temporal ruler (T). Furthermore, also the associated value ω0 applies. All these values are 
tight coupled over the parameter Q0 (space-temporal coordinate-system). With the definition 
of the zero, all scales and values are just explicitly defined. 
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Also in the inverse case, with the definition of Q0, the frame of reference is explicitly 
determined. By the way also a fixed value of H belongs to it, i.e. with the definition of a 
frame of reference one accepts H as constant automatically (�0/�0 = 0). That is the reason that 
we could achieve so good results with the solution of (605). To the value Q0 still belongs a 
fixed value cM and the angle θ is fixed explicitly too. Furthermore follows that also the angle 
α has a fixed value (581). 

 
But we have to consider the limited spatial and temporal range of each frame of reference, 

mathematically seen actually only for an infinitesimal segment dr and for an infinitesimal 
time period dt. For a higher Q-factor, the solutions are passable also for larger sections and 
time periods. For small Q-factors however (high curvature) the relations really apply for dr 
and dt only. If we want to determine the exact function, we have to integrate over dr and dt. 
Then however, the result depends on the way covered and the course. 

 
We have proven with it, that we are unable to get a physically useful relation by the 

solution of (76) and (78). The exact solution rather arises by the application of the 
fundamentals gained in section 5.1. and 5.2. under consideration of the angular relations. 
Thereat, we obtain the value of a by substitution of the basic-Q-factor in (581). While the 
angle α just has a fixed value, the angles γ and δ are dependent on the velocity v. In this 
connection, the speed-vector v points into the same direction as the metric vector cM. With it, 
for the angle δ applies for all kinds of photons: 
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1 v
arcsin sin

Q c

  
δ = + α +   ρ  

○ ○ Relativistic speed- addition    (709) 

 
This once again, has effects on frequency and wavelength of photons and neutrinos, which 
are tightly joined with the angle δ. The angle γ is differently defined for photons and 
neutrinos just as for their antiparticles: 
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○  Space-like photons        (711) 
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○  Neutrinos         (712) 
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= − ○  Antineutrinos          (713) 

 
 
 
 

6.1.2.2. Relativistic length contraction 
 
In the preceding paragraph, I already implied, that the hitherto obtained solutions are 

approximative solutions, which are based on the assumption, that the angle α between the 
photon and the metrics always amounts to π/2 exactly. If this is not the case, with it also 
changes the hitherto as unchallengeable considered EINSTEIN expression for the relativistic 
length contraction. To my apology, I would like to declare here, that the modification results 
from the basic assumption of this model, namely that the relativistic effects should result 
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from the existence of the metric lattice only macroscopically. In a manner of speaking, we 
have taken up a „digitalization“ (better quantization) of the space and this leads inevitably to 
an offset on higher frequencies (velocities). With it, the „guilt“ is at Prof. LANCZOS, which 
had the idea to this model. To the determination of the exact solution, we first of all assume 
expression (615), which is correct under acceptance of the validity of the Pythagoras 
theorem. We reduce this as follows:   

 
2

2

1 v
1

c
− = −β          2 22 2c c v−β = −       (714) 

 
22 2 2c c v−= β +  (715) 

 
Wanted now is a new value β with application of the cosine-rule instead of the PYTHAGO-

RAS. Expression (715) must be expanded then as follows: 
 

2 2 12 2c c v cvcos2− −= β + − β α             (716) 
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We find a congruity with (578). With it, the positive sign is applied to time-like photons (γ) 
and neutrinos (ν), the negative to space-like photons (γ�) and antineutrinos (ν�). Expression 
(719) finally dissolves into the final, corrected version of the EINSTEIN expression for the di-
latation-factor β, which now applies also for velocities near c and in very strong gravita-
tional fields (α= αγ,ν): 
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  Exact expression of the 
  relativistic dilatation-factor 

 
 

 (720) 

 

 
The discovered expression now no longer alone depends on the relative velocity but also 

from the angle α, which has been established with the definition of the frame of reference. 
The velocity v is equal to the sum of metric and speed-vector. It applies v = vM+cM and 
v= vM +cM. With the approach: 
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we get following expressions for the dilatation-factor β (α = αγ): 
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With it, we have derived the refraction-rule for all types of photons and neutrinos at the 
same time. That shows, that we are on the right way. The angles can be determined with the 
help from (581) resp. (611-614). The test results in an exact match with (720) in the case 
v= vM +cM. The expressions (722) and (723) correspond to the product of the temporal and 
geometrical part of the total red-shift (610), as it easily can be verified. The spatial part with 
the velocity-induced red-shift does not become effective, since it’s caused by the motion of 
the photons through the space (wavelength-gradient). So we can present expression (720) 
also in the following form: 

 

βγ,γ 
−1  =  

v

c
cosα  ± cosδ  ≈  ± cosδ        (724) 

 

βν ,ν 
−1  =  

v

c
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v

c
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      (725) 

 
In this connection, we must be quite careful. The part v/c cos  α namely does not equals the 
value sin δ at all, as one may think with fleeting glimpse. Rather it’s about the projection of 
the speed-vector v on the vector cγ, as one can recognize in Figure 113 very well:     
 

 
 

 

 
 
 
 
 
 
 

Figure 113 
Effect of the relativistic 
dilatation-factor β 

 
 
 

According to the direction of propagation it adds to or subtracts from cγ. Under usual 
conditions (very high Q-factor) however, the value is extremely small and can be 
disregarded. Then, only the value cos δ d  for the photons resp. sin δ for the neutrinos 
remains, which agrees with the phase rate β of the propagation-functions in section 5.3.2.  
 
In order to get an exact solution here, we must expand the corresponding β-values with the 
expressions v/c cos  α resp. v/c sin α. The course of the function β for time- and space-like 
photons for a Q-factor Q0 > 105 is presented in Figure 114. 
 

Here, a contradiction arises with the space-like photons (and fermions) which is based on 
the observation, that the reciprocal of  β is used for them in contrast to the time-like photons 
and neutrinos, whereas in section 5.3.2. except for a different sign, we got the same 
expression for the phase rate β for both kinds of photon. How this contradiction can be 
solved now? In section 5.3. we just had introduced the complex frequency of a time-like 
photon. Generally, it consists of a real and imaginary part: 

 
(c j n )os siδ +ω ω δ=         (726) 

 
The tangentially red-shifted frequency however doesn’t arise to ωβγ, as suspected first of all. 
The reason is, that the relation c = λν is not really correct, if we insert the measured values 
(real-part) for λ and ν. Really, in the theoretical electrotechnics the relation λ = 2π/β 
(β = phase rate) applies. That means, that with the shape of the wavelength becomes effective 
actually only the imaginary-part of the phase rate, just as it’s being observed (real-part). This 
corresponds to the case that the total-wavelength (amount) is distorted by a certain angle in 
reference to the propagation direction, exactly as in our model.   
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Figure 114 
Relativistic dilatation-factor βγ for time- and space-like photons 
in comparison with the classic EINSTEIN solution (Q0>105) 
 

Of course, even a complex wavelength of λ can be defined, the measured wavelength 
corresponds to the real-part of λ then, and the first relation is right: c = λ·ν (see Figure 113). 
Then applies: 

 
c

2 (cos j sin )λ = π
ω

δ − δ         (727) 

 
And exactly the space-like photons were the only ones with a negative phase rate, i.e. they 

move opposite to all other kinds of photon on a space-like vector. The cause that the 
reciprocal of β becomes effective is the particular characteristic of the exponential-function 
(e–γr = 1/eγr) in connection with the Pythagoras of the trigonometric functions 
(cos2x+sin2x=1). Where is now however the point, at which the relativistic dilatation-factor 
β applies? This problem had not yet been noticed in the SRT, but it should be known 
actually. 

 
Expression (727), with regard to the contents, agrees with the relation λ = 2π/γ. Obviously, 

β influences the amount of the wavelength-vector |λ| = 2π / | γ | working simultaneously on α 
and β with it. Since we observe only the real-part of λ, that is the part 2π c/ω  sin γ  / sin α resp. 
2π /ω  (c cos δ –v sinδ  cot  α),  presented in Figure 113, applies altogether: λ′= λ   sin γ  / sin α 
(space-like) as well as λ′= λ   sin α  / sin γ (time-like). Both solutions are identical to the ex-
pressions λ′= 2π /β(v) (space-like) resp. λ′= 2π β(v) (time-like). We get the function β(v) 
(phase rate) by substitution of the part of the metric vector cM by v = vM+cM in all expressions 
including Ξ(v,r) and β That corresponds to the application of the velocity-dependent 
expressions (610-614) for δ and γ. Since the function Ξ(v,r) already turns out the real-part of 
ω, we must make a projection for the amount α. We choose the exact space-like vector and 
not the projection. Expression (631) and the corresponding expressions for neutrinos and 
antineutrinos would read then as follows: 
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  Φ(ω)   (728) 

 
Both cM as well as sin α a are stipulated with the definition of the frame of reference. Here, 
the part  ω/c·sinδcosδ/sinγ·Ξγ(v,r) doesn’t describe an additional attenuation but a deviating 
of the wave from the original propagation direction r into the direction of the space-like 
vector v.  It shows, our simple model reaches it’s borderline. Therefore we did not defined 
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the propagation-function in section 5.3.2. in {x,y,r,t}, but along the arc r having substituted 
the real-part for ω. The attenuation rate is equal to zero then and the propagation-function 
independent from the direction of propagation. For the exact calculation under consideration 
of the propagation direction, there are essentially more comfortable methods. The most 
important is the notation in tensorial form (comp. Section 7.2.5. ff). 

 
Since the angle α is extremely close to π/2 in the normal case, it shows no difference to 

the classic EINSTEIN solution, both graphs cover each other completely. How would this 
classic solution look for neutrinos however? This shows Figure 115: 

 

 
Figure 115 
Relativistic dilatation-factor βα for neutrinos and antineutrinos 
 in comparison with the hypothetical classic solution (Q0>105) 

 

 
Here, βν traces the function v/c+1 resp. v/c–1. With it, also real solutions exist for velocities 
greater than ±c. But there are differences to the EINSTEIN solution with smaller initial-Q-
factors, since the value cos α is different from (near to) zero and sin α ≠ 1. The course of β for 
the four different kinds of photon and for several smaller Q-factors is presented in Figure 
116-110. With the time-like photons, we observe the same displacement as already with the 
approximative solution, however caused by the part cM at this point. Thereby there’s going to 
be a displacement of the pole in the negative range out of the definition range (real solution), 
so that the maximum for –v is smaller than infinity. Beyond, the solution becomes complex. 

 
At least, it’s just theoretically possible, to jump over the „edge“. On the other hand there is 

a negative branch behind the pole in the positive range. With extremely small initial-Q-
factors there’s going to be a rotation around the angle π/2. The photons behave similarly like 
neutrinos then. 

 
However, the whole matter is purely theoretical. First of all only a part of v is added to the 

part cM with the loss of the original frame of reference. Secondly, the addition takes place 
only when moving in a straight line from or towards a singularity. Thus, in the cosmic 
vacuum, far away from any mass, there are negative velocities only towards the particle 
horizon (time direction = expansion direction). Each observer in the free fall is situated on a 
4D-hyper surface, the event horizon. Normally, this cannot be exceeded, since what lies 
behind is in the future. In contrast, in the vicinity of a black hole (Q0 very small) there are 
positive vicinities too towards event horizon. Here you can actually jump over the „edge”, 
i.e. reach light speed, exactly in the very moment, when you cross the event horizon. But 
then you’re gone. 
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Figure 116 
Relativistic dilatation-factor βα(v) for time-like photons for small Q-factors 

 
The course of β for space-like photons appears as a (not quite exact) inversion of the 

conditions with the time-like photons. Even here there is the same displacement into the 
negative range caused by cM. The maximum super elevation, different from infinity, is now 
located at positive velocities. The minor the initial-Q-factor, all the minor the maximum 
super elevation. 

 

 
 

Figure 117 
Relativistic dilatation-factor βα(v) for space-like photons 

 
 
Analogical are the relations for neutrinos and antineutrinos. However, there is no maximal 

super elevation but only one pole and a sort of minimum. That is the boundary of the real 
definition range (branch point of 1st order). On very small Q-factors neutrinos behave like 
photons. Then there is also a maximal super elevation, which coincides with the branch 
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point, (the maximum at the photons is a branching too). We get the location of the pole using 
v = cM+vM by solving the equation: 
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Figure 118 
Relativistic dilatation-factor βα(v) for neutrinos  

 
By the way, expression (729) applies even to neutrinos. The maximum super elevation 
(branching) we find always on the side with opposite sign. The values calculate as follows: 
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Herewith, the upper sign is applied to the time-like, the lower one to the space-like 

photon. To the comparison, the course of the exact (731) and of the approximative solution 
(732) for photons is presented in Figure 120. It shows, the approximation is good for values 
down until Q0 = 1. This would be the relations directly at the SCHWARZSCHILD-radius.     

 
So we have to relativize the good news, that it is possible, to jump over the „edge“ in turn. 

Indeed the pole in the classic EINSTEIN solution are the reason why it’s impossible for a 
material body to achieve a velocity greater than c. There is, at least theoretically, a chance in 
this model that this body may overcome the wall with a positive velocity. However, the 
thereto necessary velocity at the current Q-factor of approximately 1060 is so close to c that 
such a question becomes physically pointless. If we really should be successful in building a 
spaceship, able to achieve a velocity greater than c, the temporal dilatation up to the 
achievement of this point would be so large, that, even if it should last only one second for 
the passengers, on the earth would have passed a time period greater than the present age. 



 
 

182 

 
 

Figure 119 
Relativistic dilatation-factor βα(v) for antineutrinos 
 

 
 
Figure 120 
Exact course and approximation for the maximum  
super elevation β at the time- and space-like photon 

 
At a possible return, one would not find the earth. Even, there would be problems with the 

propulsion, specifically when braking. A photon-drive would turn into a neutrino-drive, 
which shows no action. They just should have to take along an additional antineutrino-drive 
in order to achieve a retardation. 

 
What does a negative or complex solution mean for β then again? If a negative solution 

appears, the wave executes a phase-jump and the frequency becomes negative. In the 
conducting-theory, this is synonymous with a negative phase velocity. The wave propagates 
into the opposite direction then, a time-like photon turns into a space-like one, a neutrino 
turns into an antineutrino and vice-versa. But the frame of reference remains still intact, we 
can receive an action from the moved signal-source. In contrast, a complex solution means 
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the breakdown of the frame of reference, i.e. a LORENTZ-transformation is no longer 
possible. That however also means that there is no more causal correlation between source 
and observer. 

 
At the end, it should still be pointed out that the tangential part of the time-like photon 

(rotation of the direction of polarization) is subject to the doppler shift too – a fact, which 
easily should can be demonstrated by experiments. A circularly polarized wave turns into an 
elliptically polarized one. With it, the relations are essentially more complicated than usually 
presented in literature. Popularly, an „ideal“, purely horizontally or vertically polarized wave 
is assumed without attenuation, which doesn’t exist. The proof is the existence of the 
cosmologic red-shift, which doesn’t have stated this way. 

 
Therefore, I would not like to deepen the contemplations more in this direction, but rather 

encourage a discussion in that I imply only popularly, what the physical content of a 
complex solution could mean. We get a complex solution, if the root-expression becomes 
negative or if the argument of arcsin as well as arccos becomes greater than one. Then, e.g. a 
complex solution for β = cosec γ = a+jb with b > a turns out and it applies:    

 

(a jb)
sin

λ
= λ +

γ
ɶ              (733) 

 
While both parts of λ are only stretched with a real solution, an additional rotation of the 
wavelength-vector around the angle arctan(b/a) occurs with a complex solution. Since this 
however contains an however small imaginary part, so there is still a certain real part after 
multiplication with j, which also should can be detected, unless the energy vanishes in the 
noise. Then, the energy ℏω splits into a real and into an imaginary part, at which point only 
the real-part is able to perform work.  

 
The imaginary part is the equivalent to the blind power (ask your electrician). Since b > a 
applies the photon now behaves like a neutrino, which is just hardly detectable as you know. 
But there is a chance of detection with the help of the weak interaction. With it, the 
causality-principle is violated.   

 
Now, what’s the accordance like between our exact and the approximative solution found 

in the previous section? I have checked that. The course of the approximation agrees with 
the exact solution downward until about Q0 = 105 However, the approximation has two 
instead of one maximum and the value is too small. If we use the sum cM+v instead of v, 
there is another good accordance downward until Q0 = 103.  

 
Furthermore, we are interested in the relation to the classic EINSTEIN solution. For that 

purpose first let’s have a look at the square of the classic dilatation-factor β: 
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To assume idealized conditions, this expression can be combined in the following manner: 
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According to the rigid EINSTEIN expression, there is actually no difference between time-like 
and space-like photons, adsum it’s only the sign. And which rule applies to the neutrinos, 
just can be suspected only. We are glad, if we are able to detect some of them at all. We 
however can assume, that (721) applies. After all, we have succeeded in finding a new 
inherent law: 
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The classic value β represents the geometric mean of the dilatation-factor of particles and 
antiparticles with it. We check further: 
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Expression (737) which we have gotten with the help of the approximation, applies exactly 
with it. Still remains to examine, whether it is possible to find a simplification of the calcula-
tion of sin γ, which makes it possible to reduce the number of values to be calculated, e.g. to 
replace one or several values with another, as we have done it successfully with the angle α. 
An exact examination of (713) immediately leads to the result: 

 
Msin (v) sin ( 2c v)γ γ= − − −γ γ         and  Msin (v) sin ( 2c v)ν ν= − − −γ γ  (740)  

 
The angle α just cancels out. It has been successful with it to reduce the number of values to 
be calculated more and more. Furthermore we have proven, that antiparticles move opposite 
to particles. Finally, we want to specify the relations for the relativistic length-contraction 
referred to the real-part of the (wave-)length once again: 

 
x x sin cosecγγ′= α                Space-like photons (fermions)     (741) 

 
Herewith we have accepted on the quiet, that even a macroscopic body can be observed 
warped in reference to the metrics, of course not in total, but as the sum of the particles of 
which it consists. And these particles are described by, although special, wave-functions. 
What else should the relativistic length contraction occur then? Solution (739) and the 
following are applied to β ∈ R, at which point R represents the multitude of the real numbers. 
For „usual“ wavelengths other relations apply. Without consideration of the doppler shift 
applies: 

 
cosec sinγγλ′= λ α                  Time-like photons (generic)  (742) 

 
cosec cosνγλ′= − λ α                 Neutrinos    (743) 

 
cosec cosνγλ′= λ α                Antineutrinos   (744) 

 
The expressions (741) until (744) in all represent the temporal part of the relativistic red-

shift, the so-called radial doppler shift, which appears, when the signal incidents/is emitted 
in the right angle to the direction of motion, plus geometrical share (perspective). With 
axial/-r incidence/emission the share of the axial doppler shift comes into addition, at which 
we want to have a look in the next section. 

 
 

 
 
 
 
6.1.2.3. The relativistic doppler shift 

 
In principle there is the doppler shift only in the cases (742) until (744), since space-like 

photons don’t propagate, they are only moved. Furthermore we have to distinguish the case 
the source is approaching (–v) and that it’s moving away from the observer (+v). Generally, 
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the second case is considered, namely that where the source is moving away. Alternatively, 
we just have to employ a negative velocity v. In contrast to the relativistic expansion factor 
β, there are always both negative and positive velocities here. We even only want to examine 
the purely axial doppler shift, since all other cases can be split into a radial and axial vector. 
According to the classic view applies generally: 
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       (745) 

 
The bracketed expression is called k-factor by the way. The root-expression represents the 

radial share. This is always a red-shift. Therefore, the root-expression is even always in the 
denominator. The signal reaches the observer in a manner of speaking „from the back 
around the corner“. 

 
We want now to derive the exact expressions for photon, neutrino and antineutrino. For 

one thing, we have to replace the root-expression in (745) by the exact expression (720). 
This is however not yet the final solution: 
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The reason is, that our photon should behave like a neutrino with higher velocities. 
Furthermore, the expression (746) cannot be correct, since the angle a doesn’t appear in the 
numerator. But since the wavelength-vector is distorted in reference to the metrics about a 
certain angle, which draws attention to itself at the transversal doppler shift, also the radial 
share must be concerned, since it’s oriented to it in the angle π/2 precisely. 

 
Just an expression is wanted to avoid this dilemma, turning out expression (745) in the 

case of smaller velocities. To neutrinos, the following approximation is applied in the case 
of smaller velocities (cos α is always negative): 
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v v vv v
c c c c c

cos sin 11 1 0ννα + α −+− ≈ − = −   Neutrinos (747) 

 
22 2

2 2
v v vv v
c c c c c

cos sin 11 1 0νν
 − ≈ − − = − +−


α − α
 Antineutrinos (748) 

 
But the second expression exactly equals the expression in the numerator of (748). We now 
suspect that it exactly equals the left part of (748). Then the measured wavelength is equal to 
the wavelength in the rest-condition, multiplied with the quotient of the extension-factor of 
the imaginary-part and the one of the real-part of the wavelength. Our problem would have 
been solved with it. The expression for time-like photons reads then exactly: 
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−+ α
           Photons  (749) 

 
This corresponds to the temporal and perspective share in total. With it, expression (749) is 
already identical to the exact solution, which can be read also as follows: 
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        Photons  (750) 

 
In this case, λ is the wavelength of the zero-vector and λ′ the real-part of the complex wave-
length-vector, i.e. the value, which is measured. For the neutrino and antineutrino similar 
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Figure 121 
Ratio between k-factor and relativistic  
dilatation-factor β classic and model-solution Q0>109 

 
similar relations can be found. Here, we however want to figure only the trigonometrical 
expressions according to (651): 
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Figure 122 
Relativistic doppler shift (wavelength) of the  
time-like photons and neutrinos at a Q-factor of Q<109  
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Figure 123 
Relativistic doppler shift (wavelength)  
of the antineutrinos at a Q-factor of Q<109  

 
The idealized course for time-like photons and the two kinds of neutrino is presented in 

Figure 121. It shows the graph for Q0 > 109, which covers the classic k-factor, in comparison 
with the classic expression β. 

 
Figure 122 and 114 show the relations for smaller initial-Q-factors. The function-course 

for time-like photons and neutrinos is identical, the one for antineutrinos mirrored in x and y. 
With somewhat good will, one also recognizes the asymmetry caused by the share H/c. 

 
There is no expression for space-like photons for the known reasons. In terms of figures, 

this also exists of course. Then, it’s identical to that one of the anti-neutrinos. But it has no 
physical meaning anyway. With it, we have explicitly characterized the relativistic doppler 
shift. As next, we want to have a look at the relativistic temporal dilatation. 

 
 
 

6.1.3. Velocity and time 
 
The fundamentals to this subject we have already formulated in principle in the preceding 

section. It applies [30]: If a body (system S′) is moving relatively to another with a definite 
velocity v, so the time t passes for him more slowly (in reference to the rest-system S). If he 
now observes a process, which has the duration of t in the rest-system S, so the time period 
has the duration t´ for him (system S′): 

 
t t cosec sinγ= γ′ α            Relativistic temporal dilatation  (753) 

 
t′ is essentially longer than T. for him. The occurrence of the expression βν already shows 
that the observation takes place by means of photons. That means, that even the temporal 
vector is observed skewed about a certain angle in reference to the metrics (space-time), 
exactly as the wavelength. Because it’s about a space-temporal coordinate-system, this is no 
further remarkable. 

 
We can recall the temporal dilatation even like that: The observed photons have a certain 

wavelength. If we mark the start and the end on the ray of light (e.g. by a short intermission), 
the moved observer would receive the ray with a larger wavelength because of the red-shift 
(at this point only the transversal, time-like doppler shift is regarded). Since the wave count 
and even c are constant, it lasts of course longer, until the observer receives the second 
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pause. If we would observe the process by means of neutrinos (if possible), we would have 
to insert βν here obtaining and measuring a duration different from t′.     

 
 
 

6.1.4. Velocity and mass 
 
The dependence of the mass on the relative-velocity is an indisputable fact and is secured 

by a lot of experiments and applications. According to the classic theory (SRT) following 
applies [30]: We look at a body with the rest mass m0 in the coordinate-system S (with the 
determination of the rest mass we have automatically accepted the coordinate-system). If we 
now accelerate this body to the velocity v in reference to S, so it now has the mass: 

 

0m m cosec sinγ= γ α             Relativistic mass increase  (754) 
 

I have already put in the value βγ � in this place, since the body consists of a specific layout of 
fermions, which interact with the metrics with the help of space-like photons. Therefore, the 
inert mass would be the resistance, with which the metrics counters a body during 
acceleration. The greater the energy of the space-like photons, all the greater the resistance. 
With it, the inert mass and even the gravitating mass obey the inherent laws of the space-like 
photons. 

 
If we accept this, we accept the existence of negative, just even imaginary masses at the 

same time. Negative masses would attract each other just as positive ones. As far as their 
character goes, they would have to be assigned to the antimatter. In contrast, two bodies, the 
first made from „normal“ matter, the second from antimatter would repel each other. 
Negative masses would have also a negative energy. If we would define the energy m0c2 as 
the difference-energy to the energy of the metric wave-field (like in section 4.6.4.2.5.), this 
would be quite possible. With the definition of the frame of reference, we commit a fixed 
value for ℏω0 and with it also for the difference to the energy of the particle, that means the 
rest mass.   

 
What does it look like with imaginary masses then again? If we accept an imaginary 

frequency ω, we must accept also the existence of imaginary masses and the acceptance of 
imaginary masses implies the existence of negative masses automatically. An imaginary 
mass for example, would be the imaginary part of the energy ℏ ω of an electromagnetic 
wave, at which we look from the side, twisted about a certain angle. Since it’s about an 
energy-form at this point, which is impossible to perform any work, an imaginary mass 
wouldn’t wield any force-action respectively be subject to a force-action. Neutrinos and 
antineutrinos own a high ratio of imaginary mass ℏ Im(ω)/c2 (the rest mass is zero or better 
ℏ H0/c2). Since there is still an, although microscopic, real-part, neutrinos can even only 
propagate with light speed. They are just no tachyons. 

 
Now, one should think, expression (754) would already be the correct, exact solution. But 

this statement is not yet unique. So (754) only corresponds to the product of temporal and 
geometrical part. With wavelengths and time periods, it is easily to be understood that these 
only are subject to the temporal and geometrical share of the red-shift, whereas the spatial 
share is specified by the definition of the coordinate-system. Whether it’s the same with the 
mass, we want to examine as next. 

 
We have already noticed that the fermionic matter owns wave properties, the so-called 

DEBROGLIE-matter-waves. Of course, these are also subject to the red-shift then, be it the 
cosmologic red-shift or the one, caused by a relative-velocity. Starting from (373), with a 
temperature T = 0 of the metric radiation-field, we acquire the fundamental expression: 

 

  W  =  ℏω  =  mc2        resp.      
2m

c
ω= ℏ     (755) 

 
In section 4.6.4.2.3. we had determined that the frequency ω is proportional Q0

–3/2 

(approximately). A comparison with (620) immediately leads to the solution: 
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If we insert the exact expression βγ� and for v the sum v = vM+cM in exchange, the result is not 
yet identical to the one, found in section 4.6.4.1. The PLANCK’s quantity of action namely is 
also a function of Q0 according to this model. It applies ℏ ~ Q0

–1
. With it, we get in total the 

expression for the energetic red-shift W ~ Q0
–5/2, as already found during the examination of 

the cosmologic background-radiation: 
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    (757) 

 
If we just regard the PLANCK’s quantity of action as variable, the mass would be 
proportional Q0

–5/2, then, which is easily to accept. The „difference“ of Q0
–1 however exactly 

equals the spatial share of the red-shift. The navigation-gradient and the magnitude of ℏ is 
dependent on the frame of reference. We have proven with it, that only the product of 
temporal and geometrical share comes into effect for the mass within a frame of reference.  

 
The spatial share is considered with the definition of the frame of reference. Cosmological 
seen, all natural bodies are located along r in the free fall, so that they don’t move in 
reference to the metrics (v=0), as we will already see, whereby v is the velocity in reference 
to the metrics. The right-hand bracketed expression in the navigation-gradient is dropped 
completely then and we get for the mass: 
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      γ γ∫v

ɶ ɶ ɶ
        (758) 

 
Here, a thought Cartesian coordinate-system applies outside the metrics and the angle γ is 
not constant. We have used such a coordinate-system in order to define the qualities of the 
metrics. 

 
What means however a variable PLANCK’s quantity of action for the physical rules? If we 

assume ℏ to be variable on the basis of the definition of ℏ (37) the charge and the magnetic 
flux would be variable too. The same is applied even to the electron charge then. 

 
2/2 1/2 1/2

0 0 0 0 0 0 0q ~ Q q ~ Q ~ Q− − −= ϕ → ϕℏ     (759) 
 

Similarly, the relations are with the gravitating mass (gravitative attraction), since the 
gravitational-constant is dependent from the frame of reference too. See section 6.2.4. for 
details. The universal action to the physical inherent laws shall be examined on the basis of a 
simple example, the HEISENBERG’s uncertainty principle. As well m, as λ are subject to a 
red-shift thereat: 
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With it, the electrons e.g. in a particle-accelerator (see section 6.2.2) are, in terms of 
quantity, subject to completely different physical rules, as hitherto assumed. The measurable 
result however agrees with the classic model, i.e. the changes cancel each other, since as 
well mass, length and PLANCK’s quantity of action are depending on the reference frame. 
That means an observer sees, even quantitatively, always the same physical rules, 
independently from the frame of reference. As a consequence, we also have to revise the 
statements concerning the uncertainty of place and impulse of electrons in the time just after 
big bang, made in section 4.6.4.1.2. There, we had assumed a constant mass for the electron. 
 
This however ascends about the factor Q0

–5/2
 the more we draw near the point of time t = 0, so 

that the uncertainty of that time would have had the same value as nowadays. Finally, we 
can make the following statement: 

 
 
VII. Regarding the PLANCK’s quantity of action as variable, one observes the  
 same as by analogy with the classic model, since also values like charge and  
 magnetic flux are no longer constants then and the changes cancel out. 
 

 
Well, if we don’t exactly want to formulate a gravitational-theory or to explain the 

cosmologic red-shift, we can lean back comfortably leaving the PLANCK’s quantity of action 
a constant, and we will obtain the regular results nevertheless. 

 
 
 
 
 

6.1.5. Velocity and other values 
 
In the preceding sections, we have seen that values like length, time and mass depend as 

well on the velocity as on the frame of reference. Furthermore, we have noticed that other 
values, like e.g. charge and flux depend on the frame of reference only. This dependence is 
caused by the spatial share of the red-shift and corresponds to the navigation-gradient with 
fermions. But these values also depend on time and the distance to the coordinate-origin and 
thus, indirectly on the velocity (integral) with it. For the charge applies e.g.: 
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  (764) 

 
This corresponds to the dependence on Q0 (759) and applies precisely. If we for example 
want to transform the charge from one to another frame of reference (LORENTZ-
transformation), in contrast to the prevailing opinion q0 ~ Q0

1/2
~ β1/3 applies. In this 

connection, β is the classic relativistic dilatation-factor. However, the charge and flux-
increase is balanced by an additional mass-increase of the same magnitude in turn, so that 
we observe the same, as if q0 and ϕ0 would be invariant in reference to LORENTZ-
transformations and it applies m ~ β.  

 
Thus however, even other values, as e.g. voltage and current depend on the frame of 

reference. By application of relations like q = C·U = ε0 r·U and φ  = L·I = µ0 r·I one gets the 
following subjections: U ~ Q0

–3/2
 ~ β and Ι ~ Q0

–3/2
 ~ β. In the normal case however, all these 

values can be considered as constants. 
 
The electron charge forms a special case. For one thing, this depends also on the frame of 

reference and traces the value of q0. On very high velocities (near c) and/or small Q-factors 
there is just an additional dependence on the velocity. Let’s have a look at this and more in 
the next section. 
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6.2. Physical quantities of special importance 
 
Hence, we want to continue this work with the examination of physical constants, that has 

large influence on the construction of our world. One of these is SOMMERFELD’s fine-
structure-constant. 

 
6.2.1. The fine-structure-constant 

 
 
The fine-structure-constant α is a characteristic fundamental quantity of DIRAC’s theory of 

the electron. It is a measure for the strength of electromagnetic interaction, i.e. for the coup-
ling of loaded subatomic particles with photons. According to [5] it is defined as follows: 

 
2

0

e 1 1
0.0917012 0.00729735

4 c 137.035999084 4
α = = = × =

πε πℏ
       (765) 

 
e is the electron charge in this case. The fine-structure-constant has been well proven with 
the description of the decomposition of the atom-spectra (Lamb-Shift) yet. Also, it is used to 
explain the dissent between spin and magnetic moment, as it appears with the electron. Now 
we want to see, whether there is hidden an additional, essential, more fundamental legality 
behind expression (765). 

 
It is obviously opportune to calculate on the interaction of electrons or protons with 

photons with the electron charge. In section 4.6.3. however we had noticed that there is 
another second charge, namely the charge of the ball-capacitor in the MLE q0, which is with 
3.301378 e near that value (766). 
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          (766)  

 
With a constant in general, it has no influence on the physical content, if we multiply it 

with another constant. Let’s try now, what happens, if we substitute the electron charge in 
(765) with q0: 
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We have uncovered the nature of SOMMERFELD’s fine-structure-constant with it. Following 
clear statement applies: 

 
 
VIII. The SOMMERFELD fine-structure-constant is the square ratio of electron  
 charge and charge of the Metric line-element multiplied with a  
 geometrical factor. 
 

 
The geometrical factor corresponds to the full space-angle of 1sr and is equal to the factor 

applied on the calculation of the surface of a ball. This is not further remarkable, have we to 
do it here with the mutual interaction of two different solutions of the field-equations after 
all. The first one is the electron (ball), that second one the photon (wave/cube). 

 
We have uncovered the nature of the fine-structure-constant with it indeed, but it turns out 

a new question, that we have already asked in the course of this work: 
 
1. Why does the electron charge just amount to 0.302822 q0 ? 
 

This is however not yet everything. From this question and the assumption, that PLANCK’s 
quantity of action is not a constant, arise a row of more questions: 
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2. Is the ratio constant between both? If yes, why?   
3. If no or don’t know:   
 Is it a coincidence that the electron charge is close to q0 today of all days? 
4. According to which legality does the value of the fine-structure-constant change 

or does it remain constant? 
5. Which effects does it have on other areas of the physics (atomic-model)? 
 

As fundamental, question 3 and 4 crystallize here, that we cannot answer with absolute 
certainty however. With great probability, we can say that there is no coincidence. That 
would mean however, that the electron charge is not constant. Before we’ll delve into it, we 
have to deal with a second dimensionless value. 

 
 
 

6.2.2. The correction factor δ 

 
This value will occur with the comparison of several solutions for the HUBBLE-parameter 

in section 7.5. and I have already seen it in a publication. Unfortunately, I don’t remember, in 
what. Even the search in the internet run into void. Therefore, I cannot tell you the correct 
name of it. In any case it’s not identical with the quantum defect. But in succession, it plays 
an important role with the set-up of the Concerted System of Units. It is defined as follows: 
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Furthermore, following important relation applies:            
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To avoid a circular reference we make use of the right-hand expression (770) to the 
definition of δ. Obviously, with δ it’s about a correction factor which should compensate the 
eccentricity between proton and electron in the 1H-atom of BOHR’s classic atom-model, 
since me is not small enough with respect to mp, it wobbles. Well, BOHR’s model is not 
correct in fact. Nevertheless, values thereof, such as re, do a good service with calculations 
even this very day. That also applies to δ, as we shall see later. Apparently, because of (770) 
it’s about a kind of complementary fine-structure-constant. As latest, more exact research 
[53] suggest, the ratio µ = mp/me turns out to be constant. It varies by max. −5.0·10−17

 a−1, i.e. 
with an age of only 1.4·1010a it’s quasi constant. I agree with this statement, because this 
model is based on this assumption. With it, the ratio µ = mp/me = const forms the 3rd essential 
constant. 

 
 
 
 
 

6.2.3. The electron charge 
 

6.2.3.1. Static contemplation 
 
Already DIRAC has formulated a hypothesis, as per which the electron charge is a function 

of time, (DIRAC’s hypothesis). In his model the gravitational »constant« is no constant too. 
That means, one cannot exclude this possibility and it is worthwhile in any case, to engage 
further examinations at this point.    
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If we assume, that it is not a coincidence, that the electron charge is near q0, so it’s also 

obvious to say that a ratio exists between both, which acts according to a certain inherent 
law. 

 
The definition of q0 contains the PLANCK’s quantity of action, which is of essential 

meaning nevertheless for the theory of the bosons (e.g. photons) as for fermions (e.g. elec-
trons) – combined with the wave-propagation-impedance Z0 of the vacuum. This suggests 
the conjecture that both charges are actually one and the same, at which point the electron 
charge, on the basis of particular conditions, only seems to be smaller. Therefore we want to 
examine, whether it is possible to calculate the electron charge from the charge q0 of the 
Metric line-element. Let’s consider the model according to Figure 124 for that purpose.  

  
We have yet noticed that the basic condition of the metrics is located near the expansion 

centre (0) at a Q-factor of Q = 1/2 (1). The expansion-graph in this area is sketched in Figure 
101. Furthermore we have noticed that there must be something like a basic condition even 
for the fermionic matter, whereby we can observe both types of matter only red-shifted 
through the lens of the metrics. It turns out the question: What’s the Q-factor the basic 
condition of the fermionic matter is located at? 

