Representation of the Collatz Graph using adjacency matrix Wiroj Homsup and Nathawut Homsup

September 4, 2022

Abstract

Let G be a weighted directed graph with node $\mathrm{V}(\mathrm{G})$ represented by a positive odd integer. Each edge $\mathrm{E}(\mathrm{g})$ directed from node a_{n} to node $\mathrm{a}_{\mathrm{n}+1}$ with weigh $e\left(a_{n}\right)$ defined from $a_{n+1}=\left(3 a_{n}+1\right) / 2^{e\left(a_{n}\right)}$ where $e\left(a_{n}\right)$ is the highest exponent for which $2^{e\left(a_{n}\right)}$ exactly divide $3 a_{n}+1$. This graph is called the Collatz weighted directed graph with its unique adjacency matrix. The structure of this adjacency matrix provides new insights into the validity of the Collatz conjecture.

1. Introduction: the Collatz conjecture

Denote by $N=\{1,2,3 \ldots \ldots \ldots \ldots\}, \mathrm{N}_{0}=\{0,1,2,3, \ldots \ldots \ldots \ldots .$.$\} , and$
$\mathrm{D}^{+}=2 \mathrm{~N}_{0}+1$ the set of positive odd number. Define the recursive function introduced by Crandall [1] :

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}+1}=\left(3 \mathrm{a}_{\mathrm{n}}+1\right) / 2^{e\left(a_{n}\right)} \tag{1}
\end{equation*}
$$

where $a_{n} \in \mathrm{D}^{+}$and $e\left(a_{n}\right) \in \mathrm{N}$ is the highest exponent for which $2^{e\left(a_{n}\right)}$ exactly divide $3 a_{n}+1$. For an initial a_{0}, any k iteration on a_{0} generate a sequence of odd integer , $\left\{a_{0}, a_{1}, \ldots \ldots \ldots a_{k}\right\}$. The collatz conjecture asserts that for every positive odd integer a_{0} there exists $\mathrm{k} \in \mathrm{N}$ such that $\mathrm{a}_{\mathrm{k}}=1$

2. The Collatz weighted directed graph

Let G be a weighted directed graph with node $\mathrm{V}(\mathrm{G})$ represented by a positive odd integer. Each edge $\mathrm{E}(\mathrm{G})$ directed from node a_{n} to node $\mathrm{a}_{\mathrm{n}+1}$ with weigh $e\left(a_{n}\right)$ defined from

$$
\begin{equation*}
a_{n+1}=\left(3 a_{n}+1\right) / 2^{e\left(a_{n}\right)} \tag{2}
\end{equation*}
$$

where $a_{n} \in D^{+}$and $e\left(a_{n}\right)$ is the highest exponent for which $2^{e\left(a_{n}\right)}$ exactly divide $3 a_{n}+1$.

As an example, an edge from node 1 to node 1 , node 5 to node 1 will have a weigh of 2 and 4 , respectively. Some part of G is shown in Figure 1.

Figure 1. Part of G with node $1,3,5,13,53$

3. Adjacency matrix of \mathbf{G}

The well-defined adjacency matrix A for the collatz weighted directed graph is shown in Figure 2.

	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	
1	2		4								6								
3																			
5		1					3												
7					2														4
9																			
11				1											3				
13									2										
15																			
17						1													
19														2					
21																			
23								1											
25																		2	
27																			
29										1									
31																			
33																			
35													1						
37																			

Figure 2 The adjacency matrix A with invisible zero elements for the collatz weighted directed graph

A is an infinite matrix with element $\mathrm{a}(\mathrm{i}, \mathrm{j})$ as a weigh directed from node $2(j-1)+1$ to node $2(i-1)+1$, i.e. $a(1,1)=2, a(1,3)=4$. In each row of A, there are infinite nonzero elements except at node $6 n+3, n=0,1,2,3, \ldots \ldots$ which has only zero elements. Let S_{i} be a set related to node i, i.e.

$$
\begin{aligned}
& S_{1}=\{1,5,21,85, \ldots \ldots \ldots\} \\
& S_{3}=\{\emptyset\} \\
& S_{5}=\{3,13,53, \ldots \ldots\}
\end{aligned}
$$

All S_{k} can be divided in three groups [2]:

$$
\begin{aligned}
& S_{6 n+3}=\{\emptyset ; n=0,1,2, \ldots \ldots\}, \\
& S_{6 n+1}=\left\{\left(8 n+1+\frac{1}{3}\right) 4^{k-\frac{1}{3}} ; n=0,1,2, \ldots \ldots ; k=\right. \\
& \quad 0,1,2, \ldots . .\}, \\
& S_{6 n+5}=\left\{\left(4 n+3+\frac{1}{3}\right) 4^{k-\frac{1}{3}} ; n=0,1,2, \ldots \ldots ; k=\right. \\
& \quad 0,1,2, \ldots .\},
\end{aligned}
$$

Also each column of A has only one non-zero element. It means that each odd positive integer is an element in some set $\mathrm{S}_{\mathrm{k}}, \mathrm{k}=1,3,5,7, \ldots \ldots$ which implies that the union of all $\mathrm{S}_{\mathrm{k}}, \mathrm{k}=1,3,5,7 \ldots$. is equal to D^{+}.

We can see that it takes one step from each element in S_{1} to reach 1 and two steps from each element in the union of $S_{5}, S_{85}, S_{341}, \ldots .$. to reach 1 .

Let T_{i} be a set with its element can reach 1 in i steps; and since the union of all T_{i} equals to D^{+}then each a_{0} will be element of a particular $\mathrm{T}_{\mathrm{k}} ; \mathrm{k} \in \mathrm{D}^{+}$.

Based on these facts, it is concluded that the Collatz cojecture is true.

References

[1] R . E. Crandall, " On the " $3 \mathrm{x}+1$ " problem", Math. Of Comp. Vol. 32, N0. 144, October 1978, p. 1281-1292.
[2] Z. B. Batang, "Integer patterns in Collatz sequence", arXiv: 1907.07088v2 [math.GM] 17 Jul 2019.

