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Abstract: The Riemann zeta function(RZF), (𝑠), is a function of a complex variable 𝑠 =

𝑥 + 𝑖𝑦, which is analytic for 𝑥 > 1. The Dirichlet Eta Function(DEF), (𝑠), is also a function 

of a complex variable 𝑠, which is analytic for 𝑥 > 0. The zeros of RZF and DEF are all same. 

The Riemann hypothesis(RH) states that the non-trivial zeros of RZF is of the form 𝑠 = 0.5 +

𝑖𝑦. The clue of our proof stems from the symmetry properties of RZF zeros, stating that if 

there exists a zero whose real part is not 0.5, such as ( + 𝑖) = 0, 0 <  < 0.5, also 

(1 −  + 𝑖) = 0, called the critical line symmetry. Then, the two zeros should be on the two 

edge lines of a strip  ≤ 𝑥 ≤ 1 − . In the strip there are infinitely many lines that are parallel 

to the edge lines. Our question was, when that strip is mapped by DEF, will those parallel 

relationships be kept? If the parallel relationships are kept, RH is true, if not, RH may be 

false. Because DEF is analytic for all complex numbers for 𝑅𝑒(𝑠) = 𝑥 > 0, so, by the angle 

preserving property of an analytic function, the parallel two edge lines can’t intersect at the 

origin, when mapped by DEF. So, RH is true.  

1. Introduction 

In this work we studied the implications of the symmetry properties of the zeros of RZF, 

when the zero deviates the critical line. It is well known that the mapping of an analytic 

complex function preserves the intersecting angles [1][2]. 

If there exists a zero whose real part is not 0.5, such as ( + 𝑖) = 0, 0 <  < 0.5, the 

symmetry properties of the zeros of RZF forces (1 −  + 𝑖) = 0. This implies that the two 

zeros should be on the two parallel edge lines of a strip  ≤ 𝑥 ≤ 1 − .  

If ( + 𝑖) = (1 −  + 𝑖) = 0, the parallel two edge lines must intersect at the origin, 

when mapped by an analytic complex function, preserving the intersecting angles. But, the 

two edge lines of the strip can’t intersect.   

Furthermore, in the strip there are infinitely many lines that are parallel to the edge lines. 

So, how the two edge lines can be mapped to intersect at the origin, crossing the infinitely 

many parallel lines inside the strip? 

It is almost self-evident that the two parallel edge lines can’t intersect at the origin, when 

mapped by DEF.  

2. Symmetry Properties of the Zeros of RZF 

RZF [3][4][5][6][7] (𝑠) and DEF [8] (𝑠) are functions of a complex variable 𝑠 = 𝑥 + 𝑖𝑦.  

(𝑠) =  ∑
1

𝑛𝑠
∞
𝑛=1 =

1

1𝑠 +
1

2𝑠 +
1

3𝑠 + ⋯    (2.1) 

(𝑠) =  ∑
(−1)𝑛+1

𝑛𝑠
∞
𝑛=1 = (1 − 21−𝑠)(𝑠) =

1

1𝑠 −
1

2𝑠 +
1

3𝑠 − ⋯   (2.2) 

It is well known that the following three equations are true, where (𝑠) is the Riemann's 

Xi-function [10][12].  
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(𝑠) =
1

2
𝑠(𝑠 − 1) (

𝑠

2
) (𝑠)

−𝑠

2   (2.3) 

(𝑠) = (1 − 𝑠)  (2.4) 

(𝑠) = (𝑠)  (2.5) 

The right side of the equations (2.2) and (2.3) include (𝑠), so, the zeros of (𝑠) are also 

the zeros of (𝑠) and (𝑠). 

Lemma 2.1. Equations (2.4) and (2.5) means that there exist two types of symmetries of the 

zeros of RZF, as in Figure 1. 

① Critical line symmetry: Symmetry of (2.4), which means that if 𝑠 =  + 𝑖 is zero, 

then 1 −  + 𝑖 is also a zero.  

② Complex conjugate symmetry: Symmetry of (2.5), which means that if 𝑠 =  + 𝑖 

is a zero, then 𝑠 =  − 𝑖 is also a zero.  

Figure 1. Zero symmetries of RZF. 

 

Proof. Let 𝑠 =  + 𝑖. First, in (2.5), ( − 𝑖) = ( + 𝑖) = 0, which is same as (𝑅) =

(𝑃) = 0 , in Figure 1. So, the complex conjugate symmetry is true. Second, in (2.4), 

( + 𝑖) = {1 − ( + 𝑖)} = 0, which is same as (𝑃) = (𝑆) = 0, in Figure 1. Because of 

the complex conjugate symmetry, (𝑆) = (𝑄) = 0. So, (𝑃) = (𝑄) = 0, which is the critical 

line symmetry.                                                                   ■ 

3. The Proof of RH 

Instead of using RZH, we use DEF, (𝑥 + 𝑖𝑦), which is  analytic for all complex numbers 

whose real part 𝑥 > 0.  

Definition 3.1. Edge lines: Two edge lines of a strip, which are 𝑥 =  and 𝑥 = 1 −  or 

( + 𝑖𝑦) and (1 −  + 𝑖𝑦).  

Lemma 3.2. To have two zeros such as ( + 𝑖) = (1 −  + 𝑖) = 0, two edge lines should 

intersect at the origin when 𝑦 = , while 𝑦 moves from 𝑦 = 0 to 𝑦 = .  



 

 

                           

                                                

- 3 - 

 

Proof. If two edge lines intersect at (𝑥, 𝑦) ≠ (0, 0) , which is not the origin, ( + 𝑖) =

(1 −  + 𝑖) ≠ (0,0), so, two edge lines must intersect at the origin.                     ■ 

Lemma 3.3. The two edge lines can’t intersect at the origin, when mapped by DEF. So, RH 

is true.  

Proof. The intersecting angles are preserved when mapped by an analytic complex function. 

The two edge lines are parallel and to preserve the intersecting angle, they should not 

intersect when mapped by DEF, (𝑠), which is analytic for all complex numbers 𝑅𝑒(𝑠) > 0. 

So, RH is true.                                                                   ■ 

4. Conclusion 

In this thesis, we proved RH by the angle preserving properties of an analytic complex 

function, along with the symmetry properties of the zeros of the RZF.  
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