 
The most obvious assumption would be that this is at the point Q = 1/2 too. Now, we have 

noticed that this point (1) forms the aperiodic borderline case, in which no periodic wave-
function can exist anyway. This is however a necessary condition for the existence of e.g. 
the electron as matter-wave (DEBROGLIE). Matter-waves are moving, according to our 
definition, opposite to the propagation direction of the metrics, which has the consequence, 
that they don’t move anyway. They persist quasi on the position forming standing waves. 
Furthermore arises, that these waves, in contrast to time-like vectors, cannot surmount the 
(3) point Q = 1, in which a phase-jump appears, since they are been reflected there. With it, a 
matter-wave would be „locked up“ between the points 1 and 3. 

 
We now assume further, that the electron in reality has the charge q0 too, of which we 

only „see“ the share e, since the electron is warped about an angle β into the phase space in 
reference to the observer, who is positioned far on the r-axis. 

 
Just like the universe the electron is a four-dimensional object. Because the charge q0 is 
evenly distributed over the surface, it is quite possible, that we may even be able to see only 
a part of the surface, and with it, only a part of charge, due to the curvature-ratio. The 
(shifted) r-axis is the asymptote of the track-curve of expansion (Figure 25). It behaves like a 
parabola near the origin, farther, like a hyperbola (Figure 7). We are primarily interested in 
the angle ε, which results from the argument of the integral of the complex propagation 
velocity c of the metrics (209). It applies: 
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       (771) 

 
At this point the integral of c and not the value itself comes into effect, since not the velocity 
c of the electron but his location is of interest for the further calculations. With the help of 
(211) we are able to transform (771) in the following manner: 
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The integral by the time is not particularly well-suited however, since the frequency ω0 itself 
is a function of time. Therefore we substitute t by the phase-angle Q = 2ω0t obtaining for the 
angle ε and for the amount of the zero-vector rN: 
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With r1=1/(κ0Z0). Although, the left expression of (775) is not yet complete. It only 
describes the propagation of the wave. It still lacks the expansion-share Z of the constant 
wave count vector rK across the entire world-radius R, otherwise applies Z =  2mQ1/2 see 
(346). It has the characteristic of a zoom-factor and is to be placed before the integral, since 
it influences all elements dr simultaneously (see section 4.5.2.). Altogether applies: 
 

Q 11 j arctan θ
2 2

N 1

00

3 1
r r Q e dQ

2
=

ρ∫  0

1 1
j (arg θ ) j arctan θ j
2 2

− + π = = φ   (776) 

 
Now certainly an analytic solution of this integral can be found, if there is enough time. This 
however would go beyond the scope of this work. Therefore, we determine the integral with 
the help of the »Mathematica«-function NIntegrate numerically. With it however the 
function 1/ρ0 makes particular difficulties, namely because of the many nulls of the Bessel 
function. In order to make possible an exact solution nevertheless, we substitute the 
expression 1/ρ0 by an interpolation-function with list (function Interpolate). Then, 
expression (774) RnB[Q] and (776) Rn[Q] can be calculated as follows (without r1): 
 

cMc = Function[-2 I/#/Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]]; 
PhiQ = Function[If[# > 10^4, - Pi/4 - 3/4/#,  
Arg[1/Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] - Pi/2]]; 
RhoQ = Function[If[# < 10^4,  
N[2/#/Abs[Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]]], 1/Sqrt[#]]];  
rq = {{0, 0}}; 
For[x = -8; i = 0, x < 4, ++i, x += .01;        (777) 
AppendTo[rq, {10^x, N[10^x*RhoQ[10^x]]}]]; 
RhoQ1 = Interpolation[rq]; 
RhoQQ1 = Function[If[# < 10^4, RhoQ1[#], Sqrt[#]]];  
Rk = Function[If[# < 10^4, 3/2*Sqrt[#]*NIntegrate[RhoQQ1[x], {x, 0, #}], 6 #]]; 
Rn = Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])], {x, 0, #}]]]; 
RnB = Function[Arg[NIntegrate[RhoQQ1T[x]*Exp[I*(PhiQ[x])], {x, 0, #}]]]; 

 
The absolute error is smaller than 10–7. Then the electron charge is the rectangular mapping 
of the charge q0 upon the r-axis as presented in Figure 124: 
 

0

e
sin cos sin

4 q

π γ = β = − ε = 
 

       0e q sin= γ             21
sin

4
α = γ

π
 (778) 

 
The exact calculation with the help of the function FindRoot using the CODATA2018-values 
for the basic condition of the electron turns out the value ε = −2.0485420678463937 resp. 
ε = −0.6520711924588928 π with Q = 0.6567290175491683. Because the observer, to the 
point of time T » t1, is located (approx.) directly on the r-axis, the electron charge calculates 
from the real charge of the electron q0 multiplied with the sine of the angle-difference 
between the phase-angle of the electron in base state and the phase-angle of the observer (–
π/4) as e = 0.3028221208819746 q0). 
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Figure 124 
Ratio of electron charge and charge of the  
MLE in the phase space of the electron 

 
 
 
This is constant over a large area (sin γ  ≈  0.302822). With it, the electron charge traces the 
charge q0 of the MLE directly. Thereby, the very small variation of α by approximately 
−2.0·10−17

 a−1, stated in [53], is no contradiction. Only on extremely relativistic conditions, 
the ratio between q0 and e varies according to Figure 104. 

 
With the fine-structure-constant itself it are just actually about two different „constants“ 

which only coincides to the present point of time. Firstly it’s about the ratio of the observed 
to the actual electron charge, secondly about the angle of intersection between electron and 
photon. It can be interpreted even like that the charge of the electron itself is a wave-function 
and it’s periodic. Because of the spin (rotation) the measured charge is a function of the 
angle of incidence α then (Figure 124). 

 
On this occasion, the photon always incidents with the angle –3/4π This corresponds to 

the real-part, because only this is able to perform work during an interaction. During the 
calculation of action, we must multiply with the value sin γγ therefore. The same is applied 
also to the interaction with neutrinos (inverse b-decay +p → n + e+

 ). Latter one also today 
yet figures one of the some many options to the proof of neutrinos. First of all, only the 
extremely small real-part (in this case),  becomes effective during the reaction of the proton 
with the antineutrino, which leads to the so small effective cross-section. Then, in the 
subsequent reaction of course the entire neutrino is absorbed, including the „blind energy“. 

 
On higher velocities (near c), near the particle-horizon or even in strong gravitational-

fields thus the uniform „constant“ splits into two different variables. The weak interaction 
becomes strong quantitatively seen, since the neutrinos behave like photons then. At the 
same time there’s going to be a symmetry-breaking. 

 
However back to the electron: While the basic condition of the metrics is settled at Q = 1/2, 

we have found a value of Q = 0.656724 for the electron, but we expected a value of Q = 2/3. 

ν 
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Using Q = 2/3, we obtain a value for e, which is about 2.54% beyond the really observed one. 
How this deviation can be interpreted? 

 
As is generally known, the fine-structure-constant is used in the interpretation of 

interaction-processes between electron and photon, at which point the observer usually is 
located far away on the constant wave count vector rK at a point Q»1. In a large distance, 
this coincides with the r-axis. Even the electron as a fermion only moves along the constant 
wave count vector. Since the Q-factor is identical to the phase-angle of the Hankel function, 
it is defined along rK, i.e. along the arc. The wave-function of the electron shows a certain 
curvature with it. The photon itself, the zero vector rN in contrast, is rectilinear i.e. not 
curved. Since it’s about a photon, which is observed at a point with Q»1 the angle α is 
extremely close to π/2. 

 
The real interaction indeed takes place in the basic condition of the electron at Q = 2/3 i.e. 

the zero vector is being up scaled with all its angles to the phase space of the electron. The 
result of the interaction on the other hand is being observed downscaled at Q»1 then. And 
an adaptation occurs obligatorily during the real interaction (stretching) of the curvilinear 
wave-function of the electron onto the non curvilinear zero vector. For this reason, it is of 
interest to determine the arc length of rK. Even if we weren’t able to find any analytical 
solution for (776), we can say yet, that the determination of the arc length is not impossible. 
With the help of (772) we obtain: 

 
2

1

Q

0

0

2

0

2 22
K

t

t

r x y dt Q x y dQ
ε

= + = +
κ

′ ′∫ ∫
i i       (779) 

 
Q Q

0 0

2 2
K 1 1

0 0

Q 1 1 1 dQ
r r cos arg θ sin argθ dQ r

Q 2 2ρ ρ
= + =∫ ∫     (780) 

 
This is however only the share of the wave-propagation in turn. Together with the 
expansion-share, this is applied to the arc length too, we get: 
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Also for the expression (781) there is certainly an analytic solution, this is however still too 
complicated, so that we will determine this integral numerically too, at least for small values 
Q, because to large values, the approximation 2/ρ0 ≈ Q1/2 is applied and the integral turns 
analytically solvable with it: 

 
Q Q
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0 0
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K 1 1 1
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3 1 3
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Q= ≈ =

ρ∫ ∫         Q»1   (782) 

 
This is a known relation, which we have derived with it. It is applied however only to values 
Q»1. For the numerical determination of the integral we apply usefully the following 
expression in »Mathematica«: 
 

Rk = Function[If[# < 10^4, 3/2*Sqrt[#]*NIntegrate[RhoQQ1[x], {x, 0, #}], 6 #]];    (783) 
 
Now, we are particularly interested in the ratio between rK and rN. The course is presented in 
Figure 9 with and without expansion-share. Namely, the expansion-share cancels out in this 
case. To the calculation we use the function rs. For a faster calculation we generate the 
interpolation function RS[Q] (see annex). The expansion-share cancels out in this case. And 
it shows following at this point: If we assume the basic condition (rN) of the electron to be at 
Q0=0.6567290, so the associated constant wave count vector rK is exactly about 
1.0151827890 longer. If we however multiply the latter value with the phase-angle 
Q0 = 2ω0t = 0.6567290 a value of 0.666699995 turns out. This is a deviation to 2/3 of only 
4.99935·10–5. 
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Figure 125 
Ratio between the length of the constant wave-count vector 
rK and the length of the zero vector rN as a function of Q0 

 
The reason could be the computational error during the numerical integration. Having 
duplicated the precision of the calculation however, we got exactly the same result up to the 
last position. It could even be about a systematic error then or about others, not considered 
influences during the determination of electron charge in the experiment or about a 
misinterpretation. Also possible is, that the value in fact is not exactly at 2/3 but at 
0.6567290. 

 

 
 
Figure 126 
Ratio of electron charge and charge of the MLE  
in the phase space of the electron (larger scale) 

 
In Figure 126 the exact relations are presented in a larger scale once again. One recognizes 
the two basic conditions of the electron e (blue) and e´ (red), at which point more final 
should be equal to the stretched constant wave count vector of e. This is not the case by the 
way, since the angle ε and with it also β varies negligibly with the stretching. We determine 
the lengths of rK as well as rN for the three values to: 



 
 

198 

0.656729

K 1
0

01

0

7

1017 01
3 dQ

r (0.656729 ) r 0.656729 07 17851
2

4r.= =
ρ∫  (784) 

 
2/3 1j arctan θ

2
N 1

00

1

2 3 2 1
r ( ) r e dQ 0.183660r

3 2 3
= =

ρ∫  (785) 

 
0.666699995 1

j arctan θ
2

0

N 1 1

0

3 1
r (0.666699995) r 0.666699995 e dQ 0.183687r

2
= =

ρ∫  (786) 

 
It shows, there is no match in length. Even if we deduct the expansion-factor from the result 
we always get a deviating result (the best fit would be at a phase-angle of 0.660147).  
That means, the basic condition e is only nearby Q = 2/3 i.e. with 0.656729017. That doesn’t 
conflict with other findings here  and plays a subordinated role with it. The exact value   
of 2/3 was just a guess of mine anyway. The only thing, that matters, is the angle 
ε = −2.0485420678463937. Now, we already want to calculate the corresponding charges: 
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I would denominate condition e′ as excited state of the electron. With it, we have proven, 
that it is possible, to find a relation between the charge e of the electron and the PLANCK-
charge q0. Maybe, these two charge-bearing particles are actually identical, on the one hand 
as free particle (electron), on the other hand bound in the metrics…? 

 
 
 

6.2.3.2. Dynamic contemplation 
 
 
We have determined yet that the electron charge is (could be) equal to the rectangular 

mapping of the charge q0 of the MLE onto the metrics-axis of r. What now happens, if the 
observer moves with a certain velocity or is located in an area of strong curvature or quite 
simply, what’s the spatial and temporal dependence of the electron charge? 

 
If the observer is moving with a relative-velocity different from zero in reference to the 
coordinate-origin, he is, in terms of physics, moving backwards on the expansion-graph in 
the direction to the zero point. The same is applied in the proximity of a strong gravitational-
field or that of the particle-horizon. The temporal dependence is inverse. In the natural time-
direction, he moves away from the zero of the expansion-graph. All that depends on the 
value Q

~ (frame of reference), on time, distance, speed and/or the gravity potential. In order to 
determine the dependence, let’s have a look at the model according to Figure 8. At first, we 
will determine the dependence with respect to the phase-angle Q. 

 
If the observer is located far away on the r-axis, so the phase-angle ε–β of the metrics, that’s 
the vector from origin to the observer staying on the expansion-graph, amounts to (approx.)  
–π/4 (r-axis). The r-axis forms the asymptote of the expansion-graph. If we now approach 
the origin, the value of the angle becomes greater (the r-axis turns to the left). Now, the 
charge arises to e′= q0 sin γ′ (not identical to e′ and γ′ of Figure 126). On this occasion the 
right angle (α) survives, because with the turnover also the propagation direction of the 
photons changes. Then, under application of (781) and (782) in the triangle e′rT′q0, we obtain 
the following relations: 
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arg c dt
2 2

π π  γ = π − − β = − −ε + ∫              (789) 
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∫       (790) 

 
 

RnB = Function[Arg[NIntegrate[RhoQQ1T[x]*Exp[I*(PhiQ[x])], {x, 0, #}]]];  (791) 
Plot[{Sin[(Pi/2 - RnB[10^t7] + ϵ}, {t7, -8, 8}] 

 
For a faster calculation I defined the interpolation function RNBP[Q], for sin γ the function 
QQ[Q] (see annex). The course of the corresponding function in dependence on Q is shown 
in Figure 127. We see clearly, that the ratio electron charge and PLANCK charge is nearly 
constant over a wide reach. With the fine-structure-constant it’s really about a genuine 
constant, at least for the these days technically accessible range. But, approaching the origin, 
e.g. with very fast speed near c, the ratio changes. The maximum is at Q = 0.656795 behind 
the particle horizon.  
 

 
Figure 127 
Ratio of electron charge and of the PLANCK charge 
as function of the phase angle Q according to (791) 

 
 
In the approximation | c | ~ Q0

–1/2
 ~ t–1/4 applies. With it, we determined the dependence e′(Q). 

But we are rather looking for the function e′(v). Most simply it would be, if we could 
determine Q(v). In section 6.1.2.1. we already found with (696) the expression Q = c2/v2. But 
we cannot use it here, because it only applies to a non-accelerated frame of reference. The 
item v is the speed | c | with respect to the r1-lattice of subspace in this connection. If we 
accelerate, our frame of reference gets lost and we get a new one, in which most of the base 
values, even v, have taken on another value. Indeed, expression (696) applies-on, however 
with another value of v. Thus, we cannot simply add the speed after acceleration to the value 
| c |, at least not linearly, but geometrically. Therefore, we have to find another, better 
expression here. 
 
We are moving on the constant wave count vector rK. If we look at expression r = �c  dt more 
exactly, so c depends on the time dt. Thus, we have to replace dQ with dt at first. Based on 
(782) without expansion applies: 
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Reference point is the expansion centre {r1,r1,r1,t1} in this connection. Now let’s substitute 
dQ by dt with the ansatz: 
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Plugged into the integral we obtain then: 
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We can’t do much with that either, as we’ve only proven, that the world radius R/2 = ct is, 
without consideration of expansion, proportional Q3/2 resp. t3/4 in the approximation.  
 
If speed comes into play, we always have to do with more than one reference system and 
with measurements of physical quantities we have to perform a LORENTZ-transformation. 
We have stated in [1], that wave-lengths are stretched according to λ ~ Q

3/2
. The same applies 

to the size of material bodies, whereas the PLANCK-length r0 is ~ Q only. Otherwise no 
redshift would be detectable. With the LORENTZ-transformation the wave-length λ depends 
on the inverse LORENTZ-factor β =  (1−v2/c2) 

–1/2, it applies λ′ = β
−1

 λ . However, this must not 
be confused with the formula for the relativistic DOPPLER-shift. Thus, we have been able to 
formulate expressions for the dependence Q=ƒ(v): 
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  (700) 

 
Q~ is the value in the observer’s frame of reference. In order to ensure an exact calculation  
even for velocities extremely close to c, it’s a good idea, to increase working precision. In 
Mathematica/Alpha it happens with the help of the function SetPrecision with an allocation 
to an auxiliary variable inside the definition of the function: 
 

Qv = Function[a4712 = SetPrecision[#2, 309]; #1*(1 - a4712^2)^(1/3)]; (*Q(v/c, all Q~)*); 

Qv0 = Function[a4713 = SetPrecision[#, 309]; Q0*(1 - a4713^2)^(1/3)]; (*Q(v/c, Q0)*); 

vQ = Function[a4714 = SetPrecision[(#2/#1)^3, 309];    (797) 
    Sqrt[SetPrecision[1 - a4714, 309]]]; (*v/c(Q, all Q~)*); 

vQ0 = Function[a4715 = SetPrecision[(#/Q0)^3, 309];  

    Sqrt[SetPrecision[1 - a4715, 309]]]; (*v/c(Q, Q0)*); 

 

With it, it’s possible, to specify the ratio e/q0 as a function of velocity v exactly. Unfor-
tunately, the graphic resulting from, is underwhelming, unless we work with the logarithm 
of the difference (1−v2/c2). But the function α at first. Because of (790) and (700), both are 
no constants in fact, but reference-system-dependent.  
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Figure 128 
SOMMERFELD’s fine-structure-constant  
α as a function of the phase angle Q 

 
 
In this context I have to disappoint the astronomers. The fine-structure-constant varies with 
time and distance indeed, but the change of α comes into effect only from approx. 10−90

 m 
off the particle horizon (world radius) on. The same applies even to the course as a function 
of time t after BB, depicted by means of the function δ. So you have to find another 
explanation for the quasar-problem, unless, these are located outside our universe. Possibly 
it’s about the effigies of our neighbour-universes? But then they should be arranged in the 
form of a crystal lattice. Take a look and see, if there is also a quasar in the opposite 
direction. But now enough of speculation. 
 

Further to the correction factor δ. Because of (770) the function has a shape like α−1 (right-
hand ordinate). For δ the left ordinate applies. The t- and the Q-axis apply to both at once. 
The t-values arise from (792). Somebody will have doubts at this point, if we really can 
reckon-back so far in time. It has to be said, that with Q nearly all other natural constants 
vary too. Shortly after BB photons behave like neutrinos and vice versa. However, the 
course less than Q = ½ in Figure 127-120 is probably theoretical, since the base state of the 
photon is at ½, that of the electron at approx. ⅔. Besides from that, the metric wave field is 
not completely established until Q = ½. It’s even about a model. 

 
Even if the ratio e/q0 is quasi constant everywhere, it nonetheless depends on time, speed, 

distance and the gravitational potential i.e. the frame of reference Q0. The same applies to 
PLANCK’s quantity of action ħ. Because of (23) applies: 
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Thus, in the predominant part of the universe, spatial and temporal, α and δ are constant. 

Nevertheless, the previous contemplation is important for the determination of the base state 
of the electron mass with Q = 1. 
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Figure 129  
Correction factor δ and reciprocal of the fine-structure- 
constant α as a function of time after BB and of the phase angle Q 

 
 
 
 
 

6.2.4. The electron mass 
 

6.2.4.1. Static contemplation 
 
Having stated, that I hadn’t considered the electron mass me in my work before, I searched 

for a relation, with which it can be calculated from the PLANCK-mass m0 resp. vice versa. In 
contrast to the charge, which resides on the surface, with the electron mass even the inner, 
invisible part comes into effect. Therefore, a behaviour like in the previous section is not to 
be expected. By trying, with the values from Table 2 and a phase angle Q0 = 7.95178·1060, 
based on expression (1049) Q0 = ����(re /r0)3,�I found the following expression: 

 

1/3 31
0 0 02e e

1 c
m   m Q  9.20759 10 kg 1.01078m m

12 G
− −≈ = ⋅ = =

π
ℏ

 (799) 

 
Interestingly enough, this value is near to the real one amounting to 9.10939·10−31

 kg. 
Thus, it seems to be possible, to calculate me. In the former editions I already set up a program, 
with which most of the universal natural constants could be calculated from 10 fixed values. 
The electron mass was one of the input parameters. The value Q0 has been determined using 
(1049). This way, it was possible to calculate the specific conductivity of the vacuum κ0, so 
that the values can be determined top down too. But it was impossible, to calculate all values 
and there was always a residual error. In actual fact, there are even only four values, which 
can be fixedly defined.  These are the three invariants of subspace c, µ0, κ0, and k, as well as 
the ones, depending on them ε0 and Z0, furthermore the value ħ1, the initial quantity of action 
of the universe shortly after BB (Q = 1). The reason is, that these as the only ones, really do 
not change at all. Neither, they do not depend on any system of reference. 

 
Except for the meter and the second, which are exemplarily defined, CODATA 
unfortunately took a different part with the other values, in that they fixedly defined 
particular values arbitrarily, e.g. ħ, latter one to the recent definition of the kilogram. The 
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whole issue is quite problematic, especially since ħ depends on the frame of reference. Now 
I tried to optimize the lot, in order to improve accuracy. Extremely important is, that the 
kilogram won’t be modified at all. Otherwise millions and millions of scales would have to 
be recalibrated. Also I act on the assumption, that the CODATA-values are pretty accurate.  
 
Indeed, these have been determined by a kind of iterative process. Lab A determines the 
value a with a certain accuracy. Another lab validates a with another accuracy. Based on a 
lab B determines value b even with another accuracy. Based on a and b lab C 
determines…etc. This way we approach the real values more and more but it takes a long 
time..  
 
The more exactly we measure, the more deviations carry weight, being based on the 
arbitrary predefinition of e.g. ħ and on the fact, that the lab, value a should be validated by, 
is in the middle of nowhere, e.g. at a point, the apparent gravity has a different value. The 
earth is not a ball anyway, but a geoid. So it becomes important more and more, to find a 
method, with which these deviations can be calculated out. 
 

But further with the electron mass. Just like (1049) expression (799) offers an opportunity, 
to determine the value Q0. We need it to calculate-up to the initial values, mainly for κ0. It 
applies: 
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e
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       (800) 

 
The value differs from (1049) and it depends from m0 and me. The further way leads over 

the combination of the charge- and mass-path on the initial level with subsequent equating, 
thus e→q0→q1→ħ1ω1 = M2c2←M1c2←m0c2←mec2. Thereafter, we are able to determine κ0 
and G. An important side condition is (770). The whole issue is verified by a Sudoku-proof. 
If all numbers may be calculated correctly in equal measure, the model finally adds up 
without deviation, it can be considered to be correct, if not, then not. 
 
With (800) the calculation only adds up using the approximation ⅔�� of (769) for δ, then 
even exactly. But then α, δ, ħ, G and other values don’t fit reality anymore, so that we have 
to discard this variant unfortunately. Thus, we must find an more exact expression for (799). 
If possible, only integer fractions, the value π and at most �� should occur therein. After a 
long trial, days later, I actually succeeded, to find such a relation : 
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For δ we take the current value, for m0 expression (799). The standard-MachinePrecision is 
at approx. 10−16. The deviation is a measure for the detuning of the SI-system as a whole, 
especially caused by the imprecision of G2018, specified with ± 2.2·10−5. This way, accuracy 
can still be improved significantly. Expression (107) exact obviously. That also applies to all 
other expressions, if we replace 12π

2
 by 9π

2 �� δ in them. Now we can determine Q0 and m0 
even exactly with it. It applies: 
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Obviously, Q0 (802) has another value, as we have determined in former editions. That will 
be surveyed later on. For m0 the following relations to other mass quantities turn out: 
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2 1
H 0 0 0M H c m Q−= =ℏ     HUBBLE-mass   (804) 

 
2 1/3 2

0 0 0 H 0em 9 2 m Q c M Q= π δ = ω =ℏ   PLANCK-mass   (805) 
 

2 4 /3
1 0 0 0 0 0eM 9 2 m Q m Q= π δ = µ κ =ℏ   MACH-mass    (806) 

 
2 7/3 2

2 0 0 0 1 0 0eM 9 2 m Q m Q= π δ = µ κ =ℏ   Initial-mass universe   (807) 
 

 
Figure 130 
Course of the reference-frame-dependent masses 
mx with respect to the phase angle Q, large scale 

 
The course of (804) until (807) for greater values of Q0 is shown in Figure 130. We can see, 
all masses except for the electron mass intersect in the point Q = 1. M1, the MACH-mass, is 
the counter-mass, postulated by MACH, which shall be the reason for the inertial mass of all 
bodies. According to [1] it’s the sum of the masses of the gravitational field (⅔) and of the 
EM-field (⅓) of the universe, which are mostly concentrated at the particle horizon. It’s the 
red-shifted remnant of the initial mass M2. 
 

 
Figure 131 
Course of the reference-frame-dependent masses 
mx with respect to the phase angle Q, small scale 
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Figure 131 shows the course near Q = 1. Even the exact course of the electron mass me 
according to (801) in comparison with m′e (799) is depicted there. As we can see, shortly 
after BB, the so-called HUBBLE-mass MH, a measure for the rest-mass of the photon, is yet 
greater than the rest-mass of the electron and not to be neglected. Nowadays the value 
amounts to 2.6094858·10−69kg only. The model makes it possible, to simulate the conditions 
shortly after BB with simple means.  
 
With the CODATA-value of ħ we are able to determine κ0 and ħ1 even now: 
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Now we can apply these values as initial values (subspace parameters). Then we turn around 
the calculation direction to top-down. The definition of κ0 as fixed value also has the 
advantage, that we don’t have to measure it by no means. Due to its extreme size it’s also 
unlikely, that we will be able to carry out such a measurement in the near future. The 
definition of ħ1 as fixed value is definitely better, than that of ħ and even correct. Because of 
the definition of the Kelvin we also take in addition the BOLTZMANN-constant k as a statistic 
value and the fixed genuine constants are complete. All other stuff is to be calculated. From 
now on, instead of Q0 we’ll use me to the identification of the particular frame of reference, 
because it can be measured (magic value). With it, our concerted metric system is ready, and 
it adds-up, exactly! To the calculation of Q0 from me we still rearrange (802) in the 
following manner: 
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        (810) 

 
In order to transform measured values being subject to the LORENTZ-transformation, we only 
have to multiply the input parameter with the factor (Q/Q

~
 )±3/2, depending on, whether the 

LORENTZ-factor γ or γ−1 finds use. Furthermore it must be pointed out, that not only ħ, but 
also me varies over the years. With ħ the variation is at approx. −1.4036·10−10

 a−1, with me  at 
−2.1054·10−10

 a−1, if only because of the growth of age. That should be taken into account by 
the SI-panel with the definition of the kg, ħ1 in contrast is invariable. A definition by means 
of me also would be possible and even recommendable. But the extremely small value is 
very difficult to scale-up.  
 

 
6.2.4.2. Dynamic contemplation 

 
After the determination of the static, i.e. time-dependent value of the electron mass, we 

want to deal with the electron in motion. Because of its smallness it can be accelerated by 
fields or by collisions with other particles only. Latter one we don’t want to contemplate 
here. Since the electron disposes of the charge e, we conveniently use the electromagnetic 
field for the acceleration. The whole issue takes place in the vacuum. 

 
 
 

6.2.4.2.1. Basics 
 
Although it’s about school content of curriculum, I want to go into detail with the basics 

of acceleration of the electron in the electromagnetic field once again, gathered from [10]. 
The electrons are released by a heating element at the cathode (0V). By impression of the 
voltage +Ub at the anode, acceleration takes place. If the anode has a hole, the electrons 
move-on even behind it with the speed achieved by acceleration. The speed depends on the 
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applied voltage. Nonrelativistically applies: ½ mev
2

 = Ub e. The ray can be focussed by 
electric or magnetic fields. 

 
With accelerating voltages >2.7kV indeed, the velocity v of the electrons must be treated 
relativistic, v gains a value >0.1c then. The kinetic energy [ J ]  = [V·As] divided by the 
electron charge e = 1.602176634·10−19As the value in eV turns out. The values apply in the 
observer’s frame of reference, we cannot „fly with“.  
 
 
The kinetic energy Wkin of an electron  
equals its total energy Wre         (811)  
less the rest energy W0 
 
The kinetic energy according to the 
energy-conservation-rule equals the per-       (812) 
formed acceleration-work of the E-field 
 
The relativistic mass mrel and the rest mass  
me are linked by the Lorentz factor γ  
 
 
Plugging in of the relativistic mass  
Into the energy equation 
 
 
Out-factoring and division by mec

2 yields   
 
  

After rearrangement we obtain for vrel [Ub]  

2

b
2

e

U ev 1 1
m cc

− 
− +=  

    

(816) 

 
VrelU=Function[ScientificForm[SetPrecision[Sqrt[1- 

SetPrecision[1/(1+# qe/me/c^2)^2,180]],180],180]];     (817) 
 
In (817) and the subsequent functions the precision is set like that, we can calculate even 
velocities with e.g. 0.999999’180. For the difference 1− vrel [Ub] the function DVrelU (818) 
can be used. 
 

DVrelU=Function[ScientificForm[SetPrecision[1-(Sqrt[1- 

SetPrecision[1/(1+# qe/me/c^2)^2,180]]),180],10]];      (818) 
 
With the help of (815) we can calculate the phase angle Qrel[Ub], once relative to Q

~ 
0, the 

other time absolutely (italic). Please don’t change the fraction 1/(…)2/3 into (…)−2/3, 
otherwise you will get an error message Division by zero! with particular values. 
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0Qɶ

   
        (819) 

 
QrelU=Function[SetPrecision[SetPrecision[1/(1+# qe/me/c^2)^(2/3),180],16]]; 

QQrelU=Function[Q0*(QrelU[#])];         (820) 
 
Also important is the inverse function of (817) UeV, calculating the necessary acceleration-
voltage for a particular (v/c). It also yields the kinetic energy in [eV] at the same time. 
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UeV=Function[a4711=SetPrecision[#,1000]; (me c^2(1/Sqrt[1-a4711^2]-1))/qe];  (822) 
 

 

6.2.4.2.2. Energetic contemplation 
 

Shortly after the start of operation of the Large Hadron Collider (LHC) at CERN could be 
read in the press, that it „simulated the BB“ [54]. Thus, we want to verify at this point, if it is  
possible at all. The prior condition would be, to reach the nonlinear range at a phase angle of 
Q0<103.  That would be in the temporal close-up range of the phase jump near Q0 = 1 approx. 
10−90s after BB (Figure 129).  

 
Just let’s try, to accelerate an electron onto such a velocity. What energy we would need for 
it? To the calculation we use the functions vQ0 (797) and UeV (822). It’s a good idea, to 
suppress the intermediate result of vQ0, otherwise you will get a multiline output with 173 
nines after the decimal point in the form of 9.99…9913822·10−1. So we enter the following: 
UeV[vQ0[10^3]] obtaining a value of 3.8923·1092eV. But the LHC has approx. 13TeV only, 
that’s 1.3·1013eV. Even if the LHC works with protons, energy is energy, thus we are orders 
of magnitude below that. 
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Name 

 

mx = Wx e/c2  

[kg] 

Wx = mxc
2/e 

[eV] 

Q0 

[1] 

M2  Initial-mass univ 1.514002834704·10114 1.23085·1097  1.00000·100 

BL  Linearity border 6.938648236086·1056 3.89230·1092  1.00000·103 

M1  Mach-mass 1.815248576128·1053 1.01828·1089  2.44470·105 

U1  Mach-voltage 1.550667802897·1052 8.69861·1087  1.26039·106 

m0  Planck-mass 2.176434097482·10−8 1.22089·1028  1.00543·1046 

U0  Planck-voltage 1.859208884401·10−9 1.04294·1027  5.18360·1046 

me  Electron-mass 9.109383701528·10−31 5.10998·105  5.25417·1060 

MH  Hubble-mass 2.609485798792·10−69 1.4638·10−33  8.34047·1060 ← Q0 

  
Table 6 

Energy and masses in the Universe 
 
The interesting question is, whether it is even possible, to reach such a high speed, especially 
for the financiers. For this purpose, I compiled the masses and their energy mxc2/e in eV in 
comparison with the corresponding phase angle Q0, determined in (804) until (807) in Table 
6. As we can see, the necessary 3.8923·1092eV is above the MACH-mass. So there is no 
longer enough energy in the universe, in order to accelerate one single electron into the 
nonlinear range Q0<103.  
 
As already specified, M1 equals the sum of the gravitational and of the electromagnetic field 
of the universe. As stated in (1037) the density is at ����G11(R/2)� �=�1.94676·10−29 kg·dm−3. But 
how about the masses, galaxies, stars, planets, dust etc.? So the mass-density is about two 
orders of magnitude below at 1.845·10–31 kg·dm–3. That’s much less. Furthermore, the 
required acceleration-voltage is greater than U0 (PLANCK) and U1 (MACH). According to [55] 
these are defined in the following manner: 
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   (823) 

 
Because of the existence of m0, M1 and M2 there are also three different values for the gra-
vitational constant: 
 

 2 2 2 2 3
0 0 1 1 1 0 2 1 2 0G c r m G c r M GQ G c r M GQ− −= = = = =  (824) 
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U2 and G2 are legacy values at this point, impossible nowadays. Thus, more than U1 won’t 
work. Presuming U1 as the highest possible voltage, if technically feasible at all, with the 
maximum available energy M1c

2, almost 12 electrons can be accelerated to a top speed 
below the linearity border. Maybe it even suffices for one proton. So much for „simulating 
Big Bang“. 

 
In Figure 132-125 the theoretical courses of the phase angle Q0, of the electron charge e 

and of α as a function of the kinetic energy as well as of the acceleration-voltage are shown 
once again. Additionally, the energetic boundaries from Table 6 are marked. As we can see, 
we can’t even get close to the BB. 

 

 
 
Figure 132 
Phase angle Q0 as a function 
of the energy of the electron 

 

 
 
Figure 133 
Ratio of the electron- to the PLANCK-charge  
as a function of the energy of the electron 
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Figure 134 
Correction factor α as a function 
of the energy of the electron 
 

Finally, on the subject of particle accelerator. I had promised, to address this point again 
with respect to the additional share of the mass- and charge-increase. The question is, do the 
additional shares cancel each other even in a particle accelerator? Just let’s recall the various 
dependencies: 

5 5
2 2 2

0 0mc Q Q
− −

ω∼ ℏ ∼            (825) 
3 2 1 1
2 2 2 2

0 0 0 0 0 0 0 0Q q Q q Q Q
− − − −

ω = ϕ → ϕ∼ ℏ ∼ ∼ ∼   (826) 
 

For the technically accessible domain suffice the approximation formulae. It is currently 
generally assumed, that both, the electron charge and PLANCKs quantity of action are 
genuine constants. The same applies even to the magnetic induction B = dϕ/dA, with which 
the electron is kept on track in the accelerator.  

 
Here we have to do with two types of forces. On the one hand, the electron is subject to the 
centrifugal force FZ = mev/r, on the other hand it generates a LORENTZ-force FL = e (v×B ). 
Both are directed against each other. It applies v ⊥ r, thus FL = e vΒ. With it, we obtain the 
classical expression for the cyclotron (B = const) and even for the synchrotron (B ≠ const): 

 
e(m v)

r v
eB

β
= β

ɶ
∼        with  1 2

2
v
c

    1−β = γ = −    (827) 

 
Now, according to this model as well me, e as the induction B are subject to an additional 
redshift. Shouldn’t this be found out somehow in accelerator-experiments? Altogether 
applies to the electron mass me ~ Q0

–5/2
 ~ β5/3, to the electron charge e ~ Q0

–1/2
 ~ β1/3. If we 

assume, that the track-radius r and with it, also the elements of area dA of the magnetic field 
B are not subject to a length contraction for the observer, applies to the induction B ~ ϕ ~ Q0

–

1/2
 ~ β1/3. Thus, plugged into (827) we just obtain  
 

5/3

1/3 1/3
e(m v)

r v
e B

β
= β

β β

ɶ
∼

ɶɶ
            (828) 

 
The same result as with the classical model, where we assumed e and B to be constant. Thus, 
the additional mass-increase really cancels out. 
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6.2.4.2.3. Perspective 
 
Before we engage in further characteristics of the electron, I want to answer the following 

question: Since it already needs an extreme amount of energy in order to accelerate one 
single electron to a speed within spitting distance to c, is it even possible, to get a 
macroscopic body up to a similar speed? It’s basically a question of whether we’ll ever be 
able to travel to other stars with a space-craft. 

 
The answer is „Yes“. In addition to the acceleration of a particle/body in a field, the so-

called external acceleration there is namely a second kind of acceleration, the internal or 
self-acceleration. That is, if the body disposes of its own drive. Then very different relations 
apply. 

