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ABSTRACT

The online estimation of rhythmic information, such as
beat positions, downbeat positions, and meter, is critical
for many real-time music applications. Musical rhythm
comprises complex hierarchical relationships across time,
rendering its analysis intrinsically challenging and at times
subjective. Furthermore, systems which attempt to esti-
mate rhythmic information in real-time must be causal and
must produce estimates quickly and efficiently. In this
work, we introduce an online system for joint beat, down-
beat, and meter tracking, which utilizes causal convolu-
tional and recurrent layers, followed by a pair of sequential
Monte Carlo particle filters applied during inference. The
proposed system does not need to be primed with a time
signature in order to perform downbeat tracking, and is in-
stead able to estimate meter and adjust the predictions over
time. Additionally, we propose an information gate strat-
egy to significantly decrease the computational cost of par-
ticle filtering during the inference step, making the system
much faster than previous sampling-based methods. Ex-
periments on the GTZAN dataset, which is unseen during
training, show that the system outperforms various online
beat and downbeat tracking systems and achieves compa-
rable performance to a baseline offline joint method.

1. INTRODUCTION

Rhythm plays an essential role in nearly all musical en-
deavors, including listening to, playing, learning, or com-
posing music. This is why the estimation of rhythmic in-
formation, such as beat positions, downbeat positions and
meter has always been an important subject of study in the
field of Music Information Retrieval (MIR). Depending on
the requirements and constraints imposed by the applica-
tion at hand, these estimation tasks can either be performed
in an offline or online fashion. Offline approaches are typ-
ically non-causal, meaning that they make predictions for
a given time using data or features associated with a future
time. These approaches are suitable for applications such
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as music transcription, music search and indexing, and mu-
sicological analysis. Online approaches are causal, mean-
ing that they operate using only past and present features.
These are typically desirable for human-computer interac-
tion (HCI) systems, which must make immediate predic-
tions, like real-time music accompaniment systems.

Many offline methods have been proposed for beat
tracking [1–3]. Most of them are unsupervised and at-
tempt to utilize low-level features like onset strengths with
some inference model to estimate beat positions within a
music piece. However, with the growing success of deep
learning, supervised beat tracking methods have become
more prominent. Böck et al. [4] employed Recurrent Neu-
ral Networks (RNNs) to estimate beat positions; Various
other neural network structures have also been proposed
for onset detection and beat tracking [5, 6].

Some methods have also been proposed for online beat
tracking. However, many of them, e.g., [4, 7–10], feed a
sliding window of data into an offline model to estimate
beat positions within upcoming frames. The sliding win-
dow strategy has several major drawbacks, including the
discontinuity of beat predictions and the need for prim-
ing for predictions in the first window, which causes a de-
lay [11]. Some other approaches involve inferring beat
positions in real time using multi agent models [11–14],
which initialize a set of agents with various hypotheses that
try to validate their respective hypotheses based on obser-
vations across time.

The task of downbeat tracking is often considered to be
more difficult than beat tracking. This is because a deeper
understanding of rhythmic structure in music is required
to be able to differentiate between beats and downbeats.
Making matters worse, at the signal level, these two events
have very similar characteristics. For instance, downbeats
are not necessarily associated with stronger signal energy,
nor do they necessarily feature a distinct percussive pro-
file. Moreover, both beats and downbeats are likely to be
the intersection of melodic and harmonic changes. These
factors can make it challenging, and in some cases subjec-
tive, to distinguish between the two rhythmic events. For
instance, for a 4/4 music piece with kick drum events on
the first and third beats, it is hard to distinguish downbeats
and determine whether the time signature is 4/4 or 2/4.

There has been some previous work on offline down-
beat tracking, both as an isolated task and within a joint
beat and downbeat tracking framework. Durand et al. [15–



Figure 1. Overview of the joint beat, downbeat, and meter tracking procedure using the proposed BeatNet model.

17] used some combinations of features and CNN struc-
tures to obtain downbeats. Giorgi et al. [18] proposed
tempo-invariant convolutional filters for downbeat track-
ing. Peeters and Papadopoulos [19] performed joint beat
and downbeat tracking by decoding hidden states using
the Viterbi algorithm. Böck et al. [20] and