 
In principle, a body with the rest mass m0 contains exactly as much energy (m0c2), in order 
to completely accelerate it to light speed. Let’s take a space-craft with photon-drive as an 
example. The energy shall be generated by matter-antimatter-annihilation and propulsion 
(mirror) shall work with 100% efficiency. Since it’s about a rocket, in principle the 
ZIOLKOWSKI-equation applies. But there is a difference because of the constancy of light 
speed, so that we can work with the same ansatz indeed, but finally a different relation turns 
out. According to [12]  the ZIOLKOWSKI-equation for v0 = 0 reads as follows: 
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bt
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= − − 

 
  

0 L T
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v c b m

F v b P c m m m

= =
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ɺSpecific momentum drive Fuel consumption

Thrust Rest mass
 (829) 

 
mL is the empty weight, mT tank filling. As we can see, F only depends on the power P, 
unlike as with a normal rocket. Thus, (829) doesn’t apply. Therefore, we start with the 
ansatz in [56] . I cite:  
 
»We split the whole continuously proceeding acceleration process into such small steps, so 
that step by step, a particular value of the current speed of rocket can be assigned to v and 
also its mass to the value m. In the current barycentric system of the rocket the mass Δm is 
thrusted out with the speed vg, it has the momentum vg Δm therefore. Because of the 
conservation of momentum  the rocket gets a repulsion momentum of the same size m Δv, 
increasing speed in the opposite direction about Δv. After the following limiting process up 
to even more, even smaller steps it no longer plays a role, that we should schedule m − Δm 
instead of the mass m to be correct. Hereby, the changings Δm and Δv become the 
differentials d m as well as d v. Thus, it yields (using the minus sign because v grows while m 
drops)«. 
 

g 2
0

P cv dm m dv dm dt dv dmmc
= − = = −    (830) 

 

dv c= − 2
0

P
m c 0

1dt v Pdt
m c

= − ∫    (831) 

 
The whole issue is simply considered, without sophistries like acceleration, distance, travel 
duration, payload, relativistic effects etc. If you are interested, please read [57]. Only the 
conclusion from (831) is of interest. In principle it’s possible, to achieve light speed with a 
space-craft. You just have to „burn“ the complete ship, cargo, the passengers, the crew, the 
drive and all the rest for that purpose. Then you really move with c, but only in the form of  
a light ray. You can also push the self-destruction-button instead. But below c a reasonable 
navigation is possible. As a problem remains the fuel. Antimatter with a negative mass 
would be very advantageous in this connection. 
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6.2.5. The classical electron radius 

 
Meanwhile, we know that there is actually none, the electron is described by a wave-

function indeed. But the electron disposes of particle properties too. Now, we have described 
the Metric line-element as a ball-capacitor which moves in its inherent magnetic field. 
Additionally, we have assigned a radius of r0 /(4π) to it, which shows similarities with the 
procedure on the definition of the classic electron radius. 

 
In this connection one assumed at that time that also the electron resembles a ball-

capacitor with a certain capacity, which should depend on the radius of the electron. Since 
the charge was well-known, there was only a certain radius, at which energy, charge and 
capacity could be brought in accord. This is defined as follows: 
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e
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4 m c
=

πε
         (832) 

 
Since it’s about a length, the relations to the PLANCK-units, mainly to r0, are really important. 
Now, we have already used this value in (1049) to the determination of Q0, but we got a 
different result. Aside from that,  the value determined with (810) seems to be more exact, as 
a comparison with the CMBR-temperature, measured by the COBE-satellite, suggests. See 
section 4.6.4.2.5. and [46] for more details. Thus, it’s appropriate, to impose expression 
(1049) with a correction factor ζ, in order to obtain the result of (810). If there is already a 
curvature with the surface-calculation, we can assume, that even the radius is bent. Maybe, 
we even obtain the desired relation re/r0 then. Equating (810) with (1049) with a subsequent 
substitution by (833), with the help of (778) and (798) we obtain: 
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The ratio mp/me is known to be constant. If the curvature were based on the same curve as in 
Figure 10, ζ would match the value Q0 = 0.748612 ≈ ¾. Now we can also specify the relations 
to the other PLANCK-lengths: 
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re is greater than r0. The result is exact. Now, even the right-hand expression of (833) yields 
the correct value. Still remain (931) and (932) from former articles. Since latter expression 
contained a typo   , I want to present both, inclusive ζ correctly once again (h has been 
substituted by ħ): 

3 
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 (841) 

 
The converted value of (840) amounts to 68.62410574852406 km s–1

 Mpc–1. That’s very 
precise, indeed the value depends on the reference frame. Btw. the CODATA-documents 
also contain a typo with the definition of re, copied-on from one edition to the next. So it 
doesn’t read re = α2a0, but re = α a0 correctly. Now let’s have a look, if and which reference-
frame-dependent variations cancel each other. At first the classical expression. I used the 
relativistic stretch factor β for the mass: 
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With it, the classical electron radius according to the classical understanding (interesting 
pairing) follows the relativistic length-contraction, which is not a contradiction. Now we 
apply the real values for mass and charge of the electron obtaining the expression for the 
„modern” classical electron radius: 
 

 
2/3 2

1 3/2
05/3 2

0

e
e

e
r Q

4 m c
−β

= β
πε β

ɶ
∼ ∼

ɶ
          (843) 

 
The additional mass- and charge-increase cancel each other even here. Also according to a 
„modern“ view the radius is subject to the single relativistic length-contraction. With it, 
there is an essential difference to the capacitor of the MLE, whose radius is proportional Q0 
only. 
 

The fact, that most of the changes cancel each other, suggests the physical laws to be the 
same in all reference-frames. But that’s only partially correct. Just the references to the 
subspace-values are changing. Fortunately, these of all are the ones, which finally cancel 
out. Only the LORENTZ-share remains. That means, we have to do it with a limited relativity 
principle. The version advocated by EINSTEIN applies: 
 

„Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind 
unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger 
Translationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen 
bezogen werden.“[58] 

 
The subspace itself is known as not to be a reference-frame. There is no preferred frame of 
reference. No problem, the SRT would correctly do the job even then. But there is 
something like a superordinate system for the cosmos as a whole. Besides it’s not certain, 
that our value Q0 represents the maximum. Possibly there are even others with a higher Q0.  
 
The question, „Where is the maximum?“, is hard to be answered, maybe in that we calculate 
out the relative speed with respect to the microwave background. According to [59] the 
value amounts to 368±2 km/s. With the help of (700) it should be possible to calculate Qmax. 
We rearrange: 
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(844) 

 
As we can see, the difference is not that big. The deviation amounts to +5.02·10−7. That 
makes a difference in the age of +14310 years only. 
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6.2.6. The BOHR’s hydrogen-radius 
 
Once again a length, which really doesn’t exist, which may serve as a rule, if the propor-

tions inside the atom change or not. According to [5] it is defined as follows: 
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Δ indicates the deviation to the measuring value and is tightly above the measuring inac-
curacy. With the help of (679, (801) and (805) we acquire the relations to the PLANCK-
lengths: 
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As well α (proton), as even δ (electron) are applied in this connection. It should also be 
noted, that me behaves differently shortly after BB, and that according to (801). But 
according to previous understanding, hydrogen atoms do not exist at all at this time. Since 
even the angle γ is involved, it however could not be true. Now let’s see again, if and which 
reference-frame-dependent changes cancel out: 
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             (848) 

BOHR’s hydrogen-radius is also subject to the single relativistic length-contraction, i.e. the 
atomic scales are observed shortened by β–1, just like a macroscopic body. But what about 
the additional shares? 
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The additional shares cancel each other even here. That means, as well the dimensions of 
particles, as even the „track-radii”, i.e. the dimensions of orbitals, are subject to the single 
relativistic length-contraction only. Otherwise the atoms would have been different chemical 
properties at an early point of time of the evolution of the universe. 

 
 
 
 
 

6.2.7. The COMPTON wave-length of the electron/proton/neutron... 
 
The COMPTON-wavelength is a characteristic size for a particle with mass. It specifies the 

increase of wavelength of a photon rectangularly scattered on it [60]. As a representative we 
only consider the electron and the so-called reduced COMPTON-wavelength ŻC (ħ). 
According to [60] is ŻC = ŻC,e defined as follows: 
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By application of (801) and (805) we acquire the relation to the PLANCK-lengths again: 
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C 0 0 1 09 2 r Q 9 2 r Q= π δ = π δŻ        (851) 

 
Altogether quite simple expressions, reflecting the „mechanism“ behind in principle. Also 
they are related to the invariables of subspace and with it, even better than the relations, in 
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which other natural „constants“ are related to each other, without knowing, if and how they 
are changing. But to the determination, how the additional relativistic shares cancel out, we 
make use of (850): 
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The shares cancel each other even here. But the exact expression should read different in 
fact, since it’s about a (space-like) wave-function. This is considered by (851). 
 
 
 
 
 
 
6.2.8. The RYDBERG-constant 

 
The RYDBERG-constant �∞ natural constant named after Johannes RYDBERG. It occurs in 

the RYDBERG-formula, an approximation to the calculation of atomic spectra. Its value is the 
ionisation energy of the hydrogen atom, expressed as wave-count neglecting relativistic 
effects and the co-movement of the nucleus, thus with infinite nuclear mass, that’s why the 
index ∞ (citation [61]). Under application of the reduced value ŻC (ħ) = ŻC,e = ŻC and of ħ 
instead of h, determined in the previous section, we have to rewrite the definition in [61] in 
the following manner:   
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 (854) 

 
Shown is the measuring value at this point. The first expression is best suited, to establish 
the references to the PLANCK-units with the help of (851):  
 

p2 1 1 4/3 1 4/3 6
1 0 1 03 7

e

m1 12 r Q 2 r Q sinm72 18432
− − − − −

∞ = α δ = γ
π π

R     (855) 

 
p2 1 1 1/3 1 1/3 6

0 0 0 03 7
e

m1 12 r Q 2 r Q sinm72 18432
− − − − −

∞ = α δ = γ
π π

R          (856) 

 
Obviously, the RYDBERG-constant is no constant at all. Since it’s about the natural constant 
most exactly measured of all, it’s also best suited to determine the detuning of the SI-system. 
The deviation of (855) to the measured value (854) namely amounts to 7.44431·10−10. That’s 
much more than the measuring inaccuracy in the size of 1.9·10−12. The calculated value 
amounts to 1.097373157632939·107m−1. 
 

This example shows, that the SI-system in its present configuration is reaching its limits. 
A further increase of exactness is impossible without considering the reference frame and 
the relations of the natural constants among themselves. This way, even the outliers can be 
identified much better. Using the value me/mp = 5.44617021 (487·10−4 specified in 
CODATA2018 instead of the genuine quotient and re-determining Q0, κ0 and ħ1 thereafter, the 
accuracy decreases by up to 3 orders of magnitude. That’s also a weak point. The ratio 
me/mp is something like a second magic value or an important side-condition. Since it’s 
considered to be constant, one could theoretically define it as a fixed value. But I think, 
that’s not a good idea. With a reconfiguration even R∞ instead of me would be suitable as a 
magic value.  
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Often used is also the RYDBERG-frequency ��=���∞�=�3.2898419603�1015
�Hz. To the compa-

rison with ω0 and ω1 we still calculate the related angular frequency ωR = 2π c�∞ with the 
amount 2.0670686668�1016s−1. It applies: 

 
0

1
0 1

1
2t

κ
ω = =ε                 (857)

 
2 2 1/3 1/3 6 1

0 R 0 R 0 1 0
0

6 e

p

1m18 2 Q 2 Q si4608 n Qm 2t
− −ω = π α δω = ω γ =π ω =

 
(858) 

 
p2 1 4/3 4/3 6

R 1 0 1 02 6
e9216

m1 12 Q 2 Q sin 2 cm36
− − −

∞ω = α δ ω = ω γ = π
π π

R    (859) 

 
2 2 2/3 2/3 6 2

0 R
6

0 R 0 1 0
e

p

1mH 18 2 Q 2 Q sin Qm 2T
4608− − − −= π α δω = ω γ = ω =π  (860) 

 
By character, the HUBBLE-parameter H0 is an angular frequency too, see also section 4.5.2.3. 
Because of the definition in (854) it’s easy to verify the behaviour of the reference-frame-
dependent sizes. As well classically, as even recently, everything cancels out again: 
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6.2.9. The BOHR’s magneton/nuclear magneton 

 
According to [20] in quantum mechanical view the track angular momentum L� of a 

charged point particle with the mass m and the charge q generates the magnetic moment 
(165) 

 

µ = µ L
�

�

ℏ
     (862)    q

2m
µ = ℏ       (863) 

 
Then, expression (863) is the magneton µ of the particle. BOHR’s magneton µB is the 
magnetic dipole moment of the electron, the nuclear magneton µN the magnetic dipole 
moment of the proton. Both only differ in the mass (me resp. mp) in the denominator. We 
only regard the electron at this point. According to [62] µB is defined as follows: 
 

2 1
B
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e
9.274010078328 10

e
JT

2m
− −µ = ⋅= −

ℏ        103 10−∆ = ± ⋅  (864) 

 
It should be noted, that the magnetic moment L�  of the electron is always directed opposite to 
its track angular momentum due to the negative charge, hence the negative sign [62]. Now 
let’s look for the relations to the PLANCK-units. With the help of (801) and of (21) m0 = µ0q0

2

 r0 we substitute e and me by q0 and m0. We get: 
 

5/6 112
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 (865) 

 
Here, the deviation of the measured to the calculated value is twice as big, as the given 
measuring accuracy. Obviously, inaccuracies of other measurands have been passed through 
here. Also it’s strange, that all values specified in this section are having the same 
inaccuracy of ±3·10−10. The expressions relating the PLANCK-units all are rechecked and 
yield the same result as the original definition, in that case (864). Latter one a deviation to 
the measuring value same as (865) turns out. There, probably something else is jinxed. 
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A comparison with other PLANCK-units of the same kind is impossible in this case. Still, 
the behaviour of the reference-frame-dependent values remains. Starting with (864) 
according to the classical view, applies: 
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B
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                (866) 

 
Inserting the additional shares we obtain: 
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           (867) 

 
In this case we get a different result. But since the magnetic moment always appears in 
connection with a charge or a magnetic flux, which both are proportional β–1/3, there is a 
cancellation of the additional shares too. All in all we can say, the spatial share of total 
redshift does not take any effect to the physical laws at the observer, neither qualitative nor 
quantitative. It only has a cosmologic meaning and plays an important role with the creation 
of a gravitational theory. 
 
With it, we analyzed most of the values associated with the electron. Of course, there is a lot 
of further possible candidates. I want to leave them over for the reader. I pointed the way to 
add new values. Doing so always must be substituted in such a manner, that the relation 
depend on Q0 and/or invariants only. As next I want to have a look at some other values, 
which surprisingly also can be calculated with the concerted system. One of them is the 
temperature of the CMBR (See section 4.6.4.2.5.) and not to forget NEWTON’s gravitational 
constant. 

 
 
 

6.2.10. The gravitational-constant 
 
We have seen, that PLANCK’s quantity of action is not a constant but a function of space 

and time. From the definition of κ0 (55) arises, that this must be applied even to NEWTON’s 
gravitational-constant. We get after rearrangement: 
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The gravitational constant is obviously a function of the local conditions. By insertion of 
(129) we finally get: 

 

0
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c
G Q R=

µ κ ℏ
         (869) 

 
At this point, the product Q0R appears for the first time, which leads, because of the 
logarithmic periodicity of the universe, to the interesting question, what is in the distance 
Q0R at all? Possibly there is a superordinated universe of which our own  forms a 
microscopic part (r0) only? The cosmologic background-radiation, be continued accordingly, 
would form the metric radiation-field of that superordinated universe then. 

 
On the other hand there is the mass M1 in the denominator of (868) and the mass M2 (fixed 
value) in (869). The term R = 2cT indicates G acting along the constant wave count vector. In 
section 6.2.4.1. in Figure 130 we can see, that M1 depends on time and distance, m0 has the 
value M1 at intervals of R, whereas with M2 it’s about a historic value, only possible, if we 
go back in time. Thus, we can assign R to time, Q0 however to space-time. 
 

 



 
 

217 

6.2.10.1. Temporal dependence 
 
 
We replace Q0 and R with the corresponding temporal functions, then we transform it onto 

our local coordinates or vice-versa: 
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The term before the bracket equals the local G~  (frame of reference) of the gravitational 
constant G. The right-hand expressions apply to t, reckoned from BB on.  
 

 
 
Figure 135 
Temporal course the gravitational-constant 
at the point r=0 (linear scale) 

 
The temporal course at the point r = 0 is shown in Figure 135 and 127. In the early beginning 
of expansion the value of the gravitational constant was equal to zero increasing steadily 
later on, as we can see in Figure 135 very well. To the point of time t1 with Q0 = 1 as well 
G(0), as even G1 have had the value G2. This can be clearly seen in Figure 136. For the value 
G2 we obtain: 
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Therefrom results, that gravity could not have played an essential role to a point of time 

t < 7.7 ns (quantum-universe). The same applies even today on a sub microscopic scale. In the 
range of the PLANCK length r0 = 2c t0 the amount of G is about 90 magnitude orders below 
the macroscopic value. Therefore gravity and quantum-effects are excluding each other. But 
this exclusion is not absolute. Rather there is a transition-zone, in which as well gravity as 
quantum-effects in the scale of the entire universe have been existed. To the point of time 
t = 0 and, qualitatively speaking, shortly thereafter there was no gravity at all. 
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The expansion of the universe, increases also the distance of two masses, which are 
coupled by gravitational forces. That increase is compensated by the increase of the value of 
the gravitational constant. Whether this compensation is complete, we will examine more 
exactly at the end of this section. 

 

 
 
 

Figure 136 
Temporal course of the gravitational- constant  

with respect to the local age (logarithmic scale) 

 
6.2.8.2. Spatial dependence 

 
If a temporal dependence exists, so there is also a spatial dependence. We directly get the 

relation by expansion of (869) with the navigational gradient (64), the world radius R 
depends on the time only. 
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The course for t = 0 is shown in Figure 137. It shows an interesting phenomenon. The 

value of the gravitational constant decreases down to zero when approaching the local 
world-radius R/2. Beyond this point however, it becomes negative, the attraction turns into a 
repulsion.  

 
That’s due to the fact, that gravity acts along the constant wave count vector with the 
maximum length 2cT and it doesn’t leave the universe, far from it, it reapproaches the 
observer with distances > cT. Now the attractive force is opposite to the moving direction, 
leading to the negative sign of G. Both, the observer and even the starting point of the 
constant wave count vector are located at the event horizon, that is to say. The original 
expansion centre (BB) is „smeared“ across the entire universe due to expansion today. 
That’s an effect of the 4D-topology. The course of G behind the second event horizon 
increases, because it’s situated in the future. 
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Figure 137 
Spatial dependence of the gravitational-constant 
to the point of time T (linear scale) 

 
The calculation of G1 at intervals of r = R/2 for t = 0 is somewhat more complicated. With 
r = R/2 namely, it is equal to zero. The value, we are actually looking for is a few steps from 
there at intervals of r = R/2 − r 1 and (874) is not suited for such a small distance to the edge. 
We need to embed the exact expression (240): 
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       (875) 

 
The value G1 occurs with Q0 = 1. It applies: 
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Thus, G decreases towards the edge R/2 − r 1 to the value G1. There is no frame of reference 
possible behind, G2 is not reached. 
 

Since the attractive force FG decreases geometrically with r2 and G with r2/3, it adds up to 
FG ~ r−8/3. In addition, there is the ever increasing delay. That means, that the gravitational 
constant no longer plays a role with greater distance. Because of the definition (868) G is a 
local parameter in fact. 

 
The attractive force FG between two bodies, moved with the metrics, is defined alongside a 
constant wave count vector. If we calculate the value in a certain distance, it means, that G 
doesn’t have the same size everywhere on the way there. For a correct equation of motion 
we have to build the integral across the whole reach with dr = r0. A greater distance means 
distances of r > 0.01R. From this point on, other effects come into play. We have already 
examined them in detail in → Section 4.5. 
 

Furthermore, we can draw the following important conclusions: 
 
1. A body, which doesn’t move in reference to the metrics initially, will not do  
 this (by itself) even in future. 
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This statement is identical to the impulse-conservation-rule. 
 
2. The distance between two bodies, which don’t move in reference to the metrics 

(uninhibited free fall), rises according to the distance-function with constant  
wave count vector. 

 
3. The equation-system to the calculation of the distance between two bodies is 

under-determined. Thus, there is an infinite number of possible solutions with 

  the initial conditions v =v0 . 

 
The last statement is of particular importance, since it results directly from equation (758), in 
which we had set v = 0. But any time-functions are possible in this place, which lead to the 
infinite number of possible solutions. This even cannot be different at all, otherwise each 
navigation would become impossible, each body, what is not the case as you know, would 
be bound to its hereditary place forever. Thus, it is also pointless to look for an universal 
solution for this problem. Of particular interest however is the examination of the conditions 
on bodies in the free fall, which we have taken up here. 

 
Now at this point, we are started from the classic model for the special-case M » m having 

considered the masses and the gravitational »constant« as a variable. At the same time 
however, we have succeeded to eliminate as well the masses M and m as G from the 
solution (812). And if these values can be eliminated with an orbit, this is working even with 
other track-forms. In consequence, we can say generalizing: 

 
 

 
IX. For the cosmologic expansion of masses coupled by means of gravity, the  
 properties of the involved masses are not responsible, but the qualities of  
 the space exclusively. Thereat the shape of the tracks of the involved bodies  
 is irrelevant. All average distances and proportions are changing according  
 to the same function, the distance-function with constant wave count vector.  
 This depends on the initial-distance. 
 

 
 
Then again even the question for the propagation-velocity of gravity becomes pointless 

with it. The case is interesting as well, when a macroscopic body is approaching a 
singularity with a velocity v≠0. 

 
With strong curvature then, we have to consider the angles α and γγ after all. As a result 

the field-lines of the gravitational-field near a black hole are „rolled up“, so that material 
bodies, in terms of cosmology, are „moving away“ from the source not axially but warped 
around a certain angle. Since they are attracted at the same time, they finally fall into the 
singularity, when the approaching-velocity becomes greater than the expansion-velocity of 
space, which is essentially higher than usual there. 

 
This case however we cannot treat exactly with the classic approach. This has been 

recognized by EINSTEIN already soon and he developed the universal relativity theory (URT) 
to which we will devote ourselves in the next chapter. In this connection the fact, that we 
have acquired a contradiction-free result in this work even with a strongly changed classic 
approach, does not indicate, by no means, that the statements of the URT are wrong. Rather, 
latter ones figure a „simpler“ and more exact description of the same facts. For that purpose 
we must examine then again, whether the statements of this model are compatible with the 
URT (or vice-versa). 
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7. The universal relativity-principle 
 

7.1. The fundamental values of the gravitational-field 
 

7.1.1. Potential and field-strength per length unit 
 
Before we employ deeper examinations in this section, we first want to deal with the 

fundamental values of the gravitational-field, since generally ignorance or confusion exists 
at this point concerning the individual quantities and names. Once again, we want to apply 
the approved method of the comparison with other physical field-quantities e.g. with the 
electric and with the magnetic field, even if a takeover 1:1 to the gravitational-field won’t 
be possible because of it’s particular properties. 

 
Let’s begin with the gravitational-potential: With the electric and the magnetic field in 

general, there is a potential φ [V] as well as ψ [A], at which point after division by a length 
unit 2πr (circumference of the field-line around an imagined punctual source) the 
expression for the field-strength per length unit is acquired (btw. even a second field-
strength per surface unit exists). The unit [m] always is written in the denominator then, the 
field-strength results in units like [V/m] as well as [A/m] with it: 

 

2 r 2 r
ψ ψ ψ = − = − ∞ π π 

r rH e e           Magnetic field-strength     H-field (877) 

 

2 r 2 r
φ φ φ = − = − ∞ π π 

r rE e e           Electric field-strength        E-field (878) 

 
In this case, er is the unit-vector. With the magnetic field in general, ψ is to equate with the 
current i through a conductor. Thus the field-strength in the vicinity of a discrete conductor 
arises from the difference of the potential in the infinite, this is equal to zero (it however 
can be even another potential, e.g. that of a second conductor (≠ 0)), and the potential in the 
distance r.  For this reason, the field-strength of a single punctual or linear source is defined 
negatively in general. 

 
What does it look like with the gravitational field-strength however? The unit in the 

denominator would be [m] probably in turn. But what the numerator consists of? The 
answer is: also a length. The unit of measurement would be [m/m] then, that means [1]. But 
which length could it be here? Best suitable would be PLANCK’s fundamental length (r0 ), 
which, as seen, figures a gauge for all local proportions. We however use the value r0 /2, 
which figures the smallest possible space-like vector. With it, the gravitational-potential, 
which we want to mark with U for the moment, would be defined as follows: 
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The factor 2π doesn’t appear in this place, since gravity should not be joined with a rotation 
but with an elastic deformation of the individual line-elements. From the preceding 
contemplations we know that the maximum space-like distance in the universe is R/2. But 
that’s not applied to the electric and the magnetic field since both fields are oriented in an 
inverse manner, i.e. time-like. The utmost time-like vector is R, the difference microscopic. 
The corresponding term is not exactly but only almost equal to zero then. Else with the 
gravitational-field. Expression (879) correctly reads here: 
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( )1

01 Q−− = − rU e          (881) 
 
From the URT we now know the relation for the g00 -component of the metric tensor, which 
has the form of expression (881) approximately. It applies: 
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−g00 =  1 +
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c 2 + O

v
c

 
 
 

 
 
  ≈  1 −
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rc 2      with Φ  =  −

MG
r

  (882) 

 
Here is Φ NEWTON’s classic gravitational-potential and O(x) a series converging against 
zero. In the approximation, with small curvature-values Ο(x) ≈ 0 applies. It however has not 
been successful until now to determine this function exactly. Rather, it belongs to the most 
wanted expressions in the URT. In general the calculation is aborted behind the linear term. 
Therefore only estimations for the case of weak gravitational-fields can be stated. 

 
Expression (882) on the left (g00) is even wrongly called the relativistic gravitational-

potential. The right name had to be gravitational-strength however. Then the gravitational-
potential is, in terms of correctness, identical to the half PLANCK’s fundamental length r0 /2 
at the place of observation (frame of reference). 

 
Using our model, we can specify the exact expression for g00 without problems however. 

By substitution of (794) we obtain at first: 
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a simple ratio mass/radius to the corresponding values of the Metric line-element. The 
right-hand expression of (883) equals, with the exception of a factor 8π, the coupling-
constant κ in the field-equations of the URT [30] and (1035): 
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Here is Gik

 the inverse geometry of space, whatever should be that, Tik
 the inverse energy-

momentum tensor (both within the realms of the frame of reference). With it, gravity rather 
seems to be an electro-dynamic effect. However back to g00. Since g00 is quadratic, we 
better use the value (–g00 )1/2. From the SRT we know that this value is identical to the 
reciprocal of the relativistic shrink factor βγ. This appears even in the expressions of the 
LORENTZ-transformation. It is responsible for the relativistic red-shift of time- and space-
like photons. In section 6.1.2.2. we had determined that this deviates from the classic value 
β: 
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Really, the value βγ:  
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21 sinv v

cos 1 sin
c c sin

γ−
γ

γ
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becomes effective, by which the reciprocal of the relativistic shrink factor βγ becomes 
proportional to the phase rate β of the propagation-function of an EM-wave. That’s correct,  
since the relation λ = 2π/β directly turns out the wavelength. Thus we can say that (886) 
exactly applies. We only have to find a possibility to substitute the velocity v by MGr–1c–2 
We get the solution by rearrangement of (802) with respect to v: 
 

2 2
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sin

sin
γγ

− =
α00g            Gravity field-strength g-field (888) 

 
But does expression (887) apply with disregard of cM and for vM = 0? Which velocity v′ 
must be used on the calculation of the trigonometric function sin γγ and sin α in (888)? 
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GM M

? 2MG
v c v v c v

r
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     (889) 

 
Expression (889) turns out false. At first v′ is equal to c′M in the new reference frame built 
by v. Thus, cM is already contained in the root expression of (889) and v does not adds up 
completely. Otherwise M, G and r are functions of v too, i.e. with an α, different from 90° 
there is an implicit solution only. However, this does not pose a major problem with the 
mathematics programs available today. The gist of the matter is, that the velocity caused by 
the mass and the one caused by movement add up according to the classical-relativistic 
expression (877). However, it does not take into account the different angular relations near 
c and the dependence on v of the root expression in (889). That’s why it’s important, to 
calculate the last mentioned dependence primarily. 
 
We already solved a similar problem with the calculation of the diffraction of a light ray in 
a gravitational field in section 6.1.2.1.1. In order to find a solution we have to convert the 
original frame of reference to the new one. With q = Q′0 /Q~0 we get under application of (698) 
and (794): 
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(891) 

 
Thus, the gravitational share ascends with ascending speed and descends with increasing 
distance. The velocity v is defined towards (+) resp. away from (–) the mass centre. It’s 
about a radial vector. Now we have to add v. Applying (877) we get: 
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The behaviour of the classical 
solution (lhs) is shown in Figure 
138. It is e.g. suitable, to add 
two kindred velocities, such as 
at the EINSTEIN-train or with the 
following example: Rocket A 
moves with the speed v with 
regard to the earth. Rocket B 
moves with v′ with regard to 
rocket A on the same track. 
With which speed moves rocket 
B with regard to the earth?  
 
With the expression on the right 
however, we expect a different 
behaviour due to the motion of 
the observer with respect to the 
mass, since the expression MG/r 
now depends on v. 
 
 
Figure 138 
Behaviour of the classical expression 
of the relativistic speed-addition  
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The course is depicted in 
Figure 139. The first thing that 
comes to mind at first glance is 
that you shouldn’t fly too fast 
near a large mass, otherwise 
you possibly might be accele-
rated in the opposite direction. 
 
Most important for escaping a 
mass is the 3rd quadrant bottom 
left. You can’t go wrong here. 
But if you brake instead of 
accelerating, it may happen 
that you are accelerated instead 
and it’s even possible, to reach 
a speed greater than c (4th 
quad-rant bottom right). 
 
 
 
 
Figure 139 
Relativistic speed-addition 
with variable components MG/r  
 
Figure 139 has been cropped. There are also curve progressions > ± c. In one case the event 
horizon is passed, in the other case it’s about a pole. Here it’s even possible, to reach 
velocities v″> c. You are tied to the mass until the minimum. Then the gravitational rubber 
tears and you are flicked away. I don’t want to discuss what happens when you can 
surmount the pole. It has already been observed several times that celestial bodies were 
thrown away in the vicinity of a black hole. Maybe we can use a black hole as a catapult… 
For a better overview, Figure 140 shows the poles and the course outside of Figure 139 
using the example v′= 0.7c.  
 

 
 
Figure 140 
Position of the poles using the example of v′= ±0,7c 

 
All in all, except for v = 0, it is only a snapshot, since one moves in relation to the centre of 
mass and after a period of time dt, completely different values apply then, as well for v, v′, 
M, G as for r. An observer in a circular orbit does not move with respect to the centre, since 
v = –v′ applies. The sum amounts to zero, the g-field is cancelled (microgravity).  
 
Still the tangential vector remains, caused by the rotational speed affecting the temporal 
component g00 only. Therefore with navigational satellites only the clocks have to be 
corrected. The dilation calculates with v′ = vrot only using (885) or (886). At an observer in 
inhibited free fall there is v = 0 and no need for speed-addition, but (892) still holds. Then 
dilation calculates according to (887) or its approximation. 
 
With it, we would have clearly determined the function Ο(x) for the velocity, with the 
result, that it’s no longer required, if we assume MG/r to be variable. Strictly speaking 
however, expression (892) only applies at the present time T~ and in the immediate vicinity 
(r ≤ 0.01R~) of the observer. We acquire the complete expression for an observed object in 
the distance r at the point of time T~+t by combination of (757), (799) and (888) to: 
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2
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2MG 2MG t 2r sin
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ɶ ɶ
      (893) 

 
The tilded values are the ones at the observer, the variables r in the numerator and in the 
denominator of the right side are identical only then, when the mass-centre coincides with 
the zero of the coordinate-system. In fact, r and t should also have a tilde. The navigation-
gradient appears here once again. By comparison of coefficients with (881) we get for the 
Q-factor:  
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   (895) 

 
R* is the radius of a mass-distribution with 
the mass M

*
. Image 133 shows the course 

of Q0 as a function of the distance using 
the examples Earth and black hole. 
 
The approximation only applies to distan-
ces of r�RS respectively r � R*. It should 
however be noted, that if r is too large, the 
result will be overlaid by other masses up 
to M1. Within a normal sized celestial 
body Q0 drops slightly with r. 

 
Figure 141 

Phase angle Q0 as a function of the distance r 

 
Another case in which the trigonometric factor cannot be neglected are objects in the free 
fall at a distance of r ≅ R/2, i.e. close to the particle horizon of the entire universe. With 
disregard of the trigonometric functions we now are able to rearrange (894) in the 
following manner:  
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      (896) 

 
With larger values of r, we have to replace r by dr in turn, see also (334). With it, we 
acquire the same result as with the half-classic approach even here, the distance-function 
with constant wave count vector. Since the radius r ascends continuously during expansion, 
the Q-factor in the immediate vicinity of a body moved with the metrics ascends 
continuously too. Interestingly enough solution (896) voids the 1/r2-rule for the 
gravitational force. That leads to a kind of apsidal precession in the galaxy scale and 
greater, which may be the reason for the spiral shape of most galaxies. 

 
After equate of (881) and (882) with the approach g00 = U and comparison of coefficients, 

starting with (886), we obtain an important relation: 
 

1 1 2 1
0 0 0Q cos 1 Q sin 1 Q− − −− = α + − α ≈ −

00
g ɶ ɶ ɶ   Field-strength  g-field (897) 

 
That means nothing other than, that the value Q~0 is identical to the frame of reference, as we 
already had suspected (α is a direct function of Q0 depending from v too).  
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In the URT, space and time are equal dimensions. The definition of the gravitational 
strength as dimensionless quantity admits even a different interpretation with it. Beside 
[m/m] even any other combinations are possible like e.g. [s/s], [kg/kg] or [Js/Js]. As is 
generally known, the gravitational-field affects the time lapse and even quantities like e.g. 
PLANCK’s quantity of action doesn’t remain unaffected. Generally applies: The 
gravitational-field is connected to everything. Thus we should not be surprised, if e.g. the 
time appears in the denominator of an expression instead of a length unit.  

 
 

7.1.2. Charge and field-strength per surface unit 
 
In the electrotechnics, there is even another kind of the field-strength. This is defined as 

flux resp. charge per surface unit. The units of measurement are [Vs/m2] for the magnetic 
induction as well as [As /m2] for the electric charge-density, also called influence. The 
proportionality-factors for the calculation from H and E are µ0 and ε0 resp. µ and ε. 

 

B  =  
dϕ
dA

 er  =  µ0 H            Induction      B-field  (899) 
 

D =  
dq
dA

 er  =  ε0E             Influence        D-field  (900) 
 
These are exactly the factors of the COULOMB’s and the FARADAY’s rule (see Table 7). 

Both have large similarity with the NEWTON’s gravitational-rule. In this the gravitational-
constant steps in place of ε0 as well as of µ0. Even in the gravitational-field there is a similar 
quantity, which we can compare with induction and influence, the NEWTON’s gravitational 
field strength (acceleration of gravity). This is defined as follows: 

 

a   =  
MG
r2  er              Gravitation    a-field      (901) 

 
We use better the letter a for the universal acceleration, since we cannot use the expression 
g-field twice. The unit of measurement is [m/s2]. Here, a difference exists to the electric 
field-quantities however. But since space and time are equal dimensions, this is no 
contradiction. Looking at expression (896) more exactly, so there is a surface in the 
denominator even here. The numerator figures something like the gravitative „charge“ as 
well as the „flux“ then. By expanding with m2, we can write the unit of measurement even 
as [(m3/s2)/m2], at which point the bracketed expression corresponds to the product MG, 
and that without change of the physical content. Because we don’t know exactly yet, what 
it’s about, we will call this product the gravitational »flux« Ψ for the moment. 

 

a   =  
dΨ
dA

 er              Gravitation    a-field  (902) 
 

A calculation from the field-strength (889) with the help of a coefficient, as usual in the 
electrotechnics, is impossible unfortunately. Now, we are able to declare both, the relations 
for the charge as well as for the flux: 

 
  dϕ = ∫ B A�              Magnetic flux     (903) 

 
q  d = ∫ D A�              Electric charge       (904) 

 
  dΨ = ∫ a A�              Gravitational »flux«  (905) 

 
Now we want to examine, what’s the physical meaning of expression Ψ. So, the unit of 

measurement [m3/s2] contains the length and the time, just only parameters of the space-
time. Even with our semi-classic approach, we could observe the same. That well agrees 
with the statement of the URT that macroscopic bodies are moving on world-lines, for 
whose course the qualities of space carry responsibility. As a result the guess arises, that the 
actual gravitational-charge is not inside, but rather outside the involved bodies. 
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According to the classic theory, the mass is equal to the gravitational-charge. We want to 
maintain this name, since there is also a retroaction of the mass onto the metrics. The 
expression Ψ would be something like a description of the condition of the metrics outside 
the mass-distribution then, an „induction“ of the mass. 

 
A comparison of the unit of measurement with (884) finally leads to the solution: Ψ is 
identical to the geometry Gik of space. Because Gik is a tensor however, we cannot directly 
equate it with Ψ (scalar). From the same reason, the application of Ψ is unusual. Instead, 
the classic NEWTON’s gravitational-potential Φ (882) is being used. Nevertheless we can 
excellently calculate with Ψ. Here just some examples (M ≫ m): 
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   (907) 

 
RS is the SCHWARZSCHILD-radius, vG the escape velocity. And NEWTON’s law of gravitation 
F = M��a in the second expression even can be written in a form like COULOMB’s law (Then 
G is in the denominator) see Table 7.  
 

 

Field quantity Nomenclature

Description MMF -- EMF -- MLE -- --

Potential ψ [A] ϕ [V]  [m]
Planck's fund. 

length

Description Magnet. fieldstr. -- Electr. fieldstr. -- Grav. fieldstr. -- --

Fieldstr. 1       
Gravity-

potential

Description Mag.motive frce -- El. charge -- Grav. charge -- --

Charge V [V]  [As] M [kg] Mass

Description Magn. flux -- El. current -- Geometry -- --

Flux  [Vs] I [A]
Ψ = GM

 Unusual

Description Induction -- Influence -- Gravitation -- --

Fieldstr. 2

  

B = µ0
 H

  

D = ε0
 E

 

 --

 Acceleration

Description Faraday force -- Coulomb force -- Inertial force -- --

Force 1  [N]  [N]  [N] Inertial force

Description Faraday's rule -- Coulomb's rule -- Newtons grv.rule -- --

Force 2  [N]  [N]  [N]
Attractive 

force

Description M. charge dens. -- El. Current dens. -- Grav. Tension -- --

Miscellaneous
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Table 7 
Field-quantities of the electric, magnetic                                                  1) Physically pointless 
and gravitational-field in the comparison                                                  2) Permanent magnet            3) Q0≥10

5
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NEWTON’s gravitational constant can be described both, as function of the local PLANCK-
units, and of the locally observed quantities of the universe as a whole. But we even do well 
totally without G. But we must not forget, that all values are being influenced by the mass 
M and by m too. These on the other hand, depend on the conditions of the surrounding 
space and also on speed. The value r1 is a constant, MH, m0, M1 is the HUBBLE-, the 
PLANCK- and the MACH-mass. The former is equal to the rest mass of the photon, the latter 
to the mass of the metric wave field. It applies: 
 

0
H 0 1 22 0 0 0

H
M Q m Q M Q M

c
= × → × → × →

ℏ
        (908) 

 
Interesting is the right-hand expression of (907). The bracketed expression is invariant 
against external changes of Q0 but only, if M is in the free fall. 
       

With the action of the mass on the geometry, it’s just really about a sort of induction. 
Although, this is only of 1st order, while the action at the EM-Field is of 2nd order. That 
has effects on the symmetry of the considered field-quantities. Because of the order 2 there 
is an electric counter-quantity to each magnetic quantity and vice-versa (cross-symmetry). 
With the gravitational-field, this is not the case. If there are any symmetries, then these 
exist to other quantities of the gravitational-field itself (self-symmetry). 

 
More about it we can find in Table 5, which specifically has been worked out, to uncover 

such symmetries. Indeed, some appear fetched far however. So, some relations apply only 
theoretically, as e.g. the expressions marked with a star (there are no magnetic point-
charges). The magnetic charge-density (dipoles!) appears only with the permanent magnet 
and is dependent also from their orientation. The electric current-density actually belongs to 
the electric current-field and the gravitational-pressure is an unusual quantity. More final, 
one could describe as the pressure a mass-distribution exerts on the metrics, (applies only 
inside a mass-distribution). 

 
However even the examination of the product MG is interesting. If we replace M by the 

expression ℏωD /c2  (ωD is the DEBROGLIE- angular frequency of a particle) and G by (794), 
we acquire the following relations: 
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Except for the frequency ωD only fundamental values of the metrics and the subspace 
appear even here. With it, we can say, the gravitational »constant« is actually only an 
artificial mathematical structure, in contrast to µ0 and ε0 as genuine fundamental physical 
constants. 

 
How could the gravity work however? The masses interact with the metrics, not however 

together. The gravitative action itself is wielded by the metrics or more simply, without 
metrics no mass and no gravity. In absence of the metrics, any bodies or particles would be 
subject to the strong interaction only, since this is mediated by the subspace. On the other 
hand, the presence of the metric wave-field prevents the particles to be subject to the strong 
interaction across larger distances. 

 
We already had determined, that the inert mass is nothing other, than the resistance, with 

which the metrics counters the body during acceleration. On the other hand, one also can 
imagine the active and passive gravitating mass to be caused by the action of the mass on 
the metrics as well as vice-versa. 

 
If a mass-distribution exist at a place in the metrics, so this consists, for one thing, of a 

certain number of particles (fermions) with the DEBROGLIE-frequency ωD. We had worked 
out a model in section 4.6.4.2.5. explaining the redshift of masses and the symmetry-
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breaking between normal and antiparticles. According to this model, the particles actually 
have a very much larger mass, than we can observe through the metrics, at which point 
normal particles are associated with a frequency smaller than, antiparticles on the other 
hand, with a frequency greater than ω0. 

 
During the interaction of a particle with another across the metrics, only the energy ℏωD 

becomes effective then and even to the shape of a discrete particle only this amount is 
required. The left-over should be added by the metrics. With the pair production however 
(even virtually) we require no additional energy at all. The energy-transfer between 
particles and metrics happens by means of space-like photons. 

 
So simply as expected, the relations the relations doesn’t seem to be however. For one 

thing, the dimensions of the particles are essentially greater than r0, so that there is a large 
number of line-elements within a particle. Both, as well the particle as the metrics, however 
are wave-functions too, which overlay each other, so that, because of the non-linearity, the 
difference-frequency ω–ωD occurs with „normal“, the summary frequency with 
antiparticles indeed. Then, this summary- respectively difference-frequency determines our 
„actually very much larger mass“ and with it even the dimensions of r0 within the particle, 
at which point a lower frequency corresponds to a higher value of r0, (larger Q-factor, 
larger dimensions). 

 
These larger line-elements however occupy more space than usual, so that in the effect 

there are even less line-elements within a macroscopic body, than usual. Line-elements are 
quasi pressed out off the body. In order to find place, there’s going to be a compression of 
the PLANCK’s fundamental length outside the body, which corresponds to a smaller Q-
factor as well as a higher curvature. Only with increasing distance the value r0 re-adapts to 
the average of the universe. As a result of the contraction there’s going to be an attraction 
between the involved bodies. The pressing out itself is not the induction but the gravitation 
of the mass then. 

 
This model is contradiction-free for „normal“ particles, but it demands the existence of 

negative masses (with antiparticles the relations are inverse, Ψ is negative), which is not a 
problem because of the line-theoretical contemplation of wave-propagation. Whether these 
negative masses exist in a sufficient quantity, we must answer with no however, since there 
was a symmetry-breaking caused by the upper cut-off frequency of subspace to the point of 
time t1/4 (input coupling), the point of time, at which most fermions have been formed. In 
this case, the shape of particles with the (higher) summary frequency (antiparticles) has 
been less probably than that of normal particles with the (lower) difference-frequency. 
Then, after the unavoidable annihilation the supernumerary „normal“ particles survive. 

 

7.2. The nature of gravity 
 
We have succeeded successfully until now in avoiding the usage of tensors. This will be 

different from this point on. The reasons are the properties of gravity, which in contrast to 
the EM-field, does not shall be connected with a rotation but with an elastic deformation of 
the metric space-lattice (crystal) [1].  

 
And this just not can be  processed with a purely vectorial contemplation. For that 

purpose, the mathematical tool of the tensor-algebra has been created, originally used to the 
calculation of tensions in crystals. Thus, it appears quite reasonable to use this tool even for 
the processing of gravity problems. Interestingly enough, even authors, who don’t consider 
the space as a crystalline structure, are using the tensor-algebra for the same purpose. 

 
Primarily, I intended to interrupt this work at this point in order to reserve a course in 

cryptology. Fortunately, d´INVERNO has published a textbook [30], in which the ways of 
solving such tasks are described in detail. Although these descriptions are evenly 
distributed across the whole book, so that we are bound to read everything. 

 
Simultaneously, I recommend, to review the lecture of LANCZOS [1] as well as section 

3.1.2. once again. This just in order to determine, in what extent we already have animated 
his model. 
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7.2.1. Once again the MINKOVSKIan line-element 
 
Now, in former editions, I often used the expression MINKOVSKIan line-element without 

going into it’s actual meaning. Rather, I hitherto interpreted it as a physical object with 
certain characteristics, having an effect on the local condition of the universe. The reason 
is, that even LANCZOS used this expression in his model and there is yet no other name for 
this object, describing its physical content a quarter as good. So the expression PLANCK’s 
fundamental length isn’t out of question because it’s not only about a length but about 
much more. Some authors are using the expression graviton for it. I neither would like to 
use this then again, since the suffix -on in general is associated with a freely manoeuvrable 
particle (the MLEs on the other hand are fixed, they rather form the space itself) and even 
the prefix gravit- would be only a partial description, because the electromagnetic 
properties fall flat.   

 
In the URT in contrast the concept MINKOVSKIan line-element has to be understood in a 

some broader sense. So, there it is about a mathematical construct describing the local 
properties of the (empty) space. In [1] LANCZOS (and even EINSTEIN) is using expression  
([1] 23) in the form:   

 
s2  =  x2 + y2 + z2 − c2t2         (911) 

 
with the signature + + + –. which are the signs of the individual components of a fourfold-
vector. This signature is generally used in the SRT, and the standard in the URT is + – – –. 
On this occasion, even the sorting-sequence is reordered (ct is at the first position). In 
general, the differential form of (904) is used, which leads to the expression stated in [30]:   

 
ds2 =  dt 2 − dx2 − dy 2 − dz 2         (912) 

 
Here we are unfortunately concerned once again with the standard notation of the SRT 

and URT, veiling the correlations by setting c which makes the whole nice mathematical 
construct a priori unusable for further contemplations (predetermined structure). Now 
however, we had sworn ourselves from the beginning to don’t participate in this fashion but 
rather to fully write out all variables and constants. Expression (912) had to be correctly 
then:   

 
2 2 2 2 2ds d(ct) dx dy dz= − − −           resp.   (913) 

 
2 0 2 1 2 2 2 3 2 a bds d(x ) d(x ) d(x ) d(x ) dx dx= − − − = abη        (914) 

 
with d(x)2 = dx2. And just this ds2 figures the real MINKOVSKIan line-element then, whereby 
the indices of the discrete (xi ) = (ct, x, y, z) are written inside the brackets (superscript), in 
contrast to the normal approach (subscript). Thus, the component x0 is correctly ct (length) 
and not t. For once, I applied the complex phase velocity c instead of c at this point (for 
zero vectors applies c = c). If an expression should contain more than one superscripted 
characters, so the outer one always is used for numeration, at which point it is to be added-
up across duplicate appearing indices additionally. 

 
In terms of mathematics all three expressions in (914) are identical, i.e. they describe the 

same, namely the MINKOVSKIan line-element. Although, only the right expression admits 
direct calculations with tensors (matrices). The expression ηab is called as well metrics as 
metric tensor, at which point the letter η is reserved to the MINKOVSKIan metrics only. 
Thus, a tensor is always a matrix, whereas a matrix is not automatically a tensor. Here it’s 
about a tensor of 2nd grade. Tensors of 1st grade are being vectors, whereas scalars even 
can be interpreted as zero grade tensors. 

 
Using another metrics (e.g. spherical coordinates) in general the letter g is applied, 

written as ga b or gik. The index-letters can be chosen freely, but taking its pattern from 
LANCZOS we will use gik in future. 



 
 

231 

The difference between the URT and our model now consists in the fact that as well the 
MLE itself, as the metrics have got a physical content. Furthermore, the increments dxi are 
infinitesimal in the URT (indefinite structure), whereas they have the quantity r0 in this 
model (definite structure). Because of the extreme smallness of r0 however the difference 
does not carry weight. If we have spoken of the metrics until now, we always meant the 
metric wave-field with it. In the URT in contrast, the expression ηab is meant, which is 
defined as follows: 

 

ηab ≡  

 1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 

 

 
 
 
 

 

 

 
 
 
 

 =  diag  1, −1,−1,−1( )     (915) 

 
The individual elements of the matrix are called η00, η01, η02, η03, η10, η11,… η33 at which 
point the line is specified by the first, the column by the second number. In this case, only 
the elements η00, η11, η22 and η33 are different from zero. 

 
The rules of calculating with matrices are applied, whereby addition, subtraction, 

multiplication, the partial derivative (with matrices even called common derivative) and the 
so-called covariant derivative are defined [30]. There is no division. Instead, one executes a 
multiplication with the inverse matrix ηab then. It applies: ηab ηab ≡ (1). The expression (1) 
marks the unit-(diagonal-)matrix diag(1, 1....., 1) at this point. 

 
Another notation is ηab η

bc 
= δa

c. The expression on the right-hand side is the KRONECKER- 
symbol, which yields 1 always then, when a and c are equal. As for the rest, it has the value 
zero. 

 
In section 4.3.4.3.3. we were already engaged with the MLE. There, we had used 

spherical coordinates (xi) = (t, r, ϑ, ϕ) however. The reason was that the distance r with 
smaller Q-factors traces a simple linear function (Figure 27) by which the calculation 
essentially simplifies in reference to Cartesian coordinates. Then, the MINKOVSKIan metrics 
gik in spherical coordinates looks as follows: 

 

g ik ≡  

 1 0 0 0
 0 −1 0 0
 0 0 −r2 0
 0 0 0 −r2 sin2 ϑ

 

 

 
 
 
 

 

 

 
 
 
 

 =  diag  1, −1,−r2,−r2 sin2 ϑ( )   (916) 

 
The transition to Cartesian coordinates is defined in the following manner: 

 
ct  =  ct       x  =  r sinϑ cosφ       y  =  r sin ϑsin φ       z  =  r cosϑ   (917) 

 
Then, the line-element written out becomes to: 

 
( ) 22222222 dsinrdrdrtcd ds  φϑ−ϑ−−=       (918) 

 
2 0 2 1 2 2 2 3 2 i kds d(x ) d(x ) d(x ) d(x ) dx dx= − − − = ikg     (919) 

 
In this connection the g00-component of the metrics (this is equal to η00 ) plays a quite 
special role. In terms of physics it corresponds to the temporal share and it is identical to 
our frame of reference, as we have already noticed in the previous section. Therefore,  
it is also decisive on coordinate-transformations and the LORENTZ-transformation as factor 
(–g00 ) 

1/2. 
 
In the matrix (915) and (916) there is on position (0,0) the factor 1 in each case. That 

indicates a genuine MINKOVSKIan line-element in turn and corresponds strictly speaking to 
the zero vector ct. In the URT, the zero vector plays an important role, it declares the 
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surface of the beam separating the different types of vectors from each other after all. In 
this model we however did a quite extraordinary assumption at the beginning, namely that 
the speed of light (c) should be constant only in reference to the subspace. Thus within the 
metrics, and we are finally within, there are no zero vectors at all, only time-like and space-
like vectors, which are rectangular to each other in the approximation. Therefore, in section 
4.3.4.3.3. we did not apply c but the complex propagation-velocity c of the metric wave-
field (255). Then, with expression (260) we got the following expression (now in new 
notation):  

2
02 2 2 2 2 2 2

2) jB( ))

dr
ds dr r d r sin d

1 (A(
= − − − ϑ −

φ −
ϑ

φ
ϕ

−
        (920) 

 
Because of  ṙ0dt = dr0 even time has vanished here, albeit r0 remains time-dependent. On this 
occasion, we also could observe the sign-switch at the x0-component, already predicted by 
LANCZOS, which arose from the addition-theorems of the trigonometric functions. 
Apparently, we did a bad turn with the change to the signature-convention of the URT, 
because now the entire right-hand side is negative. In terms of mathematics however it’s 
irrelevant, so that we want to stick to it. 

 
In this connection g00 is the (0,0)-component of the metric tensor Tik which is marked in 

the same way. With rigid contemplation, we see that the expression is not only negative but 
complex at the same time, by which the negative sign is relativized in turn. What however 
means an imaginary share of x0? According to the prevalent doctrine, this is identical to a 
rotation of the vector into the tangentially-space, which puts up at each point of the 
universe. Now we yet earlier had ascertained that always only the real-part can be seen by 
an observer, whereas the imaginary-part can be detected only indirectly e.g. as rotation of 
the polarization-plane. Therefore, it’s necessary, to transform expression (920), so that 
really only the real-part appears. First, we must determine the value and the phase-angle to 
it. We consider the x0-component only; the calculation submits: 
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        (922) 

 
Because of the quadratic function, even the duplicate phase-angle θ appears here. 

Considering the value-function (921) more exactly, so there our non-rectangular triangle 
(Figure 102) is actually already implicitly included. This is an universal characteristic of 
the Hankel function. Furthermore congruences with (651) and (614) can be found. 

 
With the comparison of –g00 from (921) with expression (896), immediately attracts 

attention, that both components are strongly differing in the magnitude. While –g00 in (896) 
is about equal to 1, the value in (916) at least for the present-day values of Q0 is extremely 
close to zero. Obviously we did a mistake in the approach in section 4.3.4.3.3., which does 
not mean that the whole calculation has been for nothing. So (896) describes the 
dependence of the time-coordinate in the surroundings of a mass (when applying (892)), 
whereas in (920) the time-coordinate of the metric wave-field is meant. Nevertheless, the 
deviation cannot turn out so extremely, because if M would be chosen sufficiently small, 
both solutions should show the same result approximately. Also we just know, that gravity 
is propagating with light speed, so that we can assume (920) to be incorrect respectively 
partially correct only. If we apply  expression (898) instead of (892) with (896), we 
likewise get a value close to 1, as long as the velocity v is small in reference to c. 

 
If we now assume that the angle between the zero vector and the metric vector amounts 

to π/2 approximately, then we can make the guess that (920) actually has the following 
form: 
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        (924) 

 
The right-hand expression corresponds to (897). That means, it’s valid for time-like 
photons (g00). To it applies the reciprocal of the bracketed expression. Now, the angle α is 
not a right one as you know then again, so that (923) and (924) not can be accurate at all. 
On the other hand, in the mentioned expressions the same angles occur, as in Figure 102, so 
that it seems to be quite practicable, to slide the contemplations made thereto in the 
specification of our line-element.   

 
Also we have noticed that there are no real zero vectors for an observer trapped in the 

metrics, at most almost-zero vectors. And just such a vector we had already found in 
section 5.1. (577). It’s about the time-like vector cγ, which, measured by its qualities, 
approximates c close enough, if only the Q-factor is sufficiently large (>105).  

 
Hitherto, with the measurement of the velocity of light always was the saying from the 

speed of light c generally. For the electrical engineer however also the question arises, 
which velocity specifically is meant? The answer is: The phase velocity. This is equal to c 
only with respect to the classic MAXWELL theory for a loss-free medium.  

 
That this classic model can be correct only approximatively, shows the fact of the 

occurrence of the cosmologic red-shift alone, which doesn’t have stated with it. If we now 
assume an anomalous phase velocity being smaller than c, the red-shift states by itself. So, 
the amplitude with a certain phase-angle just needs somewhat more time than according to 
the classic theory, in order to arrive at the observer.  

 
The phase straggles, by which the entire wave-train spreads out. Just an enlargement of the 
wavelength occurs. In principle, even the wave-front hangs behind, only we cannot 
ascertain this because of the special relativity-principle, which we just have used in order to 
synchronize our clocks, and/or to determine the distance to the source. The special 
relativity-principle triumphs, exactly as anticipated by LANCZOS.  

 
The result of our contemplations is: we really measure the phase velocity cγ. Because of 

the for the time being high Q-factor Q0 ≈ 1060 we cannot at all detect the microscopic 
difference to c, since it’s far outside the measuring-precision. Also we will measure exactly 
the value c nevertheless, because our measuring-equipment consists of fermionic matter, 
which is as such actually within the subspace and it is permeated by the metric wave-field 
at the same time. Thus, the physical fundamental values will always change in such a 
manner that the variance cancels out then again. Even our brain works with fermionic 
sensors (eye) and depicts the environment with the help of zero vectors (light). 

 
If we want to place cγ into our line-element, we have to figure it as a function of c. The 

corresponding expression is (578). As we have determined with the antecedent 
contemplations, it’s identical to the function sin γγ /sin α For time-like photons, we use the 
expression for time-like photons (724) usefully. In this case (wavelength!) applies the 
reciprocal however.  

 
With neutrinos in contrast (725) is applied. Then however, we are concerned with four 

different line-elements at the same time, or better, with three line-elements, because sin γν � is 
definitely assigned to the component g11. At this point we want to leave the answer to the 
reader, in what extent a neutrino-based line-element should be considered as reasonable. 
Most likely, we require just only one, which describes as well the temporal component g00 
(time-like photons) as the spatial component g11 (space-like photons). 
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Thus, both components are subject to the relations of the red-shift already worked out in 
this work, namely to the spatial, temporal and geometrical share as well. Therefore we can 
write: 
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Considering bodies in the free fall only, so (925) simplifies once again: 
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  (926) 

 
Overall, we are no longer concerned with a genuine MINKOVSKIan – this only applies to 

the subspace – but with an almost- MINKOVSKIan line-element. Usually this transition is 
associated in the URT with the occurrence of matter (the genuine MLE describes a mass-
free empty space), whereas the line-element of this model differs from the genuine one 
already without matter. That means, in this model, the space is curved even without matter, 
whereby the curvature is caused by the metric wave-field almost exclusively. Thus for 
once, we can put ad acta the Principle of the Minimum Gravitative Coupling, because it’s 
useless. According to d´INVERNO [30] we however should take it with a pinch of salt 
anyway. 

 
 
X. Principle of the Minimum Gravitative Coupling (doesn’t apply!): 
 No terms, which contain the curvature tensor explicitly, should be added on the 
  transition from the special to the universal theory. 

 

 
This principle is generally used, in order to set a boundary between the SRT, which has 

been stated for an empty space, and the URT, which applies in a space with mass-
distribution. According to the 1st MACH’s principle the curvature the space arises only 
from the distribution of the masses within the universe or shorter: The matter-distribution 
determines the geometry.  

 
If the masses are shifted somehow, the qualities of space change too. But if there is no 

empty space at all for any arbitrary observer (all are within the metrics), there is no more 
reason, to perpetuate this distinction. With it, even this last boundary has been fallen and 
we must reflect, how to transform the inherent laws of the SRT in order to give 
consideration to the existence of the metric wave-field. 

 
We have done this in the preceded sections. Then, as result, we obtain a so-called 

„special URT“ which unifies the inherent laws of SRT and URT. In this the macroscopic 
metrics of space is determined by the metric wave-field only, exactly, as anticipated by 
LANCZOS because the energy-density of the metrics is about magnitudes greater than the 
one of local matter-distributions. An arbitrary mass-distribution affects only the local 
metrics with it in form of an infinitesimal interference of the metric wave-field. However 
these interferences can become quite as large to force a body onto an elliptical track or an 
orbit.  

 
During cosmologic contemplations, the existence of matter can be completely ignored. 

With it it’s about a pure radiation-cosmos. Thus, all three MACH’s principles apply on 
condition that we also consider the metric wave-field as matter (energy = matter). 

 
There is another more difference between this model and the standard-model. Most 

authors already in their approach assume the gravitational »potential« to vanish in the 
infinite. In this model there is no infinite distance at all and the proper potential according 
to (881) does not vanish anyway. And just this non-vanishing share turns out to be 
extremely important for the curvature of space at the place of the observer. 
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7.2.2. The line-element as a function of mass, space, time and velocity 
 
 
Although the curvature in the cosmologic scale is determined by the metric wave-field 

exclusively, there is still the local influence of a mass-distribution. Therefore we require a 
function, which describes the local characteristics of space not only in dependence on time, 
distance and velocity (892), but even on an existing mass-distribution. Now, we must find a 
way to bring these expressions somehow together. The reason is, that we have resigned the 
Principle of the Minimum Gravitative Coupling. Therefore we must define a new principle 
describing this dependence. 

 
In section 7.1.1. with expression (882) we had already found such a relation. But 

considering this expression more exactly, so it indeed fulfils the requirements of the URT 
with a mass of M = 0, that means, the curvature vanishes and the line-element becomes 
exactly MINKOVSKIan, but according to our model that should be unlike. The basic-
curvature of space, caused by the metric wave-field itself, still remains here. We just have 
to think up a relation fulfilling this additional condition, which turns out expression (877) 
in case of minor masses coincidently (approximation). 

 
During the study of the special relativity-principle, we already had found a similar 

problem. The problem was, to unify the basic-curvature of space with an arbitrary relative-
velocity in one expression. We solved it by adding the metric vector of the relative-velocity 
vM to the likewise metric vector of the propagation-velocity cM of the metric wave-field, 
whereby both point exactly into the same direction. The addition however takes place 
according to the classical EINSTEIN expression for speed-addition (943). 

 
In the case of the existence of a mass-distribution we can proceed similarly, whereat the 

expression MG/r additionally depends on the radial velocity v′ (886). We just have to find a 
metric velocity vG, whose magnitude depends on the mass and the distance to the centre of 
that mass. There is really such a velocity. If we split the approximate expression (877) by 
analogy with 1–vG

2/c2 we obtain the expression for the orbit speed or the 1st cosmic 
velocity:  
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        (927) 

 
M, G and r depend on the reference frame. But what about in absence of a mass in the 
vicinity, apart from the observer’s own mass? That would be the case M = 0. Strictly 
speaking, such a scenario does not exist. There is namely a smallest mass amounting to 
MH = ℏ H0/c2 = 2.60949·10–69

 kg  (according to Table 11) which is also identical to the rest 
mass of the photon. H0 as known, has the character of an angular frequency with the 
wavelength λ0 = R, more does not fit into the universe. The PLANCK-mass m0 is quite small, 
but there are much smaller masses. With it, there is also a smallest speed vG. Analogously 
to (927) this is calculated as: 
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It can also be viewed as the speed with which the observer moves away from the centre in 
the distance R, the propagation speed of the metric wave field cM = 1.03807·10–22ms–1. MH, 
G, r0 and R even depend on the reference frame and with it, also on v. That means that cM is 
always already contained in MG/r. So you don’t have to add anything, just v itself, and cM 
and vG are equivalent. In the approximation for velocities v � cM, with small curvatures as 
well as with disregard of the spatial share we can write then.  
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To a body with a fixed position at the surface, applies vM = 0 and the following expression: 
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2

2MG
1
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    for  M» 0  and/or  Q0 » 1  (930) 

 
Here the space-like vector r/2 comes into effect. For M → 0 still the basic curvature of the 
metric wave-field remains: 
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It would be favourable for the component g11, if we could replace sin γγ‾ by sin γγ. Usefully, 
we use the relations (720) and (722) for it. It applies without the navigation-gradient again: 
 ↓(932) 
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Here, also the conversion-factor β between space-like and time-like distance appears, as 
already anticipated with (283). For the approximation by analogy with (930) we get the 
following expression: 
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After substitution in (926) we approximately obtain the SCHWARZSCHILD line-element as 
solution. Re-applying the velocities, we can see even here, why the relativistic dilatation-
factor β comes into effect with time-like vectors, but the reciprocal β–1 with space-like 
vectors. Thus we can expand the relations for the angle δ and the several angles γ about the 
expressions for the mass-influence. We use the ratio v″/c from (892). To the angle δ 
commonly applies: 

v
arcsin sin

c
 ″δ = α 
 

  

12

2
2 2

12

2
22

v 2MG v1
c rc cv

c v 2MG v1 1
c rc c

−

−

 + − 
″ =

 + − 


ɶɶ

ɶ

ɶɶ

ɶ

   (935) 

and to the angle γ according to the kind of photon: 
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Then, NEWTON’s classical gravitational potential is defined in the following manner: 
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      with    a = – grad Φ   (940) 

 
As next, we want to examine the relation for the orbit velocity (919) more exactly once 
again. According to the kind, it’s about a propagation-velocity too. After substitution of G 
by (794) and of M = ℏωD/c2 we obtain the following relation: 
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In this case, ωD is the DEBROGLIE- angular frequency of an arbitrary particle. We had 
already noticed that „normal“ particles (fermions) reduce the frequency of the metric wave-
field within the body. That means, the length r0 inside the body is stretched (larger Q-
factor – smaller propagation-velocity). Outside the body, and this area we now look at, the 
relations are the other way round. Here, the length r0 is compressed (smaller Q-factor –
larger propagation-velocity). Therefore, the positive sign applies here. But how does the 
situation look like, when the body consists of antimatter? According to this model, it would 
have a negative mass and the regions of stretching and compression would be swapped. 
Then, expression (941) for antimatter would read as follows: 
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The negative sign of the root-function is applied to antimatter, M is negative. Expression 
(942) well agrees with the doctrine, that antimatter even possesses negative energy. Only, 
in this model it’s about a negative difference energy, which is to be accepted much more 
easily. Therefore, we must insert the negative sign into the expressions (892) resp. (934) rhs 
whenever the mass is negative. Thus, we are concerned with a symmetry-breaking between 
„normal“ and antimatter even here, which never carries weight at the present time because 
of the extremely small value of cM. For the time just after big bang however the magnitude 
of cM cannot be disregarded, so that the symmetry-breaking became essential for the further 
expansion of the universe. 
 

To the conclusion, we already want to examine the influence of the speed-component vM. 
In general, this cannot be chosen freely, unless, it’s about a spacecraft. To do this, we want 
to conduct a gedankenexperiment. As already determined, any observer in the free fall 
always is situated in the 3D-centre of the universe. In fact he resides on a 4D-hypersurface, 
the event horizon. This is correct in so far, as it’s about an empty space (I want to exclude 
the observer itself). But what does it look like, when this space is not empty, just when the 
observer is positioned inside the gravitational-field of a body? 

 
Then, two cases must be distinguished. The first case is that, with which the body in the 

free fall is unable to move in reference to the attracting body, like e.g. an observer on the 
earth’s surface (inhibited free fall). He is subject to the full influence of the gravitational-
field then. There is an attraction, which is identical to a lower Q-factor (= compressed 
metrics) outside the body. In this case, we must add the value of the orbit velocity to the 
propagation-velocity cM of the metric wave-field, in turn using (892) resp. (934) rhs. The 
space is just curved more strongly than normal. 

 
The second case is, when the body is in the gravitational field of a body being in a non-

inhibited free fall at the same time. That’s the legendary elevator-experiment [30]. In this 
case of course, except for a minor angular aberration to the mass-centre, there is no 
difference to an observer in empty space, (only cM applies). The same case applies to an 
observer moving in the orbit with the 1st cosmic velocity. Even this is a free fall, also 
associated with the phenomenon „weightlessness“.  
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In this case, only the share cM = cM + vG + vM should be effective to the observer. But it can 
only be achieved, when the speed-component vM becomes negative. However, according to 
our definition, for an observer in the centre of the universe there are only negative 
velocities anyway. These are defined toward the particle horizon (4D-expansion-centre), 
which is equally far away irrespective of direction. Thus, all forces exerted on the observer 
by the marginal singularity cancel themselves, so that the observer remains in the centre. I 
also chose this definition because one moves against the flow of time, i.e. the magnitudes 
and natural constants change in such a way that they result in values as they prevailed in the 
past. 

 
Now, we had already posed the question, what a positive velocity, if there should be such 

a one, actually could mean. This is per definitionem a velocity directed from the particle 
horizon to the event horizon. Thus, cM is positive, but ends at the event horizon, where we 
all live. It cannot overcome this limit, that would be the future. Rather, it pushes this limit 
in front of itself. Even an observer in the centre is unable to overcome this limit. 

 
But for an observer located in the vicinity of a mass distribution, e.g. a black hole, there 

is a second event horizon, that can now be overcome after all. The vector vG is positive, 
directed towards the black hole and it adds up to cM. We can draw the conclusion from it 
that an observer being in a gravitational-field but not in the free fall, neither is in the centre 
of the universe (then, the centre of gravity of the system mass-observer steps in place of 
this position) or vice-versa: 

 
 

 
XI. An observer in the free fall stands always in the 3D-centre of the universe. 
 His relative-velocity in reference to the metrics is equal to zero. In reality  

 he resides on a 4D-hypersurface, the event horizon. 
 

 
 
But for an observer in the orbit this is applied only to the radial, not to the tangential 

component of velocity. For generic speed-vectors, we must just multiply the amount with 
the cosine of the angle to the radius r. Since almost all matter in the universe is in the free 
case, it’s moving with the metrics (constant wave count vector). To the better overview, the 
three cases empty space, gravitational-field and free fall are presented in Figure 142 once 
again. It’s about the relations for a mass-system, consisting of „normal“ matter. 

 
 

 
Figure 142 

Definition of the velocity and the centre of the universe for the cases 
empty space, body in the gravitational-field and free fall for „normal“ matter 
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In the case, that the gravitating mass consists of antimatter, the relations according to this 
model are completely different. Now the escape-velocity is negative, as we can well se in 
Figure 143. That means, an observer (of antimatter) in the free fall must have a positive 
velocity, whereas a freely navigating body of antimatter is moving with a negative speed  
Let’s think exactly once again. The velocity c is defined as c = ω0r0 whereas for an any 
velocity v the expression v = ωVr0 applies. 
 

 

 
 

Figure 143 
Definition of the velocity and the centre of the universe for the cases 

empty space, body in the gravitational-field and free fall for antimatter 

 
Thus, we obtain a frequency ωV which is equal to the number of line-elements, a body 

„streaks“ with the velocity v within a certain time period. As we know, bodies of antimatter 
are having a negative (difference-)energy. Thus, the difference-frequency becomes negative 
too, which leads to the result, that material bodies of antimatter are moving with a negative 
velocity – opposite to „normal“ bodies. This is a generally accepted statement. 

 
The summary-speed of a body in the free fall in reference to the metrics (as well of 

matter as of antimatter) in both cases turns out zero. Only the temporal share ct remains 
then, i.e. almost all bodies are moving on plain time-like world-lines in the average, whose 
propagation is caused by the continuous increase of the phase-angle 2ω0t. However, the cM 
component can also be compensated for by a skilful choice of vM. 

 
Another conclusion is, that two bodies, the first of matter, the second of antimatter, 

would repel, two similar bodies would attract each other. A free fall of a normal body in the 
gravity field of a body of antimatter and vice versa would be impossible then. So the third 
example in Figure 143 applies only to a free fall of a body of antimatter in the gravity field 
of a body also of antimatter. The particle horizon turns into an event horizon for antimatter. 
This would be attracted, normal matter repelled. Since with the 4D-expansion centre it’s 
about a particle horizon (for normal matter), it would answer the question of where the 
antimatter has gone.  

 
 

7.2.3. LORENTZ-transformation and addition of velocities 
 
With (917) we have formulated the line-element of this model. Before further 

examination we must still deal with another problem, which actually belongs to the 
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preceding section, the transformation and addition of velocities. From the SRT, we know a 
relation for the addition of velocities, which is liked to consult as example for the opinion, 
that velocities greater than c are impossible. In terms of physics, this is wrong however. In 
reality, such velocities are possible perfectly well and they are prohibited by no means. 
According to the classic EINSTEIN theory, these can never be achieved, because the energy 
W = Mc2 contained in the matter is not enough for that purpose. With 100-percent 
efficiency c is exactly achieved in that moment, when all fuel, inclusive drive etc. and even 
the crew, just the entire mass M has been converted to radiation. 

 
Now, we did not used the addition-theorem for velocities in the previous editions but 

added airily all three vectorial part-velocities in fact. This has had a specific reason, which 
applies even in accordance with the classic theory: All three velocities seemed to be 
defined in reference to the same frame of reference. However, it has now turned out that cM 
is identical to vG which in addition depends on v due to the changing natural constants, so 
that we ended up in the different expression (892). Then, the classic addition theorem only 
applies if cM resp. vG is negligibly small compared to v, i.e. far away from any large 
masses:  
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The famous EINSTEIN train is an example, another one e.g. B moves with v in relation to A, 
C moves with v′ in relation to B, what is the speed v″ of C in relation to A. Does this 
relation now apply in our model too? This is an important question, which we have to 
answer here and now. It is closely connected with the coefficient of the LORENTZ-transfor-
mation β = (–g00)–1/2 (SRT-sign-convention). Therefore, we want to deal with this at first. 
According to [30] β is equal to the cosine of the angle ξ describing the rotation of the 
coordinate-system in the (x,t)-plane, which is caused by the velocity v: 
 

2 2

2
v
c

1 1 1
cos

sec 1 tan 1
ξ = = =

ξ + ξ −
          (944) 

 
This expression is identical to the classic dilatation-factor of the SRT and can be figured as 
special-case of this model, when the angle θ (211) is equal to –π/4, just with very large Q-
factors. In order to answer the question asked above, we will derive the relation exactly 
once again, whereby we closely want to follow [30]. 

 
Two inertial-systems S and S′′ (free fall) are starting point, whose coordinate-origins are 

of line at the beginning. In both frames of reference, the clocks are synchronized (t = t′ = 0). 
Mathematically, the problem is described by the coordinate-transformation: 

 
S′ [t′, x′, y′, z′]   =   L{S [t, x, y, z]}       (945) 

 
at which point the system S′ should move with the velocity v in reference to S. This 
transformation is even called LORENTZ-transformation (L). If we now send out a light-flash 
from the origin, so this will propagate with the velocity c, whereby we will observe it 
differently in both systems. Since it is about the same event, the problem can be traced back 
on the equating of the two (real)  MINKOVSKIan line-elements, whereby we will always use 
the sign-convention of the SRT in this section: 

 
x2 + y2 + z2 – c2t2   =  x′2 + y′2 + z′2 – c2t′2             (946) 

 
In an isotropic space and if the motion of S′  takes place only in x-direction, applies y′ = y 
and z′= z, which reduces the problem to the relation: 

 
x2 – c2t2  =  x′2 – c2t′2  resp.  r2 – c2t2  =  r′2 – c2t′2   (947) 
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In contrast to [30] we want to work on with the second relation (polar-coordinates)  which, 
in terms of mathematics does not make any difference. Thus, the model can be brought 
much better in accord with our new photon-model, when the r-axis coincides with the r-axis 
of the expansion-graph. In contrast to [30] in turn we will exchange the axes however. 
Never fear, we will get the same result nonetheless. Furthermore, we introduce imaginary 
time-coordinates, 

 
T  = jct  T′  = jct′               (948) 

 
which are perpendicular to the other, already existing coordinates of the expansion-graph 
and put up an additional tangentially-space at each point. Thus, we have answered the 
question, whereabouts the sum of the plenty speed-vectors we have introduced until now, 
actually aims in. They don’t run along the expansion-graph but into the tangentially-space. 
Therefore it also makes no odds, if they move away from the expansion-graph all-too 
much. The exact relations (α = π/2) are presented in Figure 144. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 144 
Rotation in the (T,r)-plane during 
the LORENTZ-transformation 

 
After insertion of (948) in (947) we obtain the following expression: 

 
r2 + T2  =  r′2 + T′2  =  ρ2

          (949) 
 

For v = 0 both frames of reference coincide and the angles are equal to the angles α, γ and δ 
of the preceding sections. With it, we have been able to bring in accord the classic case 
with our new photon-model. In this case, r corresponds to the metric vector cM, T to the 
time-like vector cγ and ρ to the zero vector c. This is inevitably alike in both systems. Let’s 
have a look at (949) more exactly, so it’s about the relation for the radius ρ of a circle and 
this points on the point P. Now, let’s rotate the coordinate-system S′, instead of the point P, 
at which point the size of ρ doesn’t change. In this connection, the rotatory-angle is 
represented by ξ. 

 
Now, the observer B′  should move together with his frame of reference with the velocity 

v in reference to S, whereby r specifies the distance between S and S′. Therefore, the 
velocity v′ of S′ in reference to the inherent frame of reference S′  and with it even the 
distance r′  of the observer B′  in reference to the coordinate-origin of S′  is equal to zero. It 
applies: 
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v
r 0 r vt r j T

c
′= = = −       (950) 

 
We obtain the right expression by insertion of (948) into the middle expression. Now, with 
a rotation of the coordinate-system according to [21] the following relations apply: 

 
r r cos Tsin T r sin Tcos′= ξ + ξ ′= − ξ + ξ            (951) 

 
0 r cos Tsin= ξ + ξ   because of (950)     (952) 

 
The angle ξ is actually negative however. If we define it positive from now on, after substi-
tution of the right expression of (950) applies for r: 

 
v

0 j T cos Tsin
c

= − ξ − ξ  resp.  
v

j cos sin
c

ξ = ξ    (953) 

 
v

tan j
c

ξ =    resp.  
v v

arctan j j artanh
c c

ξ = =      (954) 
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v
c

1 1 1
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1
ξ = = = = β

−+ ξ − 00g
        (955) 

 
As said, we use β instead of the most usual γ. If we take up a comparison of coefficients, 
we get the following important expressions: 

 
1 v v

jartanh sin jartanh sin
c

o
os c c

c s ξ = ξ = δ = δ =
δ

  (956) 

 
The relations for the LORENTZ-transforms finally can be determined by rearrangement of 
(951) and substitution of (950): 

 
r′  =  cos ξ (r + T tan ξ)  =  β [r + j c t (j v/c)]  =  β (r – vt)      (957) 

 
T′ =  j c t′  =  cos ξ (–r tan ξ + T)  =  β [–r (j v/c) + j c t]  |: jc   (958) 

 
t′  =  β (t – v r/c2)              (959) 

 
and in summary: 
 
 

 2( t / )ct v rβ −′= ,   (r )vtr = β′ − ,     ϑ′ = ϑ,     φ′ = φ      Classical          (960) 
 
 

Now, according to [30] he sum of two velocities arises from the addition of the angles ξ. 
By analogy with the addition-theorem of the area-functions applies: 
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v v
v v c cj artanh artanh vvc c 1 c
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          (961) 
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v v
c cvj jtan c vv1

c

′+″= =ξ″ ′+
      as always   (962) 
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It becomes interesting, when the angle α is unlike π/2, as in our model. For that purpose, 
let’s have a look at the expressions for the LORENTZ-transformation next in turn. If we 
assume, that a rotation of the coordinate-system into the tangentially-space, which is 
described by the relations (951) occurs even here, we must look once again for an 
expression for the angle ξ describing this rotation. Inevitably this will differ from (954). In 
the special-case α = π/2 however it must turn out the same solution. The substitution (948) 
applies even in this case, since we want to work with a rectangular coordinate-system. 

 
From the examinations done in the antecedent sections, we know that 

 

cos
1

γξ ≡ = β β≈
− 00g

        (963) 

 
must apply. If we just assume, that this is the case, using the component g00 from our line-
element (917) we get the following expressions for the trigonometric functions and the 
value of the angle ξ: 
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sin v
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sin c
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α00g    (967) 

 
To the determination of the LORENTZ-transform we proceed by analogy with the classic 
case: 
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and in summary: 
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−
00
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g

,  ϑ′ = ϑ,  φ′ = φ      (971) 

 
 
Btw. these relations apply independently from our model and using „our“ g00 even 

simultaneously for effects of velocity, matter-distribution, distance and time, just in general 
(SRT+ART). In the special-case α = π/2 (971) yields the classic solution of the LORENTZ-
transform. With velocities v«c the solution turns into the one of the GALILEI-transforma-
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tion. With it, we have found a contradiction-free solution, which fills the made 
requirements. 

 
Now, we want to deal with the addition-theorem of the velocities. One can assume that 

the individual angles ξ will add up again even here. Thus, the following relation applies 
ξ″= ξ + ξ′, respectively: 
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The rhs expression applies in the presence of a mass M′ with 1+g′00 = (cM/c)

2
 → (891) 
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The upper sign applies to time-like vectors 

 
 

( ) 21,2v
1 cos 1 1 sin

c
α

″
= + ″ ″± − + ″ ″α00 00g g                   (978) 

 
 

For α = α′ = α″ = π/2 solution (978) turns out the classical expression (943). Apart from 
theoretical considerations, calculations shortly after Big Bang and in the vicinity of the 
event horizon of a black hole, the angle α will hardly have to be taken into account. In the 
latter case a relevant mass is nearby and you should advantageously use expression (973)  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 145 
Effect of different angles α on th
addition of speed-vectors 
(schematic presentation) 
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on the right. In addition, the respective angles α, α′, γγ, and γ′γ must be taken into account 
when calculating g00 und g′00. These are calculated according to (886) and (888) using Q0 
and Q′0 (700). To calculate (978) we additionally need the angle α″. We get it by a repeated 
application of (700). An example is shown in Figure 145. Conclusion: A model with 
variable natural constants requires a revision of the expression of speed-addition, but at the 
same time it has the advantage that SRT and URT can be combined with it. More on that in 
the next section. 
 

 
 
 

7.2.4. Principle of the Maximum Gravitative Coupling 
 
We have seen that there are essentially no fundamental contradictions with the idea of 

the universal relativity, considering this model. Also, we have seen that and why we get 
involved in a row of additional problems, if we abandon the principle of the minimum 
gravitative coupling. 

 
Now there is a multiplicity of other models which, already in the formation, are 

incompatible with the statements done in this model. These are the ones particularly, which 
are based on a disappearance of the gravitational-»potential« in the infinite. But this is not 
applied to the statements done by EINSTEIN, because these have been formulated so 
universally, that they are applicable even to a pure radiation-cosmos and that’s about here. 
If we just want to calculate e.g. the curvature of space, we only must insert the 
corresponding values of the metric wave-field as output variables. 

 
For a minimum gravitative coupling applies: The mass determines the geometry, but the 

geometry does not determine the mass. It reigns something like the „free market economy“, 
the inherent laws of the SRT are independent from those of the URT and therefore we don’t 
require such relation at all. But now, we have the inverse case on hand: The geometry (r0) 
determines mass, time, energy, wavelength etc. in all. 

 
Now one could think, there should be even the inverse dependence, namely that, where 

the mass determines the (local) geometry. Although, the mass is just determined by the 
relation M = ℏωD /c2 whereby as well ℏ as ωD depend on the frame of reference (r0) in turn. 
The mass just already somehow is contained in the energy-momentum tensor of the metric 
wave-field from which arises, that the field-equations of the URT are filled automatically, a 
fact, which already d’INVERNO pointed out in [30]. That means, not the mass determines the 
geometry but only the existence of particles within the metrics, at which point the metrics 
(the metric wave-field) dictates, how much mass these particles have. 

 
So, all quantities seem to be coupled somehow together. Therefore, I would like to name 

this new principle the Principle of the Maximum Gravitative Coupling. With IX. in section 
6.2.7. we already formulated something similar. Here some more detailed: 

 
 

 
XII. Principle of the Maximum Gravitative Coupling: All physical quantities like  
 space, time, mass, energy, wavelength etc. form a canonical ensemble, at  
 which point the exact values are determined by the phase-angle of the metric  
 wave-function (Q-factor) only. The progression of the phase-angle is synonym- 
 ous with the progression of time (tics). The existence of fermionic particles  
 resp. particle-concentrations as space-demanding interference of the metric  
 wave-field as well as its existence is cause for the gravitative effects. The  
 boundary between special and universal relativity-theory is annulled. 
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7.2.5. Metric functions  
 

After we have formulated the line-element for this model having made even deeper 
contemplations about the angles in the triangle as well as about their physical meaning and 
dependences of the discrete coordinates, it’s opportune to calculate certain values, which 
carry a great weight in the SRT. Basis for it is always the metric tensor resp. the line-
element, which in terms of physics both characterize the same phenomenon. 

 
 
 

7.2.5.1. The  metric connection  
 
One of these „certain values“ is the RIEMANN curvature tensor. In order to calculate it, 

we require a function called the metric connection. According to [30] this is defined as 
follows: 

 

       (979) 

 
On this occasion, gad is equal to the component gad of the inverse matrix gab and ∂b equal to 
the partial differential-operator ∂ /∂b. The rest remains incomprehensible for the reader with 
„normal“ engineer-education first of all. Unfortunately, one does not go more into detail in 
literature more often than not. 

 
But since we want to determine the values of our line-element, we don’t get around an 

exact calculation of (979). The simplest way, to understand an expression exactly, is, to try, 
to automate the calculation. Then, one usually does even no errors, unless, the formula is 
wrong. 

 
As tool for it, we use the program »Mathematica« in turn, which is, among other things, 

even able, to calculate the partial derivative (D[f(x),x]). As input-values we are concerned 
first of all with the matrix of the metric tensor, which we assign to the variable Mx. 
Furthermore, we require the inverse matrix, which we can compute with the built-in 
function Inverse[Mx] and another function Di, with whose help, on the basis of the 
subscript, we can infer the coordinate, with respect to which shall be differentiated. For the 
genuine MINKOVSKIan line-element we obtain then: 

 
Mx={{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};   (980) 
Inx=Inverse[Mx];         (981) 
Di=Function[Part[{ct,x,y,z},#+1]];            (982) 

 
In order to access the individual components of Mx resp. Inx, we define another function 
MPart[Mx,a,b], whereby the individual coefficients can take on the value 0 ≤ a ≤ 3 in each 
case (Part[x,n] is implemented in »Mathematica«). 

 
The function of the metric connection itself we want to name with MGamma[a,b,c,Mx]. 

With it, the values a, b, c and Mx a priori are fixed as input variables. 
 
But what’s about the component d? This is first no input variable. It’s value arises from 

the EINSTEIN summation convention, which implies, that there is always to be added up 
across doubly (or multiple) appearing indices, at which point the value-range arises from 
the input variables, (here 0…3). That means we have to calculate (979) four times in total, 
whereby the value of d is incremented by one each time, beginning with zero, adding up the 
results afterwards. That looks as follows in »Mathematica«-notation then: 

 
MPart=Function[Part[Part[#1,#2+1],#3+1]];     (983) 
MGamma=Function[For[Mg=0;n=0,n<4,n++,     (984) 
Mg+=(1/2 (MPart[Inverse[#4],#1,n] ) (D[MPart[#4,n,#3],Di[#2]]+ 
D[MPart[#4,n,#2],Di[#3]]-D[MPart[#4,#2,#3],Di[n]] ))]; Simplify[Mg]]; 

Γbc
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Γbc
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ad ∂ bgdc + ∂cgdb − ∂d gbc( )
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The function Simplify[x] only is used to simplify the result (summarizing of equivalent 
expressions). Thus, this function has been uniquely defined and we can begin with it’s 
calculation. Altogether there are 64 possible solutions whereby in general only a part of 
them will be different from zero. Because  applies, it can be derived directly from 
(979), there are merely 16 independent solutions (bb=bb).  But before we’ll determine the 
solutions of our line-element, it’s opportune, to calculate first the solutions of the 
MINKOVSKIan line-element. 

 
With (980) we obtain  as solution(s), i.e. all connections vanish. This is 

synonymous with the disappearance of the RIEMANN curvature tensor, as we will already 
see, or said more popularly, at the MINKOVSKIan line-element the curvature is equal to zero. 
Then, we are concerned with an even or flat metrics. 

 
This statement well agrees with the cited facts in [30], our program seems to be just right. 

How does it look like with spherical coordinates however? This question is important, since 
our line-element is using spherical coordinates too. 

 
In [30] it states to it: »… In an universal coordinate-system won’t necessarily vanish the 

connection-components however. For example, we find in spherical coordinates that  is 
having the non-vanishing components 

 

  
Annotation: θ → ϑ

       (8.5 [30]) 

 
Let’s calculate the RIEMANN Curvature tensor however, so we find  in turn, as 
demanded by the theorem (§6.11 [30]).« This appears plausible, but it’s unfortunately not 
correct. In [30] namely there is a misprint. Using the corresponding spherical initial values 
instead of (980) and (982) 

 
Mx={{1, 0, 0, 0},{0, -1, 0, 0},{0, 0, -r^2, 0},{0, 0, 0,-(r^2*Sin[theta]^2)}}; 

Di=Function[Part[{ct,r,theta,phi},#+1]];      (985) 
 

we obtain with the exception of the component  the same results, as in (8.5 [30]). The 
negative sign is missing with . With the exact values: 

 

       (986) 

 
the RIEMANN curvature tensor really vanishes. Before however, we first have to compute it. 
We will do this in the next section. 

 
 

7.2.5.2. The RIEMANN curvature tensor  
 
This is commonly marked with the symbol Ra

bcd. It is just about a 44-matrix with 256 
components overall. We take over the definition of the individual components from [30] in 
turn hoping, that it is correct: 

 
      (987) 

 
We name the function to the determination of an individual component of the RIEMANN 
curvature tensor with Rabcd [a,b,c,d,Mx], at which point the upper-case A should refer to a 
superscript index (RAbcd≠Rabcd).  
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Thus, the values a, b, c, d and Mx are input variables. We add-up across e. Please add-up 
only the two last products, since only they are containing e. I would have been able to spare 
unnecessary work and four weeks endless searching, if I would have taken this into account 
from the beginning. Furthermore, we must be careful, that we don’t use the same symbols for 
the loop-variables and we obtain as »Mathematica«-program: 

 
RAbcd=Function[For[RA=0;m=0,m<4,m++,RA+= 
MGamma[m,#2,#4,#5] MGamma[#1,m,#3,#5]- 

MGamma[m,#2,#3,#5] MGamma[#1,m,#4,#5]];     (988) 
Simplify[RA+D[MGamma[#1,#2,#4,#5],Di[#3]]- 
D[MGamma[#1,#2,#3,#5],Di[#4]]]]; 

 
With the genuine MINKOVSKIan line-element with Cartesian and spherical coordinates all 
solutions become zero. According to [30] the solutions must fill the relation  
which is the case indeed (trivial). The program seems to be just right. 
 

The RIEMANN-tensor vanishes, but what does it look like with the RICCI-tensor Rab or 
with the curvature-scalar R? In order to compute them, first of all let’s have a look at the 
lowered tensor Rabcd. By analogy with [30] we obtain it with the help of the following 
relation: 

 
         (989) 

 
The following permutation-rules apply: 

 
          (990) 

 
It becomes more difficult with it to sort out the dependent components. Expression (989) 
can be transformed into the following simple program: 

 
Rabcd=Function[MPart[#5,#1,#1] RAbcd[#1,#2,#3,#4,#5]];     (991) 

 
A summation doesn’t take place here. With Cartesian coordinates, all results are equal to 
zero, as well with spherical coordinates. The conditions (990) are filled trivially. Also Rabcd 
vanishes with it. Thus, we can set about to compute the RICCI-tensor. 

 
 
 
 

 
7.2.5.3. The RICCI-tensor  

 
This is marked with the symbol Rab. Thus, it’s about a 42-Matrix with 16 components 

overall. According to the definition in [30] applies: 
 

           (6.83 [30]) 
 

Even this expression cannot be correct like that. Now I found a second source indeed, 
unfortunately just there the middle part, which is of immense importance, has been 
calculated by another way namely with the help of the KRONECKER-delta-function, being 
easily to program on the one hand, being unhelpful on the other hand, since D’INVERNO 
does not provide any further information, whether and in what extent is to be added-up. 
Therefore we want to proceed the other way in that we compute Rab without the aid of Rabcd. 
According to my opinion, expression (6.83 [30]) should correctly read: 

 
         (992) 

 
Let’s just start from (992) and define the function Rab[a,b,Mx] to: 
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Rab=Function[For[Ri=0;n1=0,n1<4,n1++,Ri+=RAbcd[n1,#1,n1,#2,#3]];  (993) 
Simplify[Ri]]; 

 
In both cases, the result is zero for all components again. To the conclusion still the scalary 
curvature R = gab Rab remains, even called RICCI-scalar. Here, the definition in [30] is 
correct in turn. In »Mathematica« the value arises to: 

 
RaB=Function[MPart[Inx,#2,#2] Rab[#1,#2,#3]];    (994) 
Rr=Function[For[R1=0;n2=0,n2<4,n2++,R1+=RaB[n2,n2,#]];Simplify[R1]]; (995) 

 
RaB is the raised tensor Ra

b
 = g

bb Rab. The value of the scalary curvature for the genuine 
MINKOVSKIan line-element in Cartesian and spherical coordinates is equal to zero.   
 

 
 

7.2.5.4. Solutions for this model without navigation-gradient  
 
Now, let’s take an observer being in the free fall and in the point (T, 0, 0, 0). With it 

applies R = 0. Considering the current condition, we can also set t = 0. Thus, the navigation-
gradient becomes equal to one and can be disregarded. 

 
In terms of physics, we look at the observer in his frame of reference. Then, the metric 

tensor is defined as follows: 
 
Mx={{(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2, 0, 0, 0},  

{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]] )^2/(1-RhoQ[Q]^2)^2, 0, 0},  (996) 
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}}; 

Inx=Inverse[Mx];         (997) 
 

For reasons of simplification we reckon with the angle γγ only. Therefore, we must still 
multiply g11 with β2. Since the angle α depends on the frame of reference, being a constant 
with it, we must not define on the function AlphaQ. The same is applied even to RhoQ 
(cM), which depends on the frame of reference too.  

 
Then, we obtain the following independent solutions, different from zero, for the 

connections Γbc
a : 

 

1 1
22 33

2 1 2
12 33

3 1 3
13 23

2 2

2

2 2

sin sin
r r sin

sin sin

r r sin cos

r cot

γ

−

−

γγ γ

α


Γ = − Γ = − ϑ 


Γ = Γ = − ϑ ϑ 



Γ = Γ = ϑ


α




                (998) 

 
Just only Γ22

1  und Γ33
1  are involved. All other solutions resemble those of the MINKOVSKIan 

line-element. As next, we want to specify the solutions, different from zero, for the 
RIEMANN curvature tensor Ra

bcd: 
 

2 2
2

2 2

sin sin
sin 1 1

sin sin
γ γ   

= − = ϑ − = − = − − 
γ γ

α α
    

   

2 2 3 3

323 332 223 232R R R R  (999) 

 
All solutions fill the demand Ra

bcd = – R
a

bdc with it. Particularly the bracketed expression, 
which corresponds to the difference 1 – g11 is interesting. It appears in all expressions and 
can be traced back, based on (920), on the following approximation: 
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2
0

2sin 1
1 1

sin Q
γγ

α
− = − =11g

ɶ
          (1000) 

 
Therefore, from here on, we will not state explicitly any approximative solutions. To the 
calculation of the lowered tensor Rabcd we use the formula (991) as well as the input-values 
(996) and (997). We get only one single independent, component, different from zero. It 
reads:  

   (1001) 

 
For the RICCI-tensor  we obtain the following solution: 

 

2

2

2

2

2

0 0 0 0

0 0 0 0

sin
0 0 1 0

sin

sin
0 0 0 sin 1

sin

γ

γ

 
 
 
  γ
 − =  α  
 

 γ 
ϑ −   α  

abR        (1002) 

 
Applying the present-day values, all components are directed to zero, which agrees with the 
observation very well. To the conclusion still the scalary curvature. This arises to: 

 

    Scalary curvature   (1003) 

 
Interestingly enough, the factor 2 in (1003) cancels out with the factor 1/2 in (0.25). Even 
here, the curvature tends against zero, if we apply the current values. But if r is very small, 
i.e. it tends against the value r0, the curvature no longer vanishes but ascends very quickly. 
This shows very good, if we apply the approximation for the bracketed expression in 
(1003): 

 

      Scalary curvature approximation  (1004) 

 
If we assume a certain distance r in the microscopic range, so this also depends on Q0, i.e. 
on our frame of reference. It applies: r ~ Q0 and with it R  ~ Q0

–3. Thus, we have described the 
curvature for microscopic dimensions. But if we move far, far away from the coordinate-
origin, coming into the proximity of the world-radius, the curvature should increase too. 
Also this varies with time, which doesn’t have derived from the former relations. For that 
purpose, we must include the navigation-gradient into our contemplations. 
 
 
 

 
 

7.2.5.5. Solutions for this model with navigation-gradient  
 
We reconsider only the solution for a test-body in the free fall to the point of time T+t in 

the distance r of the coordinate-origin without presence of matter (vacuum-solution). The 
following expressions apply locally with it, not however across the entire distance. Then, 
we would be forced again to integrate with respect to r, obtaining only an implicit solution 
like with the gravitational-»constant«. Since the test-body is in the free fall, it doesn’t move 

R2323 =  − R2332 =  − R3223 =  R3232  =  − r2 sin2 ϑ  1 −
sin2 γ γ 

sin 2 α  

 

 
  

 

 
  

Rab

R =  −
2
r2   1 −

sin2 γ γ 

sin2 α  

 

 
 

 

 
 

R ≈  −
2

r2 ˜ Q 0
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in reference to the metrics. Else, the solution would be even more complicated, because the  
distance r would depend on time and way additionally then. In terms of mathematics, such 
a solution would not be impossible, but we don’t want to pursue it in this place, since it 
would go beyond the scope of this work. 

 
Another option would be the inclusion of point-masses resp. mass-distributions, when 

the body is not in the free fall. On this occasion, we should have to insert the sum cM+vG 
instead of v, making the solution much more complicated in turn (the angle γγ should have 
to be co-included into the derivatives), so that we neither want to examine this case any 
longer. Rather, this could be object of an autonomous work being published to a later point 
of time. 

 
Just let’s begin in that we define the metric tensor Mx and it’s inverse matrix Inx. We 

take expression (925) as template. Since now there is a cross-over-dependence between r 
and t, we must remove the speed of light c from the 00-coordinate incorporating it into the 
metrics itself: 

 
Mx={{(c*Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1+t/T), 0, 0, 0},  
{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1-RhoQ[Q]^2)^2* 
((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},  

{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}};     (1005) 
Inx=Inverse[Mx];         (1006) 

 
From reasons of performance, it’s opportune, to calculate expression (1006) only once, and 
to replace it with a fixed definition then. Otherwise the expression is recalculated with each 
call and the computing-time for the determination of the scalary curvature can amount to 24 
hours now and then. We just replace (1006) by: 
 

Inx={{(1/c*Sin[AlphaQ[Q]]/Sin[GammaPQV[Q, 0]] )^2*(1+t/T ), 0, 0, 0},  

{0, -(Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]] )^2*(1-RhoQ[Q]^2)^2/  (1007) 
((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},  
{0, 0, -r^(-2), 0}, {0, 0, 0, -(1/(r^2*Sin[theta]^2))}}; 

 
With it changes even our function Di, giving the parameter, with respect to which should be 
differentiated: 

 
Di=Function[Part[{t,r,theta,phi},#+1]];      (1008) 

 
By the way, the function Simplify should be applied as early as possible. Unfortunately it is 
not almighty, so that we doesn’t come around to post-simplify by hand. In the following 
calculations, the chain-rule is applied repeatedly to the differentiation with the effect, that 
the results strongly increase in their complexity. Since the differentiation takes place 
automatically at this point, each human error is ruled out a priori. If errors should appear 
nevertheless, so these are to be attributed to the manual simplification. 
 
At first, we want to compute the independent metric connections again. To the 
simplification of the representation, we will take up following substitutions: 

 
1

2
t

1
T

 = + 
 

t
ɶ

        
2
32r

R
=r
ɶ macroscopically

      
2 2

0 3 3

0
*

2r r 2r 1
R R Q
−

= = −r
ɶ

ɶ ɶ ɶ
 
exactly

 (1009) 

 
More final expression arises directly from (239). To the calculation of the solutions, we can 
work with the left-hand expression then again, at which point we can substitute only when 
exercising in such ranges whose dimensions are in the proximity of r0 and in all strongly 
degenerate conditions. The validity of the following solutions is not restricted thereby, 
because r0 is a reference-frame-dependent constant. Then, we get for the metric 
connections: 
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� 

Γ00
0 = −H  ; Γ11

0 =   
β4

˜ R c
 t (t − r)

Γ01
1 =   ˜ H 

1
t (t − r)

 ; Γ11
1 = −

2
3

r−1 r

t − r

Γ22
1 = −r  

1
t − r( )2

sin2 γγ 

sin2 α  ; Γ33
1 = −r  sin2 ϑ

1
t − r( )2

sin2 γγ 

sin2 α    

Γ12
2 =   r−1; Γ33

2 = −sinϑ cosϑ

Γ13
3 =   r−1; Γ23

3 =   cot ϑ

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

    (1010) 

 
Please pay attention to the italic notation by all means. From security-reasons however, the 
italic parameters t and r are always collected in an individual partial expression in all 
expressions, so that a mix-up with t and r becomes nearly impossible. Furthermore, we 
benefit from the following relations: 

 
1 1

H H R 2cT R 2c(T t)
2T 2(T t)

= = = = +
+

ɶ ɶ ɶ ɶ
ɶ ɶ

  (1011) 

 
and from (932). The expression β is the classic relativistic dilatation-factor (1–v2 /c2 ) 

–1/2, in 
which we apply the propagation-velocity of the metric wave-field cM in place of v. In the 
normal case, the value is extremely close to one. For t = 0 (nowadays) even t in italics is 
one and it applies r (0) = 0. Then solution (1010) passes into in (998), which is an evidence 
for that we have calculated correctly.   

 
To the further saving of computer-time, even the connections can be defined as 

functions. Then, the associated »Mathematica«-program looks like this: 
 
MGamma=Function[Which[ 
{#1,#2,#3}=={0,0,0},-1/(2(T+t)), 
{#1,#2,#3}=={0,1,1},(1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))/ 
                               (2*T*c^2*(1-RhoQ[Q]^2)^2), 
{#1,#2,#3}=={1,0,1},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))), 
{#1,#2,#3}=={1,1,0},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))), 
{#1,#2,#3}=={1,1,1},-2/(3r)*(2r/R)^(2/3)/((1+t/T)^(1/2)-(2r/R)^(2/3)), 
{#1,#2,#3}=={1,2,2},-r/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)* 
                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2, 

{#1,#2,#3}=={1,3,3},-r*Sin[theta]^2/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)* (1012) 
                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2, 
{#1,#2,#3}=={2,1,2},1/r, 
{#1,#2,#3}=={2,2,1},1/r, 
{#1,#2,#3}=={2,3,3},-Cos[theta]*Sin[theta], 
{#1,#2,#3}=={3,1,3},1/r, 
{#1,#2,#3}=={3,2,3},Cos[theta]/Sin[theta], 
{#1,#2,#3}=={3,3,1},1/r, 
{#1,#2,#3}=={3,3,2},Cos[theta]/Sin[theta], 
True,0]]; 

 
The number (1012) doesn’t belong to it of course. The formula has been checked with 
(984). Thus, as next, we can set about to determine the independent solutions for the 
RIEMANN curvature tensor . To the better check and because I have made the effort 
now and then, we want to present all dependent and independent solutions (≠ 0):  

R
a

bcd
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All remaining components are zero. The solutions fill the demand R

a
bcd = – R

a
bdc in turn, 

albeit there are more than before. That’s not astonishing, because g11 depends both on the 
time t, as on the distance r. 

 
For the lowered RIEMANN curvature-tensor Rabcd we obtain the following solutions, 

different from zero: 

R
0

212  =  −
˜ H r
c2

t

t − r
 

sin 2 α  

sin 2 γ γ

R
0

221  =     

˜ H r
c2

t

t − r
 

sin2 α  

sin 2 γ γ

R
0

313  =  −
˜ H r
c2  sin2 ϑ  

t

t − r
 

sin2 α  

sin 2 γ γ

R
0

331  =     

˜ H r
c2  sin2 ϑ  

t

t − r
 

sin 2 α  

sin 2 γ γ

R
1

220  =  − ˜ H r  

1
t (t − r )3  

sin 2 γ γ 

sin2 α  

R
1

202  =     
˜ H r  

1
t (t − r )3  

sin2 γ γ 

sin2 α  

R
1

212  =  −
2
3

r

(t − r )3  

sin2 γ γ 

sin2 α  R
1

221  =    2
3

r

(t − r)3  

sin 2 γ γ 

sin 2 α 

R
1

330  =  − ˜ H r  sin 2 ϑ  

1
t (t − r)3  

sin 2 γ γ 

sin 2 α R
1

303  =    ˜ H r  sin 2 ϑ  

1
t  (t − r )3  

sin2 γ γ 

sin2 α  

R
1

313  =  −
2
3

 sin 2 ϑ  

r

(t − r)3  

sin 2 γ γ 

sin2 α R
1

331  =    2
3

 sin2 ϑ  

r

(t − r )3  

sin2 γ γ 

sin 2 α  

R
2

012  =  − ˜ H r−1 1
t (t − r)

R
2

021  =     ˜ H r−1 1
t ( t − r)

R
2

102  =  − ˜ H r−1 1
t (t − r )

R
2

120  =     ˜ H r−1 1
t (t − r )

R
2

121  =  −
2
3

r−2 r

t − r
R

2
112  =     

2
3

r−2 r

t − r

R
2

332  =  −  1 −
1

(t − r )2  

sin2 γ γ 

sin2 α  

 

 
  

 

 
   sin2 ϑ R

2
323  =       1 −

1
(t − r)2  

sin 2 γ γ 

sin 2 α 

 

 
  

 

 
   sin2 ϑ

R
3

013  =  − ˜ H r−1 1
t (t − r)

R
3

031  =     ˜ H r−1 1
t  ( t − r)

R
3

103  =  − ˜ H r−1 1
t (t − r)

R
3

130  =     ˜ H r−1 1
t (t − r)

R
3

131  =  −
2
3

r−2 r

t − r
R

3
113  =     

2
3

r−2 r

t − r

R
3

223  =  −  1 −
1

(t − r)2  

sin2 γ γ 

sin2 α 

 

 
  

 

 
  R

3
232  =       1 −

1
(t − r)2  

sin 2 γ γ 

sin 2 α 
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 ___________________________________________________________________________ 

   
 

 
   

 
 

   
 

 
   

 ___________________________________________________________________________ 

R1221  =  −
2
3

 

r

t − r
         R1212  =     

2
3

 

r

t − r
 

 

R2112  =  − 2
3

 
r

t − r
         R2121  =     

2
3

 
r

t − r
 

___________________________________________________________________________ 
 

R1331  =  −
2
3

 

r

t − r
 sin2 ϑ     R1313  =     

2
3

 

r

t − r
 sin2 ϑ  

 
    R3131  =     

2
3

 
r

t − r
 sin2 ϑ  

___________________________________________________________________________ 

 
 

 

  

___________________________________________________________________________ 
 
 

The related components have been collected to the better overview. So we can better see, 
that condition (990) is filled. Particularly interesting is, that a part of the solutions are 
velocities (escape-velocity Hr) having even a physical meaning without doubt. 
  

R0212  =  − ˜ H r  

1
t ( t − r)

R0221  =     ˜ H r  

1
t (t − r )

R1202  =  − ˜ H r  

1
t (t − r)

R1220  =     ˜ H r  

1
t (t − r)

R2021  =  − ˜ H r  

1
t (t − r)

R2012  =     ˜ H r  

1
t (t − r)

R2120  =  − ˜ H r  

1
t (t − r )

R2102  =     ˜ H r  

1
t (t − r)

R0313  =  − ˜ H r  sin2 ϑ  

1
t  (t − r )

R0331  =     ˜ H r  sin 2 ϑ  

1
t (t − r)

R1303  =  − ˜ H r  sin2 ϑ  

1
t  (t − r )

R1330  =     ˜ H r  sin2 ϑ  

1
t  ( t − r)

R3031  =  − ˜ H r  sin2 ϑ  

1
t ( t − r)

R3013  =     ˜ H r  sin2 ϑ  

1
t  ( t − r)

R3130  =  − ˜ H r  sin2 ϑ  

1
t (t − r)

R3103  =     ˜ H r  sin2 ϑ  

1
t  ( t − r)

R3113  =  − 2
3

 
r

t − r
 sin 2 ϑ

R2323  =  − r2 sin 2 ϑ  1−
1

(t − r)2  

sin 2 γ γ 

sin2 α  

 

 
  

 

 
  R2332  =     r2 sin 2 ϑ  1−

1
(t − r)2  

sin2 γ γ 

sin2 α  

 

 
  

 

 
  

R3232  =  − r2 sin 2 ϑ  1 −
1

(t − r)2  

sin 2 γ γ 

sin 2 α 

 

 
  

 

 
  R3223  =     r2 sin2 ϑ  1−

1
(t − r)2  

sin2 γ γ 

sin2 α  
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For the RICCI-tensor  now we get the following solutions, which unfortunately no longer 
can be presented in matrix-form, unless in the landscape view: 

 

  

     

 

        RICCI-tensor  (1013) 

 

 

 
The rest is equal to zero. If we apply the present-day values, so all components incline to 
zero in turn. Thus, the metrics behaves approximately in a MINKOVSKIan manner, exactly, 
as anticipated by LANCZOS. For the scalary curvature applies: 

 

  Scalary curvature    (1014) 

 
The course of the scalary curvature for several initial-Q-factors is presented in Figure 146. 
The complete expression r*  for r (1009) ), the values 0…1 corr. 0…R for r, as well as ρ0 
according to (211) were used. It is here only about relative values in comparison with the 
world-radius, i.e. it’s possible to infer on the course of the curvature, but the values aren’t 
comparable with each other. 
 

 

     

Exact world radius ƒ(Q) linear 

 

 
 Exact world radius ƒ(Q) log10 

 

 

  
Figure 146 
Relative scalary curvature for  
various initial-Q-factors 

 
 
Particularly interesting is the course for an initial Q-factor >106, which corresponds to the 
standard-case of an observer in a space of vanishing curvature (nowadays). Here it shows 
again the ascend in the microscopic range, which we could already observe in the previous 
section. But in contrast, the curvature escalates too, when approaching the half world-
radius.  
 

Rab

R01  =  1
˜ T 

r−1 1
t (t − r)

R10  =  1
˜ T 

r−1 1
t (t − r)

R11  =  −
4
3

r−2 r
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1
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2
3

r

(t − r )3

 

 
  

 

 
   

sin 2 γ γ 
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1
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2
3

r

(t − r )3

 

 
  

 

 
   

sin2 γ γ 

sin2 α  

 

 
 
 

 

 
 
  sin2 ϑ
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4
3

r
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sin2 α  
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To the better overview, the course for Q0>106 for positive (space-like) and negative (time-like 
distances) has been separately presented once again in Figure 147. In principle, no difference 
appears there, only a small asymmetry around the point zero. 

   

 
 
Figure 147 
Relative scalary curvature for   
the standard-case Q0>106 

 
The curvature within the „limits“ of the universe is positive, i.e. the space is closed as well 
at the microscopic as at the macroscopic domain. A singularity resides at both ends. 
Outside, the space is open, in so far as an „outside“ should exist at all. 

 
It becomes interesting, if the initial factor becomes smaller, e.g. if we put the origin of 

our frame of reference into an area of high curvature or if we simply go back along the 
time-scale to a point shortly after big bang. Now the macroscopic singularity moves from 
R/2 to the point R at Q0 =1, This corresponds to the conditions directly at the 
SCHWARZSCHILD-radius, which well agrees with our prevision of a phase jump to that 
point of time. This must include the entire universe in order to be complete. That happens 
by a short-term increase of the expansion rate. The particle horizon moves to 2cT in order 
to re-drop later. The world radius R shrinks shortly after the maximum. Thereafter it re-
swells again up to compensation. The course R(Q) is shown in the small pictures right of 
Figure 146. It has been taken from [46] Figure 2. 

 
If we go back any farther, so we come upon an open universe with negative curvature. 

The singularities in the chosen case Q0 =2/3 are at the point R/4 and 5/4R, but only for 
positive (space-like) distances. Thus there is an unbalance not to be neglected. The exact 
course is shown in Figure 148, anew under application of the exact expression r

*
 of (1009).  

 
That might be the reason why material particles (ground state Q0 =2/3) cannot propagate 

like time-like photons (negative direction). Into their own (positive) direction they are 
blocked by a couple of unbreachable poles. They are trapped between (0.25…1.25) ��� r1 that 
is (���…��� r1). Therefore they can only exist in the form of circular standing waves, the so- 
called DEBROGLIE-matter-waves. Space-like photons (see Figure 108) just haven’t a real 
solution until Q0 = 2,318249. That value approximately corresponds to the fourth power of 
1.25. In contrast, an imaginary solution corresponds to a propagation, right-angled to the 
propagation direction, which is a circular path in fact. 
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Figure 148 
Relative scalary curvature 
for the case Q0 =2/3 

 
To the conclusion we already want to specify the determinant of the metrics, as it is fre-
quently used, namely in the form (–g)1/2. We use the built-in function Det[M] to calculate: 

 
2

2 2

2

sin
cr sin

sin γ

−
−

α
γ

= ϑ
t r

g
t

    Determinant  (1015) 

 
Thus, we have established a sound basis, in order to compute the energy-momentum tensor 
of the vacuum, based on this model. 

 
 
 
 

7.2.6. The energy-momentum tensor 
 
At first we compute the lowered tensor Tik namely for a body in the free fall, i.e. the 

vacuum-solution. To the calculation, we can use the famous EINSTEIN equation ([1] 25) 
which is generally valid. Expression ([1] 25) means at the same time, that the so-called 
cosmologic constant λ is equal to zero. As input variable, we require the metrics and the 
therefrom derived functions RICCI-tensor and the scalary curvature. 

 

         ([1] 25) 

 
For the calculation, we use the program »Mathematica« in turn and the following script: 

 
Rr00=-2/r^2*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4); 

 
Mx={{c^2*Sin[GaGa]^2/Sin[Al]^2/tt^2, 0, 0, 0},  
{0, -Sin[GaGa]^2/Sin[Al]^2*beta^4*(tt-rr)^2, 0, 0},  
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}};  

            (1016) 
Rik={{0,1/(T*r)/(tt*(tt-rr)),0,0},{1/(T*r)/(tt*(tt-rr)),-4/(3*r^2)*rr/(tt-rr),0,0}, 
{0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4),0}, 
{0,0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)* 
Sin[Al]^2/Sin[GaGa]^2*beta^-4)*Sin[theta]^2}}; 

Rik –
1

2
R  gik  =  Tik



 
 

258 

 
The calculation itself takes place by the execution of the following line: 

 
Simplify[Rik-1/2*Rr00*Mx]             (1017) 

 
Since it is about the multiplication with a scalar, the asterisk is written here and not the 
point (the * even can be omitted). After the simplification by hand, we get the following 
components different from zero: 

 

 

 

         

            (1018) 

 

 

    

 
Please pay attention again to the italic variables, which have been defined in the previous 
section (1011). Since no more differentiation takes place, we can work on with these from 
now on. An examination of the units of measurement leads to the interesting result that we 
are concerned here neither with energetic nor with impulse-units. This is just right, because 
the energy-momentum tensor is not called so, because it describes energy or impulse on 
any way but because it, among other things, results from the energy- and impulse-
distribution in space. Indeed, the components are containing all these information, 
including the probable existence of one or more mass-distributions, the mass of the test-
body, its impulse, velocity and direction of motion. More final although not in (1018), since 
these components are applied only to a body in the free fall. Thus, also the existence of an 
any mass-distribution cancels out then (equivalence-principle). 

 
If we would want to co-include all these values into the calculation, we would have to 

calculate all expressions anew, incipient from the line-element, now applies r = ƒ(t,s) and 
sin γγ  =ƒ(v,r,m) additionally. Because of the multiple derivatives, then additionally 
expressions appear in the results like the acceleration a, the integral across the way s and 
the way s itself. Because of the pathway-dependence and the infinite number of options of 
matter-arrangement therefore no universal solution can be given, so that we have to 
determine all tensors and scalars for each problem anew. By no means the solutions will be 
simple, even the vacuum-solution in the free fall is already complicated enough. 

 
In terms of mathematics however, we have put all fundamentals in order to reach an 

explicit solution, unless we have to integrate across a larger distance r at the end in order to 
get a not-local result. Then there is no explicit solution, as we have already seen. 
Fortunately this case plays no role, if we consider bodies in the free fall only. These, that is 
to say, don’t move in reference to the metrics and the distance-function with constant wave 
count vector is known. 
 
Now however back to the energy-momentum tensor. As next, we will calculate the inverse 
tensor Tik, which we require to the determination of the geometry Gik. Now please don’t get 
the idea, to calculate the inverse tensor directly with the help of the »Mathematica«-
function Inverse[Tik]. You still get a result indeed, but this is so complicated, that you 
cannot use it in this form. The simplification with the help of Simplify[Inverse[Tik]] finally 
breaks down because of memory-lack. 
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The solution is in following approach: First, we generally calculate the inverse tensor 
under exploitation of the fact, that, on the one hand, a bulk of the components is zero and, 
on the other hand,  T01 = T10 applies. After subsequent simplification, we foist the 
component-definitions, in that we define them only now (use the function Clear[] for 
additional run). We do the following approach: 

 
MPart=Function[Part[Part[#1,#2+1],#3+1]]; 
Tik1={{t00,t01,0,0},{t01,t11,0,0},{0,0,t22,0},{0,0,0,t33}};   (1019) 

 
TIK2=Simplify[Inverse[Tik1]]       (1020) 

 
        t11              t01 
{{---------------, --------------, 0, 0},  
      2               2 
  -t01  + t00 t11  t01  - t00 t11 
  
        t01              t00                       1                  1 
  {--------------, ---------------, 0, 0}, {0, 0, ---, 0}, {0, 0, 0, ---}} 
      2                2                          t22                t33 
   t01  - t00 t11  -t01  + t00 t11 

 
 

I just presented the result in the original-output-format, since it’s only about an 
intermediate-solution, which speaks in behalf of itself. In any case, it’s not all too 
complicated. Now, we foist the component-definitions: 

 
t00=c^2/(tt^2*r^2)*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*beta^-4* 
Sin[Al]^2/Sin[GaGa]^2)*Sin[GaGa]^2/Sin[Al]^2; 

t01=-1/T*r^-1/(tt*(tt-rr));        (1021) 
t11=1/r^2*(1-(tt-rr)^2*beta^4*Sin[GaGa]^2/Sin[Al]^2); 

 
We can dispense with T10, T22 and T33 since we can write down the result immediately. We 
get the other components by execution of: 

 
Simplify[MPart[TIK2,i,k]]        (1022) 

 
The results must be simplified by hand once again and are being pretty complex. To the 
simplification of the representation and avoidance of errors, we take up a substitution again, 
namely as follows: 
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   (1023) 

 
Then, the components different from zero of the inverse energy-momentum tensor Tik are as 
follows: 
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As it shows, the components of the inverse energy-momentum tensor are already quite 
complex however. They will simplify with the calculation of the geometry Gik then again. 
The examination of the components T0k. For a MINKOVSKI-world namely applies: 

 
          (1028) 

 
This expression is generally [30] interpreted as the energy-conservation-rule. It can be 
easily shown, that expression (1028) doesn’t apply for this model, whether to the universe 
as a whole, nor in the individual reference frame. But just as the masses can cancel out 
there, this can also happen with energy parts. An example is the red shift. Here, energy is 
quasi discreated by the increase of the wavelength. Eventually this effect may not be 
registered in another reference system. According to [5] the energy-conservation-rule is 
»only an empirical rule, thus it could be violated by yet unknown physical phenomenons«. 
Thus, there is just no definite proof for its universal validity. Also (1028) only applies to an 
empty MINKOVSKI world. 

 
Now, one could modify the rule in such a manner that energy can be discreated indeed, 

however not recreated from the nothingness. But including the primordial impulse into the 
contemplation, we would have to reject even this weakened form. The primordial impulse 
according to this model just results from the inherent-solution (initial-value = 0) of the 
corresponding differential equation. Furthermore, this model permits even imaginary 
energies as well as masses. It would be possible with it that energy „vanishes“ temporarily 
(being inactivated), in order to „reappear“ later on. An example would be the weak 
interaction in form of the neutrino-capture. 

 
Altogether it’s possible to say that no arguments can be derived from the violation of the 

energy-conservation-rule in order to discard this model. 
 
 
 
 

7.2.7. Solution of the field-equations of the relativity-theory 
 

7.2.7.1. The coupling-constant 
 
After we have completed all pilot surveys and specified the energy-momentum tensor of 

the vacuum for test-bodies in the free fall, finally remains, to compute the associated 
geometry Gik. According to [30] this arises to: 

 
          (1029) 

 
In this connection, κ is a proportionality-factor, which is even marked as the coupling-
constant of the URT. It must not be mixed-up with the specific conductivity of the subspace 
κ0. Its value arises from the NEWTON’s borderline case, which, of course, must be filled 
also for this model. But before simply substitute here we want to re-engage with the 
substantiation of (1029), as it has been presented in [30] from p.189 on. 

 
We first of all assume, that the energy-momentum tensor in MINKOVSKI-coordinates fills 

the conservation-equations: 
 

∂ kT
ik =  0           (1030) 

 
However we are concerned neither with MINKOVSKI-coordinates, nor (1030) is fulfilled, as 
we have seen exactly in the previous section. Now D´INVERNO assumes that the principle 
of the minimum gravitative coupling suggests the universal-relativistic generalization: 

 
∇ kT

ik =  0           (1031) 
 

(covariant derivative). Furthermore, the Einstein-tensor should vanish because of the 
contracted Bianchi-identity: 

∂kT
0k ≡  0

G
ik =  κT

ik
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∇ kGi

k ≡  0   therefrom follows  ∇ kG
ik ≡  0    (1032) 

 
The condition (1032) is really filled, as from the properties of the RIEMANN curvature 
tensor in section 7.2.5.5. under application of 

 
∇aRdebc + ∇cRdeab + ∇b Rdeca ≡  0          ([30] 6.82) 

 
easily can be shown. From (1031) and (1032) concludes D´INVERNO, that both tensors 
must be proportional to each other. The problem now seems to be, that D´INVERNO with 
the derivative of (1031) refers on the principle of the minimum gravitative coupling, which 
we just have declared as invalid for our model. Instead, we have replaced it with the 
principle of the maximum gravitative coupling, which as such demands the proportionality 
of both tensors even much more strongly. That’s tantamount to the statement: „The matter 
determines the geometry“, so that there don’t should be any problem in this sense. 

 
A question however remains open with respect to the classic interpretation, respectively 

it results from the principle of the maximum gravitative coupling additionally. Whereas, 
according to the classic theory, we can write down the coupling-constant immediately after 
it’s determination with the help of the NEWTON’s borderline case (→[30]), there are two 
options available with this model: 

 

      or      (1033) 

 
On this occasion, the choice is not necessarily easy for, since the (local) gravitational-
constant, according to this model, is a function of space and time once again. By the 
following gedankenexperiment however we acquire the right solution: When the principle 
of the maximum gravitative coupling truly is so much more powerful, the proportionality 
must be guaranteed (1029) always and everywhere, otherwise the NEWTON’s borderline 
case would be fulfilled only in the point r = 0. But since the energy-momentum tensor 
already contains a space-temporal dependence, only the right-hand expression (1033) 
remains as single option. Therefore, after substitution of (799) applies: 

 

  

κ =  
8π˜ R ̃  Q 0
µ0κ0ℏ1

 =  
8π˜ R 

µ0κ0
˜ ℏ 

 =  
8π  c˜ r 0

2

˜ ℏ 
            (1034) 

 
Since expression (1034) contains reference-frame-dependent values (

  
˜ R ,  ˜ r 0 ,  ˜ ℏ ) the 

geometry now depends additionally on the frame of reference, a fact, which actually goes 
without saying, if we rescind the limit between SRT and URT. Considering a body from 
another frame of reference, we will observe not only the condition-variables of the body 
itself by different means but also the geometry of the space around, since it now owns a 
structure. In the classic relativity-theory, one assumes, that the universe, with exception of 
matter and radiation, is filled by »NOTHING«. And a »NOTHING« doesn’t change 
because of that it’s observed from another frame of reference. We can write therefore: 
 
 

 
XIII.  The geometry is determined by matter and the frame of reference. 
 

 
 

Now we want to continue in that we compute the geometry, associated to the energy-
momentum tensor. The geometry Gik is also known as EINSTEIN-tensor. 

κ =  8π
G
c2 κ =  8π

˜ G 
c2
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7.2.7.2. The geometry of the vacuum 
 
 
After the determination of the inverse energy-momentum tensor and the coupling-factor, 

we must only form the product of both, in order to get the (inverse) geometry Gik. Since this 
is trivial in terms of mathematics, the results should not extra be presented. 

 
We however do not actually look for the inverse geometry Gik, whatever should be that, 

but for the geometry Gik. Furthermore we have seen that the inverse energy-momentum 
tensor alone consists of very complex expressions. If we now try to calculate the normal 
geometry from the inverse geometry (under application of the function Inverse[GIK]), so 
we are right next to the limits of the program »Mathematica« in turn. These express 
themselves in it that the computer-time rises into the immeasurable. But I did not watched 
for the result at all. Instead I have been concerned about, whether the calculation of Gik can 
take place even more simply and particularly more quickly. Expression (1029) in 
combination with Inverse[GIK] namely is not especially well-suited for the calculation of 
Gik. With a similar approach like in the previous section now can be shown, that Gik can be 
calculated directly from Tik. For symmetrical tensors applies then: 

 
1=
κik ikG T           (1035) 

 
As it looks like with asymmetrical tensors and universal matrices, we do not need to 
examine in this place, since Tik is always symmetrical. Then, we get for the geometry: 
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On this occasion, I applied all possible transformations from the premier sections. Also the 
units of measurement have been presented, so that you can imagine, at least approximately, 
which physical content do the individual components have. This fact is also the reason, 
why the work cannot be continued at this point. Indeed, it’s possible to calculate a stuff, but 
that does not satisfy anyway, especially since we already have gone off on a tangent from 
the standard-model. 

 
Particularly interesting at (1036) are the components G00 (pressure) and G11 (density). 

More final only can be the density of the empty gravitational-field without matter. 
Unfortunately, all interesting components depend on the distance rs. For a test, we just want 
to calculate the density for the entire universe (r  = R/2). Then, we get: 

(1036) 
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29 30 0 1
3 3

M1 3 3
(R/2) 1.29784 10 kg dm (R/2)

2 R 2 4 R
− −µ κ

= = ⋅ =
π π11 11G G

ɶ ɶℏ
ɶ

ɶ ɶ
 (1037)

 
 

with M1 = Q0 m0. The result is exact 2/3 of the density of the metric wave field (370), 
determined in section 4.6.2. which is obviously much more than the gravitational field only 
(⅔ gravitation, ⅓ EM-field). Furthermore the value is about 3 magnitudes greater than the 
matter-density of 1.845·10–31

 kg dm–3 determined in section 4.6.4.2.5., which may be regar-
ded as proof, that we are living in a radiation-dominated universe or else said, the matter is 
only of local influence, being irrelevant for processes, which include the entire universe. 
Therefore, it even does no sense, to search-on for „hidden“ masses. 

 
 

7.2.7.3. The 3-layer-model of the metrics 
 
Considering the expressions of (1036) once again, so it shows, that they are containing 

(partially hidden) quantities of the subspace (µ0, κ0, c), the metric wave-field (ω0, r0), the 
quantum-theory (ℏ) and quantities of the macrocosm (T, R) at the same time. In this 
connection, all quantities, marked with a tilde (~) including ℏ are part of the same canonical 
ensemble, called the frame of reference. All these quantities have influence on the 
geometry of the universe. On the other hand (1036) describes only the upper level or layer, 
the macroscopic metrics, that is the space or better the space-time, we live in. 

 
To the better understanding the basic construction of the metrics is presented in Figure 

149 once again. It consists of three overlapping layers. Therefore, I would like to name this 
model the 3-layer-model of the metrics. 
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Subspace

Metric wave-field

Macroscopic metrics

r2 ?

r1

r0

R

Magnitude
Area of application

Subatomic particles
and atoms

 
 

Figure 149 
The 3-layer-model of the metrics 

 
The magnitude of the individual layers, the scale is logarithmic, is logged at the left 

margin. Therefore it is possible that the subspace owns a lower limit and a structure too. 
Unfortunately, we can only suspect this. The only one we know about subspace is, that it 
owns the physical properties µ0, ε0, Z0 and c. That means, the speed of light in reference to 
the subspace is always c constantly. 

 
Above, there is the metric wave-field, described by the relations in the premier sections. 

The PLANCK’s fundamental length r0 forms the upper ending.  
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All processes, running in areas of larger dimensions than r0, are described by the 
macroscopic metrics gik. For the sake of completeness, the location of the atoms and 
subatomic particles is presented within this macroscopic metrics as well. But since these 
are independent spherical symmetrical solutions of the field-equations, they appear only in 
passing at this point, as interferences, the gravitative effects are caused by. 

 
The deeper we go down, all the greater the field-energy, which is masked by quantum-

effects in reference to the superjacent layer. Such a quantum-effect e.g. is the spin of the 
MLE, which compensates the energy of the metric wave-field in reference to the 
macroscopic metrics (T = 0K). This structure figures an essential advantage in reference to 
other models. It just allows the existence of areas with negative (difference-)energy, which 
e.g. LANCZOS disclaims as unphysical. Also the question would be become clear, where the 
energy comes from to the production of virtual particle-antiparticle-pairs. This „borrows“ 
the universe from the subjacent layer. 

 
The whole matter becomes more interesting, if we extend the contemplation to the 

underlying subspace. If this should own inherent energy too, so it’s density should be even 
more essential above the one of the metric wave-field, namely in the magnitude of the 
primordial impulse. On the other hand this would explain, from where its energy could 
come. Then, similar to the processes with the (quantum-)pair production (virtual or real), it 
may be, that there are analogue effects within the subspace, allowing the pair production of 
whole universes. In this sense, I only hope that we don’t live in a virtual universe… 
Quantum theory is very strange. 

 
 
 
 

7.3. Even gravitational-waves 
 
D´INVERNO reminds in [30] on the possibility of the existence of even-frontal 

gravitational waves. Now, we could try, based on the relations of this model, to define such 
a wave-function, especially since D´INVERNO presents an usable approach for it. Although 
I am of the opinion that such a wave-function would not correspond to the realities, since 
we have already found a metric wave-function. Such a course of action would be 
approximately comparable with the attempt, to define a wave-function for the envelope of 
an amplitude-modulated radio-signal, when the wave-function of the carrier wave is 
already known. Here it’s much more opportune, to assign the transportation-function 
(wave-function) to the carrier wave and to consider the envelope only as a function of it’s 
own. And with the macroscopic metrics it’s the same. This can be compared with the 
envelope, whereas the transportation takes place by the metric wave-field. 

 
Nevertheless we should not reject the explanations of D´INVERNO, because they still 

contain a lot of interesting information. Also, they aren’t flatly to be regarded as wrong. 
 
Based on the linearized form of the field-equations and with the help of the calculus of 

variations D´INVERNO draws the conclusion that these waves should consist of two 
independent components (h22 and h23) having transversal character, and whose polarization-
planes are oriented in the angle of 45° to each other. 

 
Furthermore, the amplitude of the h23 -component should be about the factor 1/�� smaller 

than that of the h22 one. I would not like to go more in detail (these you can look up in [30] 
looks). but only examine, in what extent our model turns out to be compatible with the 
statements of D´INVERNO. In Figure 1 we had already pictured the crystalline structure of 
the metric wave-field, just as predicted by LANCZOS. If we look for independent 
components, filling the conditions named above, so we find the subsystems painted in 
Figure 150 and 138, which are twisted to each other about an angle of 45° in all three 
spatial dimensions indeed, and also the geometrical „dimensions“ are right. The metric 
wave-field of this model could just really be the legendary gravitational waves. 
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Figure 150             Figure 151 
h22 -component of an oscillating even-    h23 - component of an oscillating even- 
frontal gravitational wave (+ polarization)    frontal gravitational wave (× polarization) 

 
By the way, our model avoids some inconsistencies addressed by D´INVERNO. One of it 

is the problem with colliding even-frontal gravitational-shock waves. D´INVERNO draws 
the conclusion that these no longer remain even-frontal then, just that the shape of intrinsic 
singularities must actually occur, which never have been detected. All together, the 
problem is elusive, mathematically and physically. 

 
This disadvantage is avoided by our model. The reason is, that the metric wave-field 

forms the space itself, being everywhere and always and it’s isotropic besides. Therefore, 
not at all there’s going to be a „collision“ of two waves and the problem is not a real one. 
And we can relativize even another statement of D´INVERNO. On p. 373 namely he writes: 
»Although such solutions – as infinitely extended objects – are extremely unphysical, so 
one however hopes that they describe some characteristics of real waves of isolated sources 
in the long-distance-zone...«. Now the expansion of course is not infinite but nearly infinite 
only. But if there is a grain of truth at this model, so such waves would not be unphysical 
by no means then. 

 
 

7.4. Experimental tests 
 
To each reasonable theory normally the verification belongs on the basis of experimental 

tests. Now, it is not always easy, as a general rule with cosmologic problems actually 
impossible to enforce experiments at all. Thus, in the end only the standard-set remains, 
consisting of following components: 

 
1. The gyration of perihelium of the Mercury 
2. The light-distraction in the gravitational-field 
3. The gravitative red-shift 
4. The delay of light 
5. The Eötvös-experiment 
 
These are all described in [30] in detail. But the exact verification we could have spared 

ourselves in this case. The reason is, that we have come to relations or statements in our 
model, which match those of the classic EINSTEIN theory in the approximation. But since 
the measuring results of the above mentioned experiments are partially quite inaccurate, we 
will come to the result that our model is (can be) right automatically, exactly as the classic 
EINSTEIN model. Partially, the measuring-precision is not even enough thereto. Since 
maximally one of both model can be right (minimally none), it’s about no exact proof 
therefore. The only experiments as well as measurements, which could result in a proof, 
may be: 

 
6. Proof and determination of the value of the specific conductivity of the vacuum 

by measurement on the basis of quantum physical effects (e.g. superconductivity, 
ratio between gravity and strong interaction). Status: didn’t take place. Chance 
of success: low, because value too extreme. But the value can be calculated 
extremely precise and may be fixedly defined. 
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7. Determination of the exact value of the electron charge as a function of q0 on 
the basis of quantum-electro-dynamic contemplations using the exact 
curvature-function. See section 6.2.2. Here we were able to get a very good 
result even for other natural constants as well. Sudoku-proof successful. 

 
8. Determination of the value of the HUBBLE-parameter on the basis of locally 

measurable quantities. See section 6.2.2. and 7.5. 
 

9. Determination of the value of the HUBBLE-parameter on the basis of the exact 
temperature of the cosmologic background-radiation. See section 7.5.3. 
 

10. Verification of the value of the HUBBLE-parameter, calculated according to this 
model, with the help of exact astronomic measurements. The value determined 
in section 4.3.4.4.6 is within the measurement accuracy of the 
COBE/WMAP satellites. In section 7.5.5. is taken up a  
comparison with other values. 

 
Maybe, the proof even takes place in a completely different domain. 
 
 
 

7.5. Relations between the HUBBLE-parameter and locally measurable quantities 
 
 
We set up a model, which describes the relations between the natural constants and the 

frame of reference. With it it’s important to determine the exact value of the HUBBLE-
parameter, which is closely linked to the phase angle Q0. It could be shown, that Q0 is 
identical to the reference frame. The exact value could be determined and verified by 
means of the electron mass. But there are other ways to determine Q0 with the help of 
locally measurable quantities and relations of the microcosm, which lead to different 
results. 

 
Therefore, this section is also intended as an aid for those who think they have already 
found the right result. Because with one result, no matter how wrong it is, you can well 
calculate-on. However, if you have several different results available, you need to verify 
them and make a choice. The order of the presentation is also identical to the path I have 
taken up to this point. 

 
 

7.5.1. EDDINGTON’s numbers and the unity of the physical world 
 
On the occasion of the then 100th birthday of A. S. EDDINGTON in [32] an article has 

been published, in which his efforts were appreciated, to develop an uniformly built 
physics. So, EDDINGTON

1
 assumed, that „all structures (and the corresponding operators) 

can be referred on one unique »operand«, namely the universe“. Because from the basic-
constants of the physics dimensionless numbers can be formed, of which some directly 
regard the ratio of micro- and macrocosm. Particularly, we are interested in the following 
value, given by him: 

C =
1

4πε0G
e2

memp
         (1038) 

 
Of course, EDDINGTON had omitted the factor 4π at the time, since ε0 normally always was 
left out, since it „is equal to one“ → recovery error. However, for the sake of completeness, 
we insert it at this point because we would get a wrong result otherwise. Expression (1038) 
is equal to the ratio of electric and gravitative attraction between an electron and a proton, 
just at a hydrogen-atom. It’s about a dimensionless number with the value 2.26866·1039 
resp. 2.85088·1040, when omitting the factor 4π. Now it would appear, that C somehow 
                                                
1
   In [54] however this statement is attributed to Dirac. At this point I would like to leave it open who is right. 
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corresponds with a dimensionless number of this model. Here the Q-factor 
Q0 = 8.34047·1060 would offer itself, which is equal to the phase-angle of the metric’s 
wave-function being identical to the frame of reference. In order to test, whether such a 
relation is possible, we first of all proceed like with the examination of the fine-structure-
constant. We replace the electron charge e by the charge of the MLE q0, as well as the 
electron mass me and the proton mass mp by the mass of the MLE m0 under application of 
(29), (31), (36) and (37): 
 

  

C =
1

4πε0G
q0

2

m0
2  =  

1
4πε0G

ℏG
Z 0ℏc

 =  
1

4π
      (1039) 

 
Exactly like with the fine-structure-constant we obtain the geometrical factor 1/4π even 
here. Therefore we can assume C to be really suitable for this purpose. Since the electron 
charge and -mass at Q0=1 are equal to the charge and mass of the MLE in the 
approximation and this and C also would have to be equal to one then (in reality it is the 
case at Q0=2/3), we leave out the factor 1/4π in future considering the value: 
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This equals to Q0

2/3 approximately, as a comparison with the astronomically determined 
value from Table 1 shows:  
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        [7.5419·1060]     (1041) 

 
Now, with the help of H0 = ω0/Q0 (54) the HUBBLE-parameter can be calculated: 
 

H0(C
3/2)  =  118.904 km s–1Mpc–1    [75.9]        (1042) 

 
Obviously, the left-hand value doesn’t match the astronomic observations. Maybe there is a 
constant factor, to multiply expression (1041) with, in order to find out a better matching 
result. With a constant factor (we already omitted 4π) the expression still can be used in the 
thought manner, if it’s not arbitrary. During the determination of H0 for a constant wave 
count vector we had also noticed, that the HUBBLE-parameter H1 for the entire universe 
(R/2) is exactly 3/2 times greater than the local value H0. Let’s give a try to 2/3 therefore: 
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The result agrees fairly well with the value determined in section 4.3.4.4.6. in the amount 
of 75.9 kms–1Mpc–1, but it’s miles away from the electron-based one (860). But this match 
can be a pure coincidence. Thus, we must examine, whether the temporal shift as well as 
the shift with Q0 of the values, used in (1043), are being consistent with the shift of H0. 
Therefore we combine (1043) with (29) and (54) under consideration of the following 
dependences: 
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Applying these dependences to the left expression, we get the following: 
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H0 ~ Q0
–5/2

   Actual as per expression (1045)          H0 ~ Q0
–4/2

   Reference due to  

� 

H0 =
1

2T
  (1046) 

 
Once again to the information: T is the local age, a time-constant of this model, and not to 
be mixed-up with the total age 2T. But what like to interpret this difference? The most 
simply answer would be to argue that it’s really about a coincidence, that the left value of 
(1044) matches the observations. But we don’t want to make it so simple. Therefore let’s 
return to the supposition of EDDINGTON, that „all structures (and the corresponding 
operators) refer to one unique »operand«, namely the universe“ (as a whole). What would it 
mean, when expression (1045) really would describe the properties of the universe as a 
whole? 
 

In the course of this work, we have worked out the dependencies of the various quantities 
on Q0. And in section 4.5.2. we determined, that the expansion-velocity for distances 
greater than 0.01R is not given by H0r, but by Hr, at which point H, according to the 
distance, takes on values between 1/(2T) and 3/(4T) (345). For the universe as a whole 
(distance R/2) applies H=3/(4T) then. This arises from the demand that for such distances 
the distance-function with constant wave count vector is applied. Now, also explains the 
excessive value of (1042) and why we had to multiply it just with 3/2. This alone could 
already be regarded as appearance-proof. But further applies: 
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As it shows, all quantities, except for the local metrics, which determines also the distances 
between bodies, connected by means of gravity in the local area (<0.01R), expand 
according to the same function of the universe as a whole. Neither this can be else. If really 
all quantities, including the local metrics, would expand according to the same function, no 
expansion would be detectable at all. Here turns out a weak point of all so-called standard-
models: They either all work with a linear metrics or with a patchwork as metrics and 
thereat actually should be to be detected no expansion at all. Therefore the universe may 
own only a non-linear metrics, as described in this work. Calculating the expansion-
velocity as well locally as for the universe as a whole, so we obtain: 
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It can be shown, that this is applied to any distances between r0/2 and R/2. The expansion-
velocity just changes according to the same function, irrespective how far away the 
considered area is. As a result, the structural integrity of the universe remains intact. The 
contradiction has been solved. 
 
With it, we have proven, that expression (1045) according to this model is really suitable to 
the determination as well of H1 (universe as a whole) as of H0, at which point the more final 
value always amounts to 2/3 of H1. 
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Do we must worry about our metering rule? The answer is no. Since at present, the meter is 
defined on the basis of the speed of light and a time-etalon oriented at atomic scales and 
these all trace the universe as a whole, the same is applied even to the metering rule. But 
there should still be specialists, who reckon with miles... 

 
In addition to the calculation based on the electron mass, we have found second way to 

determine H0 using locally measurable quantities. In contrast to this model, which is based 
on the PLANCK length (1:1), it is based on the hydrogen atom (1:1040). The question is, is 
there a third one? As a matter of fact. From (1047) one can see that the elementary length r0 
and the electron radius re change according to different functions of Q0. This way Q0 can 
also be determined and thus H0 too. We have already considered this case in section 6.2.5. 
For Q0 we get then: 
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This corresponds to the value H0 = 71.9963 km s–1Mpc–1 I have favoured so far (actually 
71.9845 with the BRUKER value of G). This value also does not match the measurement 
results of the COBE satellite. However, the electron radius re is contained three times in 
(1049) and in Section 7.2.5. we had noticed that the electron is a 4D object whose radius is 
curved and therefore has to be multiplied by a correction factor ζ. This then leads to the 
correct result, which agrees with both the electron mass and the COBE value: 
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Now we have already found three different ways to calculate Q0 and H0, getting several 

different results. Only the electron values led to a correct result. But that’s not all, there is 
also a fourth possibility. Combining both values, the first amounts to approximately 1040, 
the re/r0-based to approximately 1020, we acquire an especially simple relation:  
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Here, even the factor 4π has been taken into account, being omitted in (1040). The 
expressions are proportional to Q0

–5/2 in turn and do not contain the PLANCK’s quantity of 
action surprisingly (no QED-difference?). In the numerator are only mechanical, in the 
denominator only electric quantities.  
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It is to be noted, that all values are reference-frame-dependent. To the better overview, once 
again all results in tabular form in comparison with the COBE measured value: 
 
 

Expression Q0 H0 H0 H1 H1 QED 

 [1] [s
–1

] [kms
–1

Mpc
–1

] [s
–1

] [kms
–1

Mpc
–1

] Correction Factor 

(1043) 7.2204·1060 2.569·10–18 79.2696 3.853·10–18 118.904 1.10102  δ–3/2 

(1052) 7.4558·1060 2.488·10–18 76.7670 3.732·10–18 115.151 1.06627  δ–1 
(TAB1) 7.5419·1060 2.460·10–18 75.8966 3.690·10–18 113.845 –  − 

(1049) 7.9498·1060 2.448·10–18 71.9963 3.500·10–18 107.995 1.00000  δ0 

(1050) 8.3405·1060 2.224·10–18 68.6241 3.336·10–18 102.936 1.01612  ζ 
(802) 8.3405·1060 2.224·10–18 68.6241 3.336·10–18 102.936 –  − 

(COBE) 8.3415·1060 2.223·10–18 68.6071 3.335·10–18 102.911 –  − 
 

Table 8 
HUBBLE-parameters as a function 

of local quantities (overview) 

 
Interestingly, the values (1043), (1052) and (1049) can be converted into one another 

using a factor δ
n/2. However, the table is not complete. Strictly speaking, the number of 

possible solutions is unlimited. But there is only one correct solution. If you happen to have 
chosen a value from the table and found that the real measured values do not match your 
model, simply try a different one. 

 
 
 
 

7.5.2. Distance-vectors 
 
Due to the progress in the technical domain taken place in the most recent time, the 

astronomers are able to look into the universe deeper and deeper and with it even farther 
back in time. The farther one looks however, all the more the structure of the universe 
becomes notably and must be taken into consideration on the interpretation of the 
measuring results. Otherwise the much money would have been poured down the drain. 

 
But before expanding further, just let’s have a look at a so simple quantity, like the 

distance respectively the spacing to a stellar object. The astronomer just sits in front of his 
telescope, observing an object and he tries to determine with different methods, how far 
away it is. But before he can determine the HUBBLE-parameter, he must determine the 
distance respectively the spacing to the object of course. And the first problem already 
appears here: What do we actually mean by distance as well as spacing? And what do we 
really want to determine? 

 
In the close-up range this question can be answered relatively simply: The spacing is 

equal to the distance and the light from the object has covered this, when it has arrived at 
the observer. But if we leave the close-up range, looking at objects farther away, it’s no 
longer like this. At first, we look at the object by means of photons, which have moved 
from the object into our direction. Thus, in reference to the metrics, it’s about an 
(incoming) time-like vector (Figure 152 and 145 rT red pictured), a negative distance. We 
call it time-like distance. It corresponds to the constant wave count vector of the metrics. 
On this occasion, we however actually observe the zero vector and not the time-like vector. 
With vanishing curvature both coincides indeed.  

 
But the object, we observe nowadays, is already located at a completely different 

position, as our observation-data want to make believe, since these are already totally 
„outdated“, when they reach us. One feature of this model is now, that this is not the case. 
Even when the signals are already very old, the object really resides in reference to the 
observer’s R4-coordinate-system at that very position, where he observes it. The length of 
the vector from the object to the observer however cannot be influenced by him, because he 
is just only observer. 
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Figure 152      Figure 153 
Distance-vectors with an object    Distance-vectors with an object 
at the edge of the universe (schematized)  in the close-up range of the observer (schematized)  

 
But if the observer has the intent, to visit the object, that would be an (outgoing) space-

like vector then, a positive distance/spacing, this cannot take place on the same way, which 
the ray of light has covered, because the observer would have to move with c thereto and 
each zero vector is unique. Now, another distance/spacing is applied to him. 
 
To the difference between distance and spacing: These are (approximately) equal in the 
close-up range only. With larger distances, objects in the free fall move away from each 
other according to the distance-function with constant wave count vector. That would be 
the real spacing (rK blue pictured). With it, also the definition of the space-like distance 
turns out (rR green pictured). This is the shortest way between the observer or better the 
traveller and the object. It is an imagined line and coincides with the coordinate r of the 
coordinate-system. Locally, it is equal to the space-like vector of the metrics. 
 

But this way, the destination cannot be reached in the free fall, as an analogy from the 
navigation suggests – the difference between latitudinal and great-circle-distance. When 
start and destination are on the same latitude and if it’s not exactly about the equator, the 
great-circle-distance is always smaller than the latitudinal-circle-distance. During great-
circle-navigation however, the captain must change the course continually, just accelerate, 
whereas he could theoretically continue his journey without acceleration on the latitudinal 
circle, just in the free fall, when the water resistance would be zero. Thus, the voyager has 
the chance, to influence the distance, namely by means of navigation. To the better 
overview the definitions once again: 

 
 
1. The zero vector rN is the way a ray of light covers, at which point the velocity in reference  

 to the subspace is c constantly. In the local range it is equal to the geometrical sum of  

 space- and time-like vector. 
 

2. The time-like distance rT is the way a ray of light, starting from the source, has covered,  

 when it has been arrived at the observer. In the local range, it corresponds to the time- 

 like vector of the metrics. But actually the zero vector rN is observed. 
 

3. The spacing rK is the distance between two objects in the free fall. The vector proceeds  

 along the field-lines of the gravitational-field and varies according to the spacing-function  

 with constant wave count vector. It corresponds to the zero vector rN of the metrics. 
 

 4. The space-like distance rR is the shortest vector between a traveller and his destination.  

  It’s about an imagined line. It is identical to the coordinate r of the coordinate-system. In the  

  local range, it corresponds to the space-like vector of the metrics. If one wants to travel  

  along this line, permanent navigation (acceleration) is needed. 
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But let’s descend to the time-like distance once again. This is the distance, the 
astronomer determines, when he analyzes incoming light- or radio-signals (zero vectors). 
They are subject to a red-shift according to the propagation-function in section 4.3.5.4.3. 
resp. 5.3.2. The time-like distance is limited to the maximum time-like distance, which 
results from the Total-Age 2T. It applies rTmax = R = 2cT.  

 
All these vectors are coming from the same point {r1, r1, r1, 2t1} and are ending at all 

points of the hyper-surface {R, R, R, 2T} at the same time. Both are superimposed for any 
observer. The point {r1, r1, r1, 2t1} is quasi „smeared“ across the whole universe, i.e. all 
points on the hyper-surface are interconnected via {r1, r1, r1, 2t1} and, since photons are 
timeless, even instantaneously. That may be the cause for such effects like quantum 
entanglement etc. 

 
In the course of this work, we had learned that the maximum space-like distance amounts 

to only the half of it: rRmax = R/2 = cT. It would be interesting if we were able to convert the 
above values into one another. First of all, expression (283) would be suitable for this: 
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    (283) 

 
Considering the two expressions now, one recognizes that these fail at the „edge“ of the 
universe. The left-hand expression submits a negative infinite time-like distance for R/2, 
the right-hand expression a space-like distance of  0.447214 R = 0.894427 cT for –R/2. 
Actually, a value of 0.5 R = cT should arise however. In addition, since rT returns to its 
starting point over time, there should be a second solution for the left expression. In section 
4.3.5.3. on the other hand we have learned, that the maximum propagation-velocity of the 
metric wave-field is 0.851661c and not c to the point of time 0.748514 t1. With it, the 
maximum space-like distance would actually have the value 0.851661 cT only and not 
0.894427 cT respectively cT. This contradiction has been solved in section 4.5.2.2. 

 
With the time-like vector we must pay attention to the following: This can be both, an 

incoming (negative distance), as well as an outgoing vector (positive distance). An observer 
always is concerned with an incoming vector, whose length is limited to –2cT. The light 
has traversed the entire universe then and has been rearrived at it’s starting point, a space-
like singularity (event horizon). The farthest (rR) starting point of an incoming time-like 
vector is in the distance –cT. The maximum length of an outgoing time-like vector on the 
other hand is unlimited because it directs to future. Of course, it is even subject to the 
parametric attenuation. It’s impossible to send signals back in time. 

 
Of particular interest are the signals directly from the Big Bang –2T. These have reached 

their starting point again and are to be observed as cosmologic background-radiation, 
although with extreme red-shift. The picture, which it generates, is really the view of the 
point of observer to the point of time –2T, however mirror-inverted in all four dimensions 
(an outgoing time-like vector becomes an incoming one). The range between –2T and –T is 
also accessible indeed, but these signals come from areas at the opposite end, with a lower 
distance than –R/2, at which point the signal is coming „from behind“ on a detour. In this 
case applies, the older the signal, the nearer the source (neater). 

 
 With it, both expressions are been suitable only conditionally for the calculation of 
problems involving the universe as a whole. For further considerations we need the correct 
expressions considering the angle α. It can be determined with the help of (212) as a 
function of Q. Since Q in turn depends on the distance r, it has the value Q0 at the observer, 
at the distance R/2 it is equal to one, we need a function Qr = Q(r). We get it by rearranging 
(895) to (1056), since r is oriented in the opposite direction in this case. The expression 
           is only effective at a microscopic distance from R/2, so it can be neglected. We 
apply Q0 for Qmax, which we assume to be pretty much the maximum value (844). I chose 
this form in order to be able to calculate the course even for other reference frames and to 
create equality with the RhoQ function. The course of α as a function of Q0 is depicted in  
Figure 153 and 146.  

− 00g
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Figure 154 Figure 155 
Angle α as a function of Q0 Functions sinα and cosα as a function of Q0  

 
Now we come to the actual calculation. However, only the function rR(rT) can be presented 
explicitly. 

 

max

0Q R
Q(r)

Q 2r
=
ɶ ɶ

         (1056) 

 
Qr = Function[#1/Q0/2/#2]; 

PhiQ = Function[If[# >10^4, -Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2, #]/HankelH1[0, #])^2]]- Pi/2]]; 
PhiR = Function[PhiQ[Qr[#1, #2]]]; 

AlphaR = Function[N[Pi/4 - PhiR[#1, #2]]]; 
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α       (1057) 

 
rtrr = Function[# (# Cos[AlphaR[Q0, #]] + Sqrt[1 - #^2 Sin[AlphaR[Q0, #]]^2])^(1/3)]; 

 
I determined expression (1057) based on (366) in combination with (698). There was 
already a similar problem with the calculation of entropy. The inverse functions rT1 (RTR1) 
and rT2 (RTR2) we obtain with the help of Interpolation[list] by calculating rR(rT) and 
swapping the x and y values in the list of support points: 
 

inrt1={}; 
For[d=0.001; i=0,d<.739,(++i),d+=.001; AppendTo[inrt1,{rtrr[d],d}]] 
inrt2={}; 

For[d=0.739; i=0,d<.999,(++i),d+=.001; AppendTo[inrt2,{rtrr[d],d}]] 
RTRR1=Interpolation[inrt1]; 

RTRR2=Interpolation[inrt2]; 
RTR1=Function[If[#<=0.49034 ,RTRR1[#],Null]];  

RTR2=Function[If[#<=0.49034 ,RTRR2[#],Null]];             
 
For the constant wave count vector rK we obtain: 
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        (1059) 

 
rkrr = Function[# (1 - (3/4 #)^2)^(2/3)]; 

 
The factor ¾ results from our finding that the HUBBLE-parameter H1 has the value ¾T–1 at 
the edge of the universe in contrast to the local value H0 = ½T–1. Or rather, the entire 
distance between the observer and R/2 expands with the exponent ¾ with respect to T. 
With H0 = ½T–1, rK would not reach the edge at R/2 at all and would take an earlier „turn”. 
Even with rK the inverse function can be defined using the function Interpolation[list] only. 
Since rK points away from the observer, we don’t need it either. The course of the above 
mentioned functions is shown in Figure 156. 
 

(1058) 
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Figure 156 
Distance-vectors in the universe (1D) 

 
It can be seen that all three vectors coincide at close range and far beyond. At a distance 

of e.g. 400 Mpc, the deviation between rR and rT is only 2% and thus far below the 
observation error. The function rT does not leave the universe, which is correct, but it does 
not reach R/2 either, but is redirected back to the starting point shortly before. With it, we 
are able to observe 94.31% of the universe.  

 
The faster expansion just after the BB is also taken into account. The turning point, i.e. the 
greatest distance, is already reached in the first third. Thus, expression (1057) fulfils the 
requirements placed on it. But what’s about rK? Because of H1 = ¾T–1 the edge at R/2 is 
reached and passed with the angle φ, see Figure 44b and Figure 157. The space beyond is 
in the future of the observer. Figure 156 was created with the following program: 

 
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];  
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]]; 

 
x01=.35 (* The example distance *); 
y02=FindMaximum[rtrr[r], {r,.5,.8}] 

y2=First[y02]; 
x2=r/.First[Rest[y02]]; 
y03=FindMaximum[rkrr[r], {r,.5,.8}] 

y3=First[y03]; 
x3=r/.First[Rest[y03]]; 

z3=xx/.FindRoot[R3[2Pi xx]-.5==0, {xx,0.5,.7}] 
 

Plot[{RTR2[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large]; 
Plot[{RTR1[r], r, rtrr[r], rkrr[r]}, {r,0,1}, 

PlotRange->{0,1.03}, ImageSize->Large, PlotStyle->{Thickness[0.0038]}]; 
Show[%, %%, GH[y2,0,2], GH[1/2,0,2], GH[1,0,2], GH[x2,0,2], 

GV[.5,-1,2], GV[x2,-1,2], GV[1,-1,2], GV[y2,-1,2], GV[x01,-1,2], GV[z3,-1,2], 
Graphics[{PointSize[0.01], Blue, Point[{{x01,RTR1[x01]}, {x01,RTR2[x01]}}]}], 

Graphics[{PointSize[0.01], ColorData[1,12], Point[{x2,y2}]}], 
Graphics[{PointSize[0.01], ColorData[2,2], Point[{z3,0.5}]}], 

PlotLabel->„Blue Rt(Rr), Orange Rr(Rr), Green Rr(Rt), Red Rr(Rk)“, 
LabelStyle->{FontFamily->„Chicago“,10,GrayLevel[0]}, ImageSize->Large] 

 

Figure 157 shows the 2D-presentation r(T) in polar coordinates, whereat the time T is 
represented by the angle �. The observer is located a the point {0,0}. The Age 2T equals to 

(1060) 
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one complete revolution. Every observer always has the impression to be at the point 2T 
(event horizon). That’s correct. Therefore there is no continuation of rK along the dashed 
black line. 

 

 
Figure 157 

2D-course of the distance-vectors  
rR, rK and rT as a function of time 

 

 
The vector rR mutates to the generic logarithmic spiral. Figure 157 has been created using 
the following program: 

 
z31=r/.FindRoot[R3[r]-.5==0, {r,.1,.5}] 

z32=r/.Chop[FindRoot[R3[r]-.5==0, {r,5,6}]] 
z33=r/.First[Rest[FindMaximum[R3[r], {r,5,6}]]] 

 
Plot[{Pi*r+Pi/2}, {r,-.6,-.45}, ImageSize->Large, 

PlotRange->{-0.52,0.52}, PlotStyle->{Thickness[0.001],Black}, AspectRatio->1]; 
PolarPlot[{Null,r/2/Pi,R2[r],R3[r]}, {r,0,8/3 Pi}, PlotRange->0.59,  

ImageSize->Large, AspectRatio->1]; 
 
Show[%, %%, GV[-0.5,-0.6,0.6], 

Graphics[{Circle[{0,0},1], Circle[{0,0},0.5], Circle[{0,0},x01]}], 
Graphics[{PointSize[0.01], Orange, Point[{{-.5,0}}]}], 

Graphics[{PointSize[0.01], Red, Point[{ 
{R3[z31]Cos[z31], R3[z31]Sin[z31]}, 

{R3[z32]Cos[z32], R3[z32]Sin[z32]}, 
{R3[z33]Cos[z33], R3[z33]Sin[z33]}}]}], 

Graphics[{PointSize[0.01], ColorData[1,12], Point[{{0,0}, 
{y2 Cos[2 Pi RTR1[y2]],  y2 Sin[2 Pi RTR1[y2]]}, 

{x01 Cos[2 Pi RTR1[x01]], x01 Sin[2 Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]], x01 Sin[2 Pi RTR2[x01]]}}]}], 
LabelStyle->{FontFamily->„Chicago“, 10, GrayLevel[0]}, ImageSize->Large] 

(1061) 
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The 2D-representation gives the impression that the incoming vector rT is coming from the 
direction in which it was originally emitted. But that’s not the case. In fact, he’s coming 
from the opposite direction. This can be seen very well in the 3D-representation in Figure 
158. 
 

 
Figure 158 
3D-course of the distance-vectors  
rR, rK and rT as a function of time 

 
At this point we make use of the fact that H0 is an angular frequency. And for every 
observer, no matter in which reference system or where he is, the universe has always 
completed exactly one revolution around all three spatial axes. However, only two of them 
are shown in Figure 158, giving the impression that the maximum observable radius rR is at 
the point C. However, the images arriving from one direction are actually from a circle of 
diameter 0.490339 R passing through point C. Therefore, an exact localization of the 
sources actual position is impossible. 
 
But we can not only observe objects on this circle. Since it’s about an R4-universe, we have 
one additional degree of freedom left, which means, the circle also rotates about its 
diameter. With it, we are able to observe all objects within a sphere with the radius 
0.490339 R, whereby the signals then arrive from the entire solid angle 4π. 
 

Figure 158 shows the example sphere and the R/2 sphere. As in Figure 157, the extrema 
and the intersections are marked with coloured dots and letters. Unfortunately it was not 
possible to show the section D-F-z as a dashed line. One can also see that the vector rR 
deviates extremely from rK very early on, a challenge for navigation. Figure 158 has been 
created with the following program: 

 
z1=Line[{{{0,0,-.7},{0,0,.7}},{{0,-.7,0},{0,.7,0}},{{-.7,0,0},{.7,0,0}}}]    (*The axes cross*); 
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ParametricPlot3D[{{1,1,1}, {r Cos[r]Sin[r/2], r Sin[r]Sin[r/2], r Cos[r/2]}, 
{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}, 

{R3[r]Cos[r]Sin[r/2],R3[r]Sin[r]Sin[r/2],R3[r]Cos[r/2]}}, 
{r,0,8/3 Pi}, PlotRange->0.6, ImageSize->Large, AspectRatio->1, 

LabelStyle->{FontFamily->„Chicago“,10,GrayLevel[0]}, ImageSize->Large]; 
 

Show[%, 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, 0.5]}], 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, x01]}], 

Graphics3D[{Thickness[0.0025], Blue,z1}],  
Graphics3D[{PointSize[0.0125], Orange, Point[{ 

{.5 Cos[.5]Sin[.25],.5 Sin[.5]Sin[.25],.5 Cos[.25]}}]}], 
Graphics3D[{PointSize[0.0125], Red, Point[{ 

{R3[z31]Cos[z31]Sin[z31/2],R3[z31]Sin[z31]Sin[z31/2],R3[z31]Cos[z31/2]}, 
{R3[z32]Cos[z32]Sin[z32/2],R3[z32]Sin[z32]Sin[z32/2],R3[z32]Cos[z32/2]}, 

{R3[z33]Cos[z33]Sin[z33/2],R3[z33]Sin[z33]Sin[z33/2],R3[z33]Cos[z33/2]}}]}], 
Graphics3D[{{PointSize[0.0125],ColorData[1,12],Point[{{0,0,0}, 

{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]}, 
{x01 Cos[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  

x01 Sin[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Cos[Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],  

x01 Sin[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]], 
x01 Cos[Pi RTR2[x01]]} }]}}]] 

 
But there is an additional way of presentation. If we replace the temporal dimension by the 
third spatial one, we can let rotate the rT-curve obtaining a body of revolution with inter-
esting properties: 
  

  
 
Figure 159 
Possible shape of the electron  
and/or of the PLANCK charge  

 
The representation is similar to Figure 8, which would close the circle. The model has the 

property of logarithmic periodicity, i.e. there are similarities between the microcosm and 
the macrocosm. 

 
My assumption is therefore that the object in Figure 159 could be identical to the PLANCK’s 
charge and/or the electron, as its freely occurring form, just on a different scale. Instead of 
rotating with H0 it would rotate with ω0 then and a part of the charge would reside in the 
interior, so that the observable part would depend on the viewing angle. This would also 
explain the need to correct re. Then, the electron would be the 3D-manifestation of a 4D-
object. But as I said, this is just a guess on my part. The object can be displayed with the 
following program: 

(1062) 
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Pl1=ParametricPlot3D[{{R2[r]Cos[s]Sin[r/2],R2[r]Sin[s]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, {s,0,2 Pi}, PlotRange->0.5, ImageSize->Large,  

PlotStyle->{Opacity[1],FillingStyle->Opacity[0.1]}, AspectRatio->1,  
LabelStyle->{FontFamily->„Chicago“,10,GrayLevel[0]}]; 

 
Pl2=ParametricPlot3D[{{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, PlotRange->0.5, ImageSize->Large, AspectRatio->1,  

PlotStyle->{ColorData[1,8],Thickness[0.005]}, 
LabelStyle->{FontFamily->„Chicago“,10,GrayLevel[0]}]; 
 

Show[Pl2, Pl1, Graphics3D[{Opacity[0.075], Sphere[{0,0,0},0.5]}], 
Graphics3D[{Thickness[0.0025],Blue,z1}], 

Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], 

y2 Cos[Pi RTR1[y2]]} }]}}]] 

 
 
 

7.5.3. Determination of the HUBBLE-parameter with the help of the CMBR-temperature  
 
 
In section 4.6.4.2.5. with (549) we already formulated a relation between the phase-

angle/Q-factor of the metrics Q0 and the resulting temperature of the cosmologic back-
ground-radiation. With the astronomically specified value of the HUBBLE-parameter from 
section 4.3.5.4.6. (75.9 kms–1Mpc–1) and the value Q0 = 7.5419·1060 resulting from it, a 
temperature of 2.86632K turns out for the cosmologic background-radiation. The updated 
value 68.6241 kms–1Mpc–1 resp. Q0 = 8.340471·1060 from [49] even yields a temperature of 
2.725436 K. The average radiation temperature, determined with the help of the COBE-
satellite, is around 2.72548 ± 0.00057K (Wikipedia). 

 
Interestingly enough, all these values are close to that of 3.18K (= 82.63 kms–1Mpc–1) 

predicted as early as 1896 by GUILLAUME and EDDINGTON. At the time, both assumed, that 
there were the equivalent of 2000 stars on average in the 10 pc-surroundings of a star with 
the magnitude 1m. The energy emitted by these stars leads to an energy-density, which 
corresponds to a radiation-temperature of 3.18K. See [39] for details. 

 
Although, the calculation contained an essential error. It was assumed at the time, that 

the supposed average star-density should be available throughout the whole universe, 
because the existence of external galaxies neither has been commonly accepted nor has 
been known until 1924. 

 
Now fortunately, we are in a better situation. So, we don’t need to calculate the radiation-

temperature but we can measure it absolutely accurate. Of course, it’s not a problem, to 
determine the related values Q0  and H0 by rearrangement of (549). Indeed, it is to be 
pointed out, that neither ω1 nor ℏ1 are exactly defined by locally measurable quantities. 
Rather, they themselves depend on Q0  and H0, on the values, we actually want to 
determine. But we know the values of ℏ and ω0  . It applies ω1 = Q0ω0 and ℏ1 = Q0ℏ: 
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All expressions are based on the assumption that the frequency ωU is not reduced by the 
factor of 2�� during coupling and refraction, but by the proportionality factor of WIEN’s 
displacement law x� (See Figure 68a). Both values are very close to each other.  
 
Applying the above-mentioned measured value 2.72548K, we get a value of 8.3415·1060 
for Q0 (549).  This corresponds to a value of H0 =  68.6071 kms–1Mpc–1. The tabular value of 
H0 has been corrected using the updated Q0. It most likely matches our solution (1049). 
However, the new value according to (549) is closer, but is not considered in the entire 
work because it is more recent. For a better overview, all values are summarized again in 
Table 9. 
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(1043) 7.2222·1060 2.569·10–18 79.2562 2.92907 +0.20359 +7.46988 

(1052) 7.4576·1060 2.487·10–18 76.7545 2.88247 +0.15699 +5.76009 

(TAB1) 7.5419·1060 2.460·10–18 75.8966 2.86632 +0.14084 +5.16753 

(1049) 7.9518·1060 2.333·10–18 71.9843 2.79146 +0.06598 +2.42086 

(549) 8.3405·1060 2.224·10–18 68.6241 2.72544 –4.3951·10−5 –0.0001626 

(COBE) 8.3415·1060 2.223·10–18 68.6071 2.72548 ±0.00000 ±0.00000 

 
Table 9 

Calculated and measured CMBR-temperature in comparison with the  
values of the HUBBLE-parameter determined  in section 7.5.1. 

 
 
In addition to the electron mass, this is another way to determine H0. However, due to the 

various possible solutions, a verification is required. To confirm the favoured value (549) 
we will make a comparison with astronomical observations in the next section. 
 
 
 
 
 
 
 
7.5.4. The supernova-cosmology-project 

 
 
Another option to choose the correct one from the solutions, is the comparison with the 

latest astronomic observations. The most important project of late has been the supernova-
cosmology-project. One observed a lot of type Ia supernovae, which all own the particular 
property to have the same luminosity approximately, so that they can be used as a standard-
candle.  

 
Aim of the research [45] was the determination of the HUBBLE-parameter and of course, 

to determine, which of the world-models stated until today, comes closest to reality. Indeed, 
the examination has caused more confusion, than that it has led to rational results, as we 
will see yet. However, the reason, is not the research itself but the missing of a correct 
world-model, as I intended to make it with this work. 

 
Before we go on into detail, at first yet another section, which deals with the fundamental 

values of observation, being focused to physicists, astronomers and technicians, which as 
known, work with different units of measurement. So it’s difficult to understand one 
another. 
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7.5.4.1. Measurands and conversions 
 
Since we want to deal with one concrete project, only the quantities, which are specifi-

cally relevant for the supernova-cosmology-project, should be exemplified. In reality, in 
physics, astronomy and radio-astronomy there is yet a large number of further quantities. I 
recommend [44] to any interested person, which the information given here, is based on. 

 
Initially with the project, astronomic objects, supernovae of the type Ia, which appear to 

the observer as punctual objects with a certain luminosity, have been observed. The 
measured luminosities have been compared with the red-shift z (310) and have been 
collated with the luminosities predicted by the various world-models. What do we mean by 
luminosity however? 

 
In astronomy there are four types thereof at all, once the apparent brightness, the 

bolometric brightness, the absolute and the absolute bolometric brightness. It is given in 
magnitudes [m, mb, M, Mb]. It is about a logarithmic unit of measurement, which is defined 
historically. With the bolometric brightness, the entire frequency domain in accordance 
with the STEFAN-BOLTZMANN radiation-rule is considered, it’s about the logarithm of the 
quotient of the two values power and surface [Wm–2], which the physicist marks as 
POYNTING-vector S. In the astronomy, this value is called flux F, in the technical 
department field-strength S.  

 
With the non-bolometric values the unit of measurement [Wm–2Hz–1] is used. The mea-
surements are dependent on frequency and bandwidth then. But for us only the bolometric 
values are of note. Another important value is the (bolometric) luminosity L. In the physics 
and in the technical domain it is marked as power P as well as level p. Unit of measurement 
is the Watt [W] as well as the decibel [dB]. Thus, we can define: 

 

M b =  − 2.5lg
F  

F0

 =  − 2.5lg
L 4πr 2

L 0 4πr 2
 =  − 2.5 lg

L  

L 0

 
 

 Brightness   (1068) 

 
As usual with logarithmic units of measurement, always a reference-quantity F0 as well as 
L0 is needed. The values has been taken from [42] and [44] and read as follows: 
 

F0 =  2.51 ⋅10 –8 Wm –2 L 0 =  3.09 ⋅10 28 W       (1069) 
 
A star with the luminosity L0 has exactly 0 magnitudes (written 0M). The absolute 
brightness (flux) is defined in a distance of 10pc of the source, but it has no meaning for us. 
Even in the technical domain there is such a logarithmic dimension, the dB (decibel): 
 

S = P =  10 lg
S  

S0

 dB  =  10 lg
P 4πr 2

P0 4πr 2
 dB  =  10 lg

P  

P0

 dB Field-strength/level (1070) 

 
Another, more rarely used logarithmic unit of measurement is the Neper p[Np] = ln(P/P0). 
The original definition of P0 comes from the telecommunication and is defined as a power 
P = 1mW on 600Ω. But in the radio-technology and with it even in the radio-astronomy this 
value is not used, since we are concerned there with much smaller quantities in general. 
Therefore, the following relative values are used: 
 

S0 =  1  pWm–2 =  10−12Wm–2 P0 =  1  pW =  10−12W           (1071) 
 
In order to avoid a mix-up with the historic definition, instead of dB mostly the unit 
dBpWm–2 or dBpW as well as dBpWm–2Hz–1 or dBpWHz–1, when there is not the entire 
spectrum included. The power P at the input of a receiver with adaptation simply results 
from the POYNTING-vector S, the effective surface A of the antenna used and the gain G of 
the antenna: 
 

P[dBpW ] =  S[dBpWm −2 ] + 10 lg A[m2 ] + G[dB]      (1072) 
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Since the decibel is also a logarithmic unit, a simple conversion is possible into the 
astronomic units. For P[dBpW], Mb[M], S[dBpWm–2], mb[m], L[W], F[Wm–2] applies: 
 
 

P = 404.9 – 4 Mb Mb = 101.225 – 0.25 P           (1073) 
  

S = 44 – 4 mb mb = 11 – 0.25 S      (1074) 
 

P = 120 + 10 lg L L = 10 
0.1P−12      (1075) 

 
S = 120 + 10 lg F F = 10 

0.1S−12      (1076)  
 

L = 10 
28.5−0.4

 
M

b
  Mb = 71.225 – 2.5 lg L     (1077) 

 
F = 10 

−7.6−0.4
 
m

b
  mb = 19 – 2.5 lg F      (1078) 

 
 
All obscurities should be removed with it, so that we can turn to the results of the 
supernova-cosmology-project. 
 
 
 
 

 
7.5.4.2. Results of the supernova-cosmology-project 

 
The results of the project have been published by PERLMUTTER in [45] in detail. For a 

better understanding of what a type Ia supernova actually is, I recommend the work of 
HERRMANN [42]. Most important is, a SN Ia has a maximum absolute brightness, which 
results from its structure. If the star is greater, a supernova of different type develops, 
which can be distinguished by its characteristic. Therefore it’s possible to use a SN Ia as a 
standard-candle, at which point the brightness is mostly something smaller than the 
maximum, because not all SN Ia achieve the maximum brightness. 

 
The apparent bolometric brightness at the observer has been compared by PERLMUTTER 

in a diagram with the associated red-shift z. Even HERRMANN [42] and HEBBEKER [43] are 
using the same diagram, at which point in [43] is deferred in detail to the common standard-
big-bang-model once again, being based on the classical EINSTEIN evolution-equation with 
and without cosmologic constant. 

 
The observations now submitted, that further (older) SN Ia appear somewhat darker, as 

they actually should be according to the standard-model without cosmologic constant 
(Λ = 0). The case Λ = 0 just doesn’t fits the observations. The possibility that SN Ia could 
have had other properties earlier is ruled out by all the authors, including myself. 

 
Rather, the deviation is interpreted in such a way that Λ should have a value other than 

zero, which means that the expansion rate of the universe, i.e. the HUBBLE-parameter, is not 
decreasing at the present time, as has always been assumed, but increasing on the contrary. 
Thus, the observed SNae would be farther away, than it would arise from the measured red-
shift z. The lower brightness would be explained with it. However this leads to incon-
gruities with other observations. In order to avoid them, a complicated construct is used, 
which demands extremely exact synchronizations to the point of time T = 0 and even 
afterwards, which appears to be pretty implausible, because nobody can exactly say, on 
which physical phenomenon this effect should be based on. 

 
While PERLMUTTER contents himself with the hint on the option Λ ≠ 0, HERRMANN and 

HEBBEKER even demand the existence of „dark matter“ with hitherto yet unknown qualities 
and of an effect with the name „quintessence“ which should be the cause for the increasing 
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expansion-rate, quasi a sort of anti-gravity. For my part, however, I consider this hypothesis 
to be erroneous, since the discrepancy can be explained even more simply, only with the 
help of known physical rules (Ockham’s razor). Only then, one must have the courage to 
use an alternative model. The standard-big-bang-model has flopped for a long time, even in 
respect of other points. Unfortunately, the common view latterly seems to tend more and 
more into the direction „dark matter“ and „quintessence“, which can be regarded as 
criterion, that the proponents of the standard-model are at their wit’s end.  

 
But if the HUBBLE-parameter continues to decrease and the observed objects are being 

located in the correct distance, the only possible explanation is, that the photons are subject 
to an additional attenuation during their propagation, not known until now. And exactly this 
is an essential quality of the model on hand1.  

 
In section 4.3.4.4. we had worked out the propagation-function for a loss-affected 

medium with expansion and overlaid wave. Different from the propagation-function for a 
loss-free medium the attenuation rate α is different from zero there. It has the value 1/R. 
Therefore we want to forecast the observed brightnesses of SNae Ia with the help of this 
function. For the graphic representation, we need the function mb(z). Starting from (1068) 
we obtain for the apparent magnitude mb: 
 

Ia Ia
b 2 2 8 2

0 0

L LF 1
m 2.5lg 2.5 lg 2.5 lg

F 4 r L 4 r 2.51 10 Wm− −

 
= − = − = − π π ⋅ ⋅ 

     (1079) 

 
In doing so we notice, that the value LIa, the luminosity (power) of the standard-candle 
supernova Ia is missing. And indeed, neither in [42], [43], [44] nor in [45] such a one is 
specified. Fortunately, the colleague Wolfgang Hillebrandt from the Max-Planck-Institute 
for Astrophysics (MPA) Garching could help me with this problem. According to his 
information, the maximum luminosity of a SN Ia has a value of 1036W approximately. 
That’s the upper limit. If we put it into (1079) still the distance r is missing. Since we look 
at the matter starting from the source toward the observer, we obtain it with the help of 
(312) without correction-term. It applies: 
 

36 2 44 2

b 2 8 2 2 4/3 2

10 m 1 10 m 1
m 2.5lg 2.5 lg

4 r 2.51 10 Wm R 2.51 ((z 1) 1)− −

 
= − = −  π ⋅ ⋅ π + − ɶ

  (1080) 

 
2 244 2

26 20 0
b 2 4/3 2 4 /3 2

H H10 m 1
m 2.5lg 2.5 lg 1.41103 10 s

c 2.51 ((z 1) 1) ((z 1) 1)

   
= − = − ⋅   π + − + −   

ɶ ɶ
 (1081) 

 
This is the function mb(z) without consideration of the additional attenuation. Since also the 
z-axis needs to have a logarithmic scale, we apply the value 10w with –2 ≤ w ≤ 0 instead of z. 
Now indeed, PERLMUTTER has published all measurements in [45], but since I do not 
dispose of any procedure, to present it so nice, including the tolerance-limits, I decided, to 
take up the comparison with (1081) by overlay of both charts. 
 

Figure 160 presents the relative brightnesses, calculated with the help of (1081), in com-
parison with the observations of the supernova-cosmology-project. Also to be seen are the 
curves of the standard-big-bang-model for various adjustments calculated by PERLMUTTER. 
The overlay-markers (+) are located at all corners except for top left. 

 
In the presentation meets the eye that the three brightness-functions (according to this 
model without consideration of the parametric attenuation) are below the observed values, 
just they have been computed too bright. This is even no miracle, since we used the 
maximum-value as standard-candle. Figure 160 also shows, that solution (1049) with 
71.985 kms–1Mpc–1 for the HUBBLE-parameter (red) comes quite very close to reality, 
because it is located at the outer margin of the error tolerance corridor. Using the  
                                                
1
 Of course, already previously models existed (e.g. tired light) which work with an additional attenuation. All they have failed however,  

 since they wanted to attribute the attenuation to the particle properties of the photons only. But the wave properties are the cause in  
 reality. Nevertheless, the tired-light-hypothesis appears essentially more plausible, than the assumption of the existence of dark matter  
 and quintessence. 
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Figure 160 
Calculated apparent bolometric brightness for the three values of the HUBBLE-parameter in  

comparison with the observations of the supernova-cosmology-project (standard-candle = maximum) 

 
updated value (549) in the amount of 68.6241kms–1Mpc–1 we are already within. The same 
applies to the value derived from the COBE-measurements, which would follow the same 
curve (blue) in the graphics. Now, in contrast to the previous editions we’ll use value (549) 
for the following contemplations. We determine the updated value of the standard-candle, 
which is the statistical average of all observed SNae Ia, numerically with the help of (549) 
for a value at the lower end of the z-axis to LIa = 6.40949·1035W. Applied to (1079) using 
the example of H~0 (549) we obtain :  
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10 4/3 4/3

bm 2.5lg 4.4734 10 2 2.5lg ((z 1) 1) 23.3734 5lg ((z 1) 1)−= − ⋅ + ⋅ + − = + + −     (1083) 
 
We need the function mb(z) with parametric attenuation as well. On this occasion we have 
to consider the factor e–r/R=10–r/R·lge from the propagation-function (308). It applies: 
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4/3 4/3

bm 23.3734 5lg ((z 1) 1) 0.5429((z 1) 1)= + + − + + −       With param. attenuation (1086) 
 
Figure 161 shows the graphs of expression (1083) and (1086) in comparison with the 
measurements of the supernova-cosmology-project for solution (549) of the HUBBLE-
parameter. The thin black lines show the expectation-values of the standard-model for Λ = 0 
with a mass-energy-density ΩM =  0, 1 and 2. For one time, it is an empty universe (0), for 
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Figure 161 
Calculated apparent bolometric brightness for solution (1049) of the HUBBLE-parameters in  
comparison with the observations of the supernova-cosmology-project (standard-candle = average)  
 
the other time a universe with „normal“ energy-density (1) and at last a universe with 
double energy-density (2). In this connection, the standard-BB-solution for the „normal“ 
universe covers the propagation-function for a loss-free medium (1083). That is also no 
miracle, because both have the same exponent 4/3 in (312). This case however is not 
confirmed by the observations, neither an empty universe. For Λ = 0 even an universe with 
negative mass-energy-density (filled with antimatter) would be necessary. For an optimal 
match we’d have to successfully ignore EINSTEIN’s conclusion „The introduction of the 
cosmological constant was the biggest folly I’ve done“. Then, according to [45] the best 
match is with ΩM = 0.28 and ΩΛ = 0.72. Thereat, all along, the sum of both values must 
always be equal to one. The value ΩΛ is the so-called „dark energy-density“ which indeed 
could be identical to our metric wave-field (0K = absolutely dark). 
 

 
XIV. The observed values of the supernova-cosmology-project are exactly  
 described by the propagation-function (308) under consideration of the geo- 
 metric and parametric attenuation (287). The assumption of the existence of  
 any new exotic kind of matter or unknown physical effects is not necessary. 
 
 There is neither dark matter, quintessence nor increasing expansion!! 
 

 
As I said, the whole thing sounds rather improbable, especially since this optimal course is 
„coincidentally” exactly described by our function (1086). (blue graph in Figure 161), and 
the whole issue only with the help of known physical objects and relations. It fits! 
 
 The only dark matter is in the mind, that has to be said. But since science needs always 
new, even more unique evidence, I computed the expectation-values of the apparent 
brightness for SNae Ia, which are even farther away, than the ones, observed within the 

(�M, ��) 
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framework of the supernova-cosmology-project, with the help of (1083) and (1086). They 
are presented in Figure 162. Surely, the opportunity arises to observe such an object in the 
closer or farther future. 

 
Figure 162 
Calculated apparent bolometric brightness for   
solution (1049) of the HUBBLE-parameter for farther SNae Ia 

 
The only true quintessence is, that the present model has been confirmed by the 
observations of the supernova-cosmology-project. Thus, the current value of the HUBBLE-
parameter amounts to 68.6241 kms–1Mpc–1 exactly. That corresponds to solution (549). 
 
 
 
7.5.5. The Concerted International System of Units 

 
With the help of this model, it was possible to calculate a series of natural constants 

associated with the electron, the proton and the 1H atom via their relationship to the 
reference system Q0 and this exactly. The maximum deviation of ±1.0·10–9 for the 
THOMSON cross section σe corresponds to the standard deviation of the numerical value 
given in Table [63]. Thus, the proof according to the Sudoku method is provided. 

 
In fact, most values are not true constants. At the same time, the value of H0 could be 

specified more precisely, as well as the value of κ0, the specific conductivity of the vacuum, 
on which this model is based. Since we have uncovered the relations between the indi-
vidual fundamental constants, it is appropriate to develop a program with which these are 
recalculated on the spot each time according to the reference system and to use it instead of 
a list of values determined independently of one another in different laboratories. With 
regard to the list, this would also have the advantage that the errors would not add up. 

 
All that remains is to incorporate the values and relations obtained into the program already 
published in the previous editions and in [49] and to compare the calculated values with the 
CODATA2018 values. The whole is shown in Table 10 at the end. The updated program can 
be found in the annex. 
 

The model is based on the fundamentals of subspace, which are fixed values and 
independent of the frame of reference. At this point it suffices to define only five genuine 
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constants (µ0, c, κ0, ℏ1 and k) as fixed basic values plus a so-called magic value, here me, in 
order to identify the reference frame Q0. 

 
The comparison with the CODATA2018 values is a bit more complicated, since not all 
values of this model appear in the corresponding documents. On the other hand, some 
values are given there which lead to a divergent result compared with other values been 
calculated with the help of the former ones. The PLANCK units fared the worst. The given 
values partially deviate from each other and by up to 6.5·10–8 from the values calculated 
with the root expressions from c, ε0, G and ħ. However, according to the present model, the 
root expressions are considered to be exact. Hence I calculated the corresponding root 
expressions of all PLANCK units using the CODATA2018 values for c, ε0, G and ħ disre-
garding the numerical values and compared them with the values of mine. Furthermore, the 
use of the value me/mp specified there leads to a reduction in accuracy. Therefore I used the 
quotient of the individual values. Another criticism is that a rounded value of the 
BOLTZMANN constant k is used. 
 

With the PLANCK-temperature there is a further difference. Even if we can calculate such a 
value, the actual value is 0K, since thermal energy is completely eliminated by the angular 
momentum (see section 4.6.3.). The CMBR-temperature is considered instead. This 
depends on Q0 too. If we rearrange (180) after Q0, the frame of reference also depends on 
its temperature. With smaller Q0, e.g. in the vicinity of the SCHWARZSCHILD-radius of a 
BH, the CMBR-temperature increases extremely.  
 
There is also no addition of several different effects, such as temperature plus gravity in 
comparison to another frame of reference with the velocity v. All values are linked with Q0, 
if one value changes, all other change too. If one effect supervenes, it is already a new 
frame of reference. With it all values, except for the fixed ones, form a so-called Canonical 
Ensemble. 

 
During set-up of the table I incorporated yet some other values, simply dependent on the  
already defined ones, into the system, as there are σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. 
Except for re, whose definition was wrong (eternal typo), I used the expressions and 
symbols stated in the CODATA2018-document [22] for the other values. Therefore, the 
definition of the symbols can be found in [63]. The quantities alpha (α) and delta (δ) are 
marked as fixed values, since they are typically invariable. But there are also the functions 
alphaF[Q] and deltaF[Q] for special cases near Q1 as in section 6.2.3.2. 
 
 
 

7.6. Conclusion 
 

I would like to finish this work at this point, because I have filled the task put by myself 
at the start, to determine the exact value of the HUBBLE-parameter. On the side, a new 
model of the universe arose, without contradiction to the knowledge already saved, which 
dispenses with such fuss as e.g. dark matter and new, yet unknown and not saved effects. 
The model exactly could be verified on the basis of 8 of 10 tests, at which point 5 of them 
are filled automatically indeed, because of the large similarity with EINSTEIN’s model. The 
value of the HUBBLE-parameter stated in the previous editions (71.9845 kms–1Mpc–1), as 
well as the updated one (840) amounts to: 
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The factor ζ (835) corrects the curvature of the electron radius, which is three times 
contained in (840). Converted we get for H0: 
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H0 =  68.6241 kms–1Mpc–1 
  
 

 
The calculation of the temperature of the cosmologic background radiation with the new 
value turns out an extremely small deviation of – 4.3951·10−5

 K to the measured value, so 
that this point also can be regarded as fulfilled. The problem will be examined in [46] more 
detailed. 
 
The technical determination of the value of the specific conductivity of subspace κ0 still 
remains open, which probably will remain unfeasible even in the remote future, due to it’s 
excessively high value. At least, this value can be determined exactly on the basis of other 
relations. This way, a typo in (841), the former (932) is also corrected here: 
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The value stated in the former editions amounted to 1.30605·1093Sm–1. If you re-calculate 
the legacy values you get a result, which differs marginally, since they have been calculated 
using the CODATA2014-value in combination with the BRUKER-value of G, which don’t 
match each other. Maybe, there is someone or other similarly differing value in the 
previous sections. Nevertheless, I decided to update Table 10. 
 
I hope, that some new thoughts were contained in the work on hand. Thus I ask for an 
active discussion. Furthermore, I ask for understanding that I didn’t extend the 
contemplation to all domains, e.g. black holes, formation of the stars/planets etc. as usual. 
In the case of doubt, I follow the classic doctrine. This work may contain sections, which 
you will disagree. Nevertheless, I ask you to do not discard everything because of that. 
 

 
 

THE END 
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8. Affidavit 
 
 
Herewith, I declare that I created this work off my own bat having used no other aids as 
stated. With publications of this work in German language, a transcription according to the 
rules of the new orthography (1999 and later) is not allowed. This work and all translations 
of it must not be gendered under any circumstances. 
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CODATA2018 (CD) 
© COBE Data       

± Accuracy ∆y (CA/CD–1)        Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 

ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 

κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 

µ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 

k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 

ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 

Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 

Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 

G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 

G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 

G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 

M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 

M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 

mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 

me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 

m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 

MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 

me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 

Tp Tp 0.000000000000000 C 1.416784486973588 ·1032 calculated MOOP K 

Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 

Tk Tk0 2.725436049425770 C 2.72548                          © 4.3951·10−5   –1.61258·10–5   K 

r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 

r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 

re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 

ŻC ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 

λC ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 

a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 M 

R R 1.348032988422084·1026 C n.a. at issue at issue M 

R RR 4.368617335409830 C n.a. at issue at issue Gpc 

t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 

t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 

T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 

T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 

R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 

ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 

cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
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CODATA2018 (CD) 
© COBE Data       

± Accuracy ∆y (CA/CD–1)        Unit 

H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 

H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 

q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 

e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 

U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 

U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 

W1 W1 1.360717888312544·10131 F n.a. n.a. unusual J 

W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 J 

Wk1 Wk1 6.301953910302633·10126 C n.a.                  k→CMBR n.a. unusual J 

S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 

͞Sk1 Sk1 2.596200130940090·10422 C n.a.                  k→CMBR n.a. unusual W m–2 

͞Sk0 Sk0 1.251454657497949·10–5 C 1.25013                    ·10–5 +1.0596·10–3   calculated [59] W m–2 

σe σe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 

ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 

γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 

µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 

Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 

G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 

KJ KJ 4.835978487132911·1014 C 4.835978484 ……..  ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..  ·104 exactly –2.52258·10–10 Ω 

α  alpha 7.297352569776440·10–3 F 7.297352569311      ·10–3 1.5·10–10 +6.37821·10–11 1 

δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 

x~ xtilde 2.821439372122070` F 2.821439372 ……..  mathematical real number 1 

σ1  σ1  9.773258655978905·10–191 F n.a. calculated unusual W m–2
 K –4 

σ  σ  5.670366673885496·10–8 C 5.670366673885496·10–8 exactly exactly W m–2
 K –4 

 
S   Subspace value (const) M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable) C   Calculated (calculated)               MOOP  Matter of Opinion 
 
Table 10: 
Universal natural constants 
Concerted International System of Units 

 

12. Notes on the Appendix 
 
 
The basic formulas and definitions used in this work, as well as the program to calculate 

Table 10 are shown in the appendix. The programs for displaying the graphics, which were 
taken from earlier publications, can be found in [46], [49] and [52]. It is the source code for 
Mathematica/Alpha. The data can be copied and pasted to the clipboard. It is also possible to 
save in a text file (UTF8), which can then be opened and evaluated directly. 

 
However, it is advantageous if you do not evaluate the entire source code in a single cell. To 
divide, use the function Cell/Divide Cell. If you do not want to calculate Table 10 and the 
graphics, you can delete the notebook below the „End of Metric System Definition” item. The 
variables shown in the „Variable” column are then available for your own calculations. 
Expressions within (*…*) are commented out. 
 
Suggestion to the reader: If one adds up all the errors in Table 10, it should be possible to find a 
minimum by slightly manipulating κ0, ħ1 and Q0. Then all values should have to be calculated 
correctly. 
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„ The Concerted International System of Units " 
 

" Declarations " 
 
Off[InterpolatingFunction::dmval] 
Off[FindRoot::nlnum] 
Off[General::Spell] 
Off[Greater::nord] 
Off[Power::infy] 
 

" Units " 
 
km=1000; 
Mpc=3.08572*10^19 km; 
minute=60; 
hour=60 minute; 
day=24*hour; 
year=365.24219879*day; 
M�=1.98840*10^30; 
R�=6.96342*10^8 ; 
M�=5.9722*10^24; 
R�=6.371000785*10^6; 
 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 
my0=4 Pi 10^-7;  (*Permeability of vacuum*); 
ka0=1.3697776631902217*10^93;  (*Conductivity of vacuum*); 
hb1=8.795625796565464*10^26;  (*Planck constant slashed init*); 
k=1.3806485279*10^-23;  (*Boltzmann constant*); 
me=9.109383701528*10^-31;  (*Electron rest mass with Q0 Magic value 1*); 
mp=1.6726219236951*10^-27;  (*Proton rest mass Magic value 2*); 
 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 
ma=1822.8884862171988 me;  (*Atomic mass unit*); 
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4; (*RnB angle ϵ null(fix)*); 
γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 
xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 
alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4)(*Phase Q0=2ω0t during calibration*);*) 
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7);(*Phase Q0=2ω0t after calibration*); 
 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 
ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 
Om0=Om1/Q0;  (*Planck’s frequency*); 
OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 
cR∞=c R∞;  (*Rydberg frequency*); 
H0=Om1/Q0^2;  (*Hubble parameter local*); 
H1=3/2*H0;  (*Hubble parameter whole universe*); 
r1=1/(ka0 Z0);  (*Planck’s length subspace*); 
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 
ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 
ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 
r0= r1 Q0;  (*Planck’s length vac*); 
R= r1 Q0^2;  (*World radius*); 
RR=R/Mpc/1000;  (*World radius Gpc*); 
t1=1/(2 Om1);  (*Planck time subspace*); 
t0=1/(2 Om0);  (*Planck time vacuum*); 
T=1/(2 H0);  (*World time constant*); 
TT=2T/year;  (*The Age*); 
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hb0=hb1/Q0;  (*Planck constant slashed*); 
h0=2Pi*hb0;  (*Planck constant unslashed*); 
q1=Sqrt[hb1/Z0];  (*Universe charge*); 
q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 
qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 
M2=my0 ka0 hb1;  (*Total mass with Q=1*); 
M1=M2/Q0;  (*Mach mass*); 
m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 
mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 
MH=M2/Q0^3;  (*Hubble mass*); 
G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 
G1=G0/Q0^2;  (*Gravity constant Mach*); 
G2=G0/Q0^3;  (*Gravity constant Init*); 
U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 
U1=U0*Q0;  (*Planck voltage Mach*); 
W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 
W0=W1/Q0^2;  (*Planck energy*); 
S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 
S0=S1/Q0^5;  (*Poynting vector metric actual*); 
Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                 (*Poyntingvec CMBR initial*); 
Sk0=Sk1/Q0^4/Q0^3/E^2;                                 (*Poyntingvec CMBR actual*); 
wk1=Sk1/c ;                                        (*Energy density CMBR initial*); 
wk0=Sk0/c ;                                         (*Energy density CMBR actual*); 
Wk1=wk1*r1^3;                                              (*Energy CMBR initial*); 
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 
µN=-µB*mep;  (*Nuclear magneton*); 
µe=1.0011596521812818 µB  (*Electron magnetic moment*); 
Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 
Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 
Tp0=0.; Tp1=0.;  (*Planck-temperature*); 
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 
KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 
RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 
σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 
ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 
ge=-2(1+ae);  (*electron g-factor*); 
γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 
σ1=SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;     (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 
Qr=Function[#1/Q0/2/#2]; 
PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       
Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 
PhiR=Function[PhiQ[Qr[#1,#2]]]; 
RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-
(HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  
RhoR=Function[RhoQ[Qr[#1,#2]]]; 
AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 
AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 
BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 
GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 
rq={{0,0}}; 
For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 
Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 
Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 
RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 
alphaF=Function[Sin[Pi/2+ε-RNBP[#]]^2 /(4Pi)];     (*Correction factor QED α(Q)*); 
deltaF=Function[4Pi/alphaF[#]*mep];    (*Correction factor QED δ(Q)*); 
 

" End of Metric System Definition " 
____________________________________________________________________________________________________ 
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" Functions Used for Calculations in Articles " 
 
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]];         (*Graphics help function*); 
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];      (*Graphics help function*); 
Xline=Function[10^33*(#1-#2)]; (*Value_x vertical line*); 
Expp=Function[If[#<0,1/Exp[-#],Exp[#]]];    (*To avoid calculation errors*); 
BRQP=Function[Rk[#] Sqrt[(Sin[AlphaQ[#]]/Sin[GammaPQ[#]])^4-1]]; 
BGN=Sqrt[2]*BRQP[.5]/3; 
 
gdc=Function[10^(Log10[E]*(-1) (1*#)^2/(1 + 1*#^2)^2)]; (*Group Delay Correction*); 
cc = 7.519884824; 
b  = xtilde; 
s1 = 8*(#1/(2*((#1/2)^2 + 1)))^2 & ;  
s3 = (b*(#1/2))^3/(Expp[b*(#1/2)] - 1) & ; 
brq = {{0, 0}};   
For[x = −8; i = 0, x < 50, (++i), x += .05;  
 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 
BRQ0 = Interpolation[brq]; 
BRQ1 = Function[If[# < 8*10^4, BRQ0[#], Sqrt[#]]]; 
Psi1 = NIntegrate[(1/2)*Log[1 + (#1/(cc*Sqrt[Q]))^2] -  
      ((#1/(cc*Sqrt[Q]))^2)/(1 + (#1/(cc*Sqrt[Q]))^2) -  
      Log[Cos[-ArcTan[#1/(cc*Sqrt[Q])] +  
         #1/(cc*Sqrt[Q])/(1 + (#1/(cc*Sqrt[Q]))^2)]],  
     {Q, 0.5, 3000}] & ; (*Approximation*); 
Psi2 = NIntegrate[(1/2)*Log[1 + (#1/(cc*BRQ1[Q]))^2] -  
      ((#1/(cc*BRQ1[Q]))^2)/(1 + (#1/(cc*BRQ1[Q]))^2) -  
      Log[Cos[-ArcTan[#1/(cc*BRQ1[Q])] +  
         #1/(cc*BRQ1[Q])/(1 + (#1/(cc*BRQ1[Q]))^2)]],  
     {Q, 0.5, 3000}] & ; (*Exact ξ*); 
HPC=Function[Om1/#^2/km*Mpc];                       (*H0=ƒ(Q0)[km*s-1*Mpc-1]*);  
Qv=Function[a4712=SetPrecision[#2,309];#1*(1-a4712^2)^(1/3)];  (*Q(v/c) generic*); 
Qv0=Function[a4713=SetPrecision[#,309];Q0*(1-a4713^2)^(1/3)]; (*Q(v/c, Q0)*); 
vQ=Function[a4714=SetPrecision[(#2/#1)^3,309]; 
Sqrt[SetPrecision[1-a4714,309]]];    (*v/c(Q) generic*); 
vQ0=Function[a4715=SetPrecision[(#/Q0)^3,309]; 
Sqrt[SetPrecision[1-a4715,309]]];        (*v/c(Q0), Q0)*); 
Q890=3/2*(re/r0)^3 ;        (*Phase angle/(890 [1])*); 
VrelU=Function[ScientificForm[SetPrecision[Sqrt[1-SetPrecision[1/ 
(1+# qe/me/c^2)^2,180]],180]180]];   (*vrel(U)/c*); 
DVrelU=Function[ScientificForm[SetPrecision[1-(Sqrt[1-SetPrecision[1/ 
(1+# qe/me/c^2)^2,180]]),180],10]];  (*1-vrel(U)/c*); 
QrelU=Function[SetPrecision[SetPrecision[1/ 
(1+# qe/me/c^2)^(2/3),180],16]];   (*Qrel(U)/Q0*); 
QQrelU=Function[Q0*(QrelU[#])];  (*Qrel(U)*); 
UeV=Function[a4711=SetPrecision[#,1000]; 
(me c^2(1/Sqrt[1-a4711^2]-1))/qe]; (*U(v)309*); 
 
 

" Helpful Interpolations " 
 

"Not really needed. Evaluate only once the lines below the upper lines, then store data in e.g. rs={data} and close the cells. Evaluation can take a while.  
 Don’ t delete but always evaluate them. Disable evaluation for the lines below the upper line until Interpolation line then. Save notebook." 

__________________________________________________________________________________________________ 
 
rs={"Insert output from below"}; 
rs={}; 
For[x=(-3); i=0,x<3,(++i),x+=.025; 
AppendTo[rs,{10^x,NIntegrate[RhoQQ1[z],{z,0,10^x}]/Abs[NIntegrate[RhoQQ1[z]* 
Exp[I/2*ArgThetaQ[z]],{z,0,10^x}]]}]] 
rs  
 
RS=Interpolation[rs];   (*Relation rk/rn*); 
RS1=Function[1/RS[#]]; 

__________________________________________________________________________________________________ 
 
rnb={"Insert output from below"}; 
rnb={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rnb,{d,RnB[10^d]/Pi}]] 
rnb 
 
RNB1=Interpolation[rnb];  (*RnB angle ε nullvector from Q*); 
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 



303 
 
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 
__________________________________________________________________________________________________ 
 
qq1={"Insert output from below"}; 
qq1={}; 
For[xy=(-17); i=0,xy<5,(++i),xy+=.05; AppendTo[qq1,{10^xy,N[Sin[(Pi/2-
RnB[10^xy]+ε)]]}]] 
qq1 
 
QQ0=Interpolation[qq1];  (*Relation qe/q0*); 
QQ=Function[If[#<10^5,QQ0[#],0.3028223504900885]]; 
QQ1=Function[If[#<10^5,1/QQ0[#],3.3022661582990733]]; 

__________________________________________________________________________________________________ 
 
inb={"Insert output from below"}; 
inb={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[inb,{RnB[10^d]/Pi,d}]] 
inb 
 
INB1=Interpolation[inb];   (*InvRnB Q from angle ε nullvector*); 
INB=Function[Which[-1<#<0,INB1[#],#==0,3/2Pi Q0^.25,#>0,Null]]; 
INBP=Function[Which[-Pi<#<0,INB1[#/Pi],#==0,3/2 Q0^.25,#>0,Null]]; 
 

" Reference Values CODATA2018 to the Comparison only " 
 
hb0SI=1.054571817*10^-34;                    (*Planck constant slashed*); 
h0SI=6.62607015*10^-34;                    (*Planck constant unslashed*); 
ep0SI=8.854187812813*10^-12;                  (*Permittivity of vacuum*); 
kSI=1.380649*10^-23;                              (*Boltzmann-constant*); 
G0SI=6.6743015*10^-11;                             (*Gravity constant *); 
ka0SI=1.30605*10^93;                   (*1.3057 Conductivity of vacuum*); 
qeSI=1.602176634*10^-19;                         (*Elementary charge e*); 
q0SI=Sqrt[hb0SI/Z0];                                   (*Planck-charge*); 
meSI=9.109383701528*10^-31;               (*Electron rest mass with Q0*); 
mpSI=1.6726219236951*10^-27;                        (*Proton rest mass*); 
alphaSI=7.297352569311*10^-3;                (*Fine structure constant*); 
deltaSI=(4Pi)^2 hb0SI/Z0SI/qeSI^2 *meSI/mpSI;             (*Factor QED*); 
mnSI=1.6749274980495*10^-27;                       (*Neutron rest mass*); 
maSI=1.6605390666050*10^-27;                        (*Atomic mass unit*); 
mepSI=5.4461702148733*10^-4;                          (*Mass ratio e/p*); 
m0SI=Sqrt[hb0SI c/G0SI](*2.17643424*10^-8 garbage*);     (*Planck-mass*); 
r0SI=hb0SI/m0SI/c(*1.61625518*10^-35 garbage*);        (*Planck-length*); 
t0SI=.5Sqrt[hb0SI G0SI/c^5](*5.39124760*10^-44 garbage*);  (*Planck-time*); 
Φ0SI=2.067833848*10^-15;             (*Magnetic flux quantum 2Piħ/(2e)*); 
GQ0SI=7.748091729*10^-5;               (*Conductance quantum 2e^2/2Piħ*); 
U0SI= Sqrt[c^4/(4 Pi ep0SI G0SI)](*1.04295*10^27 garbage*);  (*Planck-voltage*); 
U1SI=U0SI Q0;                                (*Planck-voltage universe*); 
W0SI=Sqrt[hb0SI c^5/G0SI];                             (*Planck-energy*); 
TpSI=SetPrecision[Sqrt[hb0SI c^5/G0SI]/k,16](*1.41678416*10^32 Planck-temperature*); 
TCOBE=2.72548;                       (*±0.00057K CMBR-temperature/COBE*); 
Z0SI=376.73031366857;                 (*Field wave impedance of vacuum*); 
KJSI=483597.8484*10^9;                       (*Josephson constant 2e/h*); 
RKSI=25812.80745;                       (*von Klitzing constant µ0c/2α*); 
µBSI=-9.274010078328*10^-24;                           (*Bohr Magneton*); 
µNSI=5.050783746115*10^-27;                         (*Nuclear magneton*); 
R∞SI=1.097373156816021*10^7;                        (*Rydberg constant*); 
cR∞SI=3.289841960250864*10^15;                     (*Rydberg frequency*); 
OmR∞SI=2Pi*cR∞SI;                          (*Rydberg angular frequency*); 
a0SI=5.2917721090380*10^-11;                             (*Bohr radius*); 
reSI=2.817940326213*10^-15;                (*Classical electron radius*); 
ΛCSI=2.4263102386773*10^-12;             (*Compton wavelength electron*); 
ΛbarCSI=3.861592679612*10^-13;            (*Reduced Compton wavelength*); 
σeSI=6.652458732160*10^-29;        (*Thomson cross section (8Pi/3)re^2*); 
µeSI=-9.284764704328*10^-24;                (*electron magnetic moment*); 
aeSI=1.1596521812818*10^-3;         (*Electron magnetic moment anomaly*); 
geSI=-2.0023193043625635;                          (*electron g-factor*); 
γeSI=1.7608596302353*10^11;              (*electron gyromagnetic ratio*); 
σSI=5.670366673885496*10^-8;               (*Stefan-Boltzmann constant*); 
QCB=8.3415*10^60;                                   (*Phase angle COBE*); 
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" Calculating Table 10 " 
 
data={ 
{"c",ScientificForm[c,16],ScientificForm[c,16], "defined"}, 
{"ep0",ScientificForm[N[ep0],16],ScientificForm[N[ep0],16], "defined"}, 
{"ka0",ScientificForm[N[ka0],16],"n.a.", "defined"}, 
{"my0",ScientificForm[N[my0],16],ScientificForm[N[my0],16], "exactly"}, 
{"k",ScientificForm[N[k],16],ScientificForm[kSI,16], 
 ScientificForm[kSI/k-1,NumberSigns->{"-","+"}]}, 
{"hb1",ScientificForm[hb1,16],"n.a.", "defined"}, 
{"hb0",ScientificForm[hb0,16],ScientificForm[hb0SI,16], 
 ScientificForm[hb0/hb0SI-1,NumberSigns->{"-","+"}]}, 
{"Q0",ScientificForm[Q0,16],ScientificForm[QCB,16], 
 ScientificForm[Q0/QCB-1,NumberSigns->{"-","+"}]}, 
{"Z0 ",NumberForm[Z0,16],NumberForm[Z0SI,16], 
 ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}]}, 
{"G0 ",ScientificForm[G0,16],ScientificForm[G0SI,16], 
 ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}]}, 
{"G1 ",ScientificForm[G1,16],"n.a.","unusual"}, 
{"G2 ",ScientificForm[G2,16],"n.a.","unusual"}, 
{"M2",ScientificForm[M2,16],"n.a.","unusual"}, 
{"M1",ScientificForm[M1,16],"n.a.","unusual"}, 
{"mp",ScientificForm[mp,16],ScientificForm[mpSI,16], 
 ScientificForm[mp/mpSI-1,NumberSigns->{"-","+"}]}, 
{"me",ScientificForm[me,16],ScientificForm[meSI,16], "magic±0"}, 
{"m0",ScientificForm[m0,16],ScientificForm[m0SI,16], 
 ScientificForm[m0/m0SI-1,NumberSigns->{"-","+"}]}, 
{"MH",ScientificForm[MH,16],"n.a.","unusual"}, 
{"mep",ScientificForm[mep,16],ScientificForm[mepSI,16], 
 ScientificForm[mep/mepSI-1,NumberSigns->{"-","+"}]}, 
{"Tp",NumberForm[Tp0,16],ScientificForm[TpSI,16], "MOOP"}, 
{"Tk1",ScientificForm[Tk1,16],"n.a.","unusual"}, 
{"Tk0",NumberForm[Tk0,16],ToString[NumberForm[TCOBE,16]]<>" ©", 
 ScientificForm[Tk0/TCOBE-1,NumberSigns->{"-","+"}]}, 
{"r1",ScientificForm[r1,16],"n.a.","unusual"}, 
{"r0",ScientificForm[r0,16],ScientificForm[r0SI,16], 
 ScientificForm[r0/r0SI-1,NumberSigns->{"-","+"}]}, 
{"re",ScientificForm[re,16],ScientificForm[reSI,16], 
 ScientificForm[re/reSI-1,NumberSigns->{"-","+"}]}, 
{"ΛbarC",ScientificForm[ΛbarC,16],ScientificForm[ΛbarCSI,16], 
 ScientificForm[ΛbarC/ΛbarCSI-1,NumberSigns->{"-","+"}]}, 
{"ΛC",ScientificForm[ΛC,16],ScientificForm[ΛCSI,16], 
 ScientificForm[ΛC/ΛCSI-1,NumberSigns->{"-","+"}]}, 
{"a0",ScientificForm[a0,16],ScientificForm[a0SI,16], 
 ScientificForm[a0/a0SI-1,NumberSigns->{"-","+"}]}, 
{"R     [m]",ScientificForm[R,16],"n.a.","at issue"}, 
{"R   [Gpc]",ScientificForm[RR,16],"n.a.","at issue"}, 
{"2t1",ScientificForm[2t1,16],"n.a.","unusual"}, 
{"2t0",NumberForm[2t0,16],NumberForm[2t0SI,16], 
 ScientificForm[t0/t0SI-1,NumberSigns->{"-","+"}]}, 
{"2T    [s]",ScientificForm[1/H0,16],ScientificForm[Mpc/HPC[QCB]/km,16], 
 ScientificForm[HPC[QCB]/Mpc*km/H0-1,NumberSigns->{"-","+"}]}, 
{"2T    [a]",ScientificForm[1/H0/year,16],ScientificForm[Mpc/HPC[QCB]/km/year,16], 
 ScientificForm[HPC[QCB]/Mpc*km/H0-1,NumberSigns->{"-","+"}]}, 
{"R∞",ScientificForm[R∞,16],ScientificForm[R∞SI,16], 
 ScientificForm[R∞/R∞SI-1,NumberSigns->{"-","+"}]}, 
{"Om1",ScientificForm[Om1,16],"n.a.","unusual"}, 
{"Om0",ScientificForm[Om0,16],ScientificForm[c/r0SI,16], 
 ScientificForm[Om0*2*t0SI-1,NumberSigns->{"-","+"}]}, 
{"OmR∞",ScientificForm[OmR∞,16],ScientificForm[OmR∞SI,16], 
 ScientificForm[OmR∞/OmR∞SI-1,NumberSigns->{"-","+"}]}, 
{"cR∞",ScientificForm[cR∞,16],ScientificForm[cR∞SI,16], 
 ScientificForm[cR∞/cR∞SI-1,NumberSigns->{"-","+"}]}, 
{"H0  [1/s]",ScientificForm[H0,16],ScientificForm[HPC[QCB]/Mpc*km,16], 
 ScientificForm[H0/(HPC[QCB]/Mpc*km)-1,NumberSigns->{"-","+"}]}, 
{"km/s/Mpc]",NumberForm[HPC[Q0],16],ToString[ NumberForm[HPC[QCB],16]]<> " ©", 
 ScientificForm[HPC[Q0]/HPC[QCB]-1,NumberSigns->{"-
","+"}]},{"q1",ScientificForm[q1,16],"n.a.","unusual"}, 
{"q0",ScientificForm[q0,16],ScientificForm[q0SI,16], 
 ScientificForm[q0/q0SI-1,NumberSigns->{"-
","+"}]},{"qe",ScientificForm[qe,16],ScientificForm[qeSI,16], 
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 ScientificForm[qe/qeSI-1,NumberSigns->{"-
","+"}]},{"U1",ScientificForm[U1,16],"n.a.","unusual"}, 
{"U0",ScientificForm[U0,16],ScientificForm[U0SI,16], 
 ScientificForm[U0/U0SI-1,NumberSigns->{"-
","+"}]},{"W1",ScientificForm[W1,16],"n.a.","unusual"}, 
{"W0",ScientificForm[W0,16],ScientificForm[W0SI,16], 
 ScientificForm[W0/W0SI-1,NumberSigns->{"-","+"}]}, 
{"Wk1", ScientificForm[Wk1, 16], "n.a.", "unknown"}, 
{"S1",ScientificForm[S1,16],"n.a.","unusual"}, 
{"S0",ScientificForm[S0,16],"n.a.","unusual"}, 
{"Sk1", ScientificForm[Sk1, 16], "n.a.", "unknown"}, 
{"Sk0", ScientificForm[Sk0, 16], ScientificForm[Sk0SI, 16], 
 ScientificForm[Sk0/Sk0SI - 1, NumberSigns -> {"-", "+"}]}, 
{"σe",ScientificForm[σe,16],ScientificForm[σeSI,16], 
 ScientificForm[σe/σeSI-1,NumberSigns->{"-","+"}]}, 
{"ae",ScientificForm[ae,16],ScientificForm[aeSI,16], 
 ScientificForm[ae/aeSI-1,NumberSigns->{"-","+"}]}, 
{"ge",ScientificForm[ge,16],ScientificForm[geSI,16], 
 ScientificForm[ge/geSI-1,NumberSigns->{"-","+"}]}, 
{"γe",ScientificForm[γe,16],ScientificForm[γeSI,16], 
 ScientificForm[γe/γeSI-1,NumberSigns->{"-","+"}]}, 
{"µe",ScientificForm[µe,16],ScientificForm[µeSI,16], 
 ScientificForm[µe/µeSI-1,NumberSigns->{"-
","+"}]},{"µB",ScientificForm[µB,16],ScientificForm[µBSI,16], 
 ScientificForm[µB/µBSI-1,NumberSigns->{"-","+"}]}, 
{"µN",ScientificForm[µN,16],ScientificForm[µNSI,16], 
 ScientificForm[µN/µNSI-1,NumberSigns->{"-","+"}]}, 
{"Φ0",ScientificForm[Φ0,16],ScientificForm[Φ0SI,16], 
 ScientificForm[Φ0/Φ0SI-1,NumberSigns->{"-","+"}]}, 
{"GQ0",ScientificForm[GQ0,16],ScientificForm[GQ0SI,16], 
 ScientificForm[GQ0/GQ0SI-1,NumberSigns->{"-","+"}]}, 
{"KJ",ScientificForm[KJ,16],ScientificForm[KJSI,16], 
 ScientificForm[KJ/KJSI-1,NumberSigns->{"-","+"}]}, 
{"RK",ScientificForm[RK,16],ScientificForm[RKSI,16], 
 ScientificForm[RK/RKSI-1,NumberSigns->{"-","+"}]}, 
{"α",ScientificForm[alpha,16],ScientificForm[alphaSI,16], 
 ScientificForm[alpha/alphaSI-1,NumberSigns->{"-
","+"}]},{"δ",ScientificForm[delta,16],ScientificForm[deltaSI,16], 
 ScientificForm[delta/deltaSI-1,NumberSigns->{"-
","+"}]},{"x~",ScientificForm[xtilde,16],ScientificForm[2.821439372`,16],"exactly"}, 
{"σ1", ScientificForm[σ1, 16], "n.a.", "unknown"}, 
{"σ",ScientificForm[σ,16],ScientificForm[σSI,16], "exactly"}}; 
 
Grid[Prepend[data,{"Value\r","Calculated","SI\rCOBE ©","∆y\r"}], 
Background->{None,{Lighter[Blend[{Blue,Green}],.8]}},Frame->All,Alignment->{Left}] 
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13. Abbreviations 
 

* 
. Labelling of the first temporal derivative 
.. Labelling of the second temporal derivative 
^ Labelling of a peak value  
* Labelling of a conjugate complex value 
~ Labelling of a reference-frame-dependent quantity (constant) 
 without labelling it’s about a variable 

 

A 
a Acceleration 
a0 Bohr’s hydrogen-radius 
ai Factor i 
A Factor, amplitude 
A(ω) Amplitude response 
α Angle, attenuation rate 
αγ, , αν,  Angle in the metric triangle 

 

B 
B Induction 
B0 Induction in the MLE 
B Factor 
B(ω) Phase response 
β Angle, phase rate, relativistic dilatation-factor (1–v2 /c2 )–1/2 
β0 Phase rate of the metric wave-field 

 

C 
c Speed of light (constant in reference to the subspace) 
c, c Complex wave-propagation-velocity 
cM Propagation-velocity of the metric wave-field 
C Capacity 
C0 Capacity of the ball-capacitor in the MLE 
CMBR Cosmic microwave background-radiation 

 

D 
D Electric charge-density (influence) 
δ Phase-angle of the MLE, angle 

 Kronecker-symbol 
∂ Partial differential-operator 
∂b Partial differential-operator ∂/∂b 

 

E 
E, E Electric field-strength 
E0 Electric field-strength in the MLE 
e Electron charge, Euler constant (2.71828...) 
er Unit-vector on r 
ε Angle 
ε0 Dielectric constant of the subspace (vacuum) 
εν Coefficient of absorption of the gray body 
η Factor 
ηab MINKOVSKIan metrics (math.) 

αγ α ν 

δk

i
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F 
f Function 
F Function 
F, F Force 
Fg, Fg Gravitational-force 
Fm, Fm Lorentz-force 
Fz, Fz Centrifugal force 
0F1 Hypergeometric function 
φ 2ω0t–γr, electric potential 
ϕ Angle of intersection of the metr. speed-vector with the x-axis 
ϕ0 Magnetic flux in the MLE (momentary value) 
ϕi Initial value of ϕ0 
Φ NEWTON’s gravitational-potential 
Φ(ω) Phase-shift during wave-propagation 

 

G 
g Acceleration of gravity 
gik, gik Metrics (mathematical object) 
G Gravitational-constant (not fixed) 
G0 Specific conductance per meter 
G1 Gravitational-constant with Q0 =1 
γγ, , γn,  angle in the metric triangle 
γ Complex propagation rate 
Γ Gamma-function 

 Metric connection 
 

H 
hik, hik Fourfold-vectors 
H, H0, H1 HUBBLE-parameter 

 HANKEL function of n’th order Jn(x)+jYn(x) 

 Conj. complex Hankel function of n’th order Jn(x)–jYn(x) 

H, H Magnetic field-strength 
H0 Magnetic field-strength in the MLE 
ℏ PLANCK’s quantity of action (not fixed) 
ℏ1 PLANCK’s quantity of action with Q0 =1 
ℏi PLANCK’s quantity of action initial-value 

 

I 
i Electric current (momentary value) 
i0 Electric current in the MLE (momentary value) 
i1, i2, i3 Partial currents in the MLE-model 
I Electric current 
Im(x) Imaginary-part 

 

J 
j Imaginary unit  
J0 Mass-moment of inertia of the MLE 
J0(x) BESSEL function of zeroth order 
Jn(x) BESSEL function of n’th order 

 

K 
k BOLTZMANN-constant 

γ γ γ ν 

Γbc
a

H
 n

(1) (x)

H
 n
(2) (x)

−1
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κ Coupling-constant of the URT 
κ0 Specific conductivity of the subspace 
κ0R Specific conductivity of the metrics (vacuum) 
 

L 
l Length 
L Inductivity 
L Moment of momentum 
L0 Inductivity of the MLE 
L(x) LAGRANGE’s function 
L  (x) LAPLACE transform 
lg log10 
ln loge 

lx LAMBERT’s W-function 

� 

lx(xe x ) = 1 (ProductLog) 
λ Wavelength 
Λ, Λ Wave count vector 

 

M 
m Factor, mass 
m* SR-rest-mass 
MH HUBBLE-Mass Hħ/c2 = m0Q0

−1 

m0 PLANCK-mass, UR-rest-mass 
M1 MACH’s counter mass m0Q0 
M2 Initial mass universe m0Q0

2 

me Electron mass 
mp Proton mass 
M Mass 
M
�

 Sun mass 
Mn(x) Modulus of the HANKEL-function  
MLE Metric line-element (physical object) 
µ Induction-constant generally (µ0 µr) 
µ Ratio mp/me 

µ0 Induction-constant of the subspace (vacuum) 
 

N 
n Quantity, factor 
ν Neutrino, frequency 

 

O 
00 (x) Series, tending against zero 
02 (x) Series, tending against zero 
Ω Relative frequency ω/(2ω1) resp. ω/(2ω0) 

 

P 
p Laplace-operator 
P Power, point 
P0 Power dissipation of the MLE 
Pv Power dissipation generally 
π Ratio of circumference and diameter at the circle (3.1415....) 
ψ Magnetic potential 
Ψ Product MG 
Ψ(ω) Share of the attenuation-factor α, caused by the amplitude response 

 

2 2
n nJ (x) Y (x)+
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Q 
q Charge (momentary value) 
q0 Charge of the ball-capacitor in the MLE 
Q0 Q-factor and phase-angle (2ω0t) in the MLE 
QED Quantum-electrodynamics 
QM Quadratic median 
 

R 
r Radius absolute 
r´ Radius after substitution 

r Radius relative  

r0 Planck’s fundamental length (radius) 
r1 Planck’s fundamental length for Q0 =1 (subspace-constant) 
rC Radius of the ball-capacitor in the MLE 
re Electron radius according to the classic opinion 
R World-radius 2cT 
R Scalary curvature 
R
�

 Average sun radius 
R0 Shunt-resistor in the MLE-model 
R0R Series-resistor in the MLE-model 
Rs Schwarzschild-radius 
Rik, Rik RICCI-tensor 
Raa

bcd, Rabcd RIEMANN’s curvature tensor 
Re(x) Real part 
ρ Density 
ρ0(x) Function (211) 

 

S 
s Way 
S Entropy, electr. current-density 
S, Sb Entropy 
 ̲S
�0 Entropy per nucleon 

S, Sk, Sk0,1,U, ͞Sk... Power-density (POYNTING-vector), k = CMBR 
σ, σ1 STEFAN-BOLTZMANN-constant 
σ(t) Dirac-impulse 
σi Eigenvalues 

 

T 
t Time absolute (in the frame of reference) 

t Time relative  

t1 Period of the oscillation of the MLE with Q0 =1 
T Local age, total-age = 2T 
TPh Phase delay 
TGr Group delay 
Tω Period of the function sin ω 
T, Tb Temperature 
τ, τ0, τ1 Time-constants 
θ Trigonometric function (211) 
ϑ Angle in the coordinate-system 

 

2r
˜ R 

 
  

 
  

2

3

1 +
t
˜ T 

 
  

 
  

1

2
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U 
u Voltage (momentary value) 
u0 Voltage in the MLE-model (momentary value) 
U Voltage 
U Gravitational-potential (new definition) 

 

V 
v Velocity 
vM Velocity in reference to the metrics 
vPh Phase velocity 
vGr Group velocity 
V Detuning (oscillatory circuit), magneto motive force 

 

W 
w Energy-density 
wk Energy-density CMBR 
W Energy 
W0 Energy of the MLE 
Wk Energy of the CMBR 
ω Angular frequency universal 
ω0 Angular frequency of the MLE 
ω1 Angular frequency of the MLE with Q0 =1 
ωD De-Broglie-angular frequency of matter 
ωe Angular frequency of emission of CMBR 
ωs Angular frequency of immission of CMBR 
ωk Angular frequency CMBR nowadays 
ωT Thermal maximum CMBR 

 

X 
x Way 
�� Factor at WIEN’s replacement law 
ξ Rotatory-angle with the LORENTZ-transformation 
Ξ Magnetic charge-density (permanent magnet) 
Ξ(r,t) Red-shift with wave-propagation 

 

Y 
y Way 
Y0 Bessel function of zeroth order (von NEUMANN’s function) 
Yn Bessel function of n’th order (von NEUMANN’s function) 

 

Z 
z Way, factor, red-shift 
Z Wave impedance 
Z0 Wave impedance of the vacuum (≈2π·60Ω) 
ZF Field-wave impedance complex   
   

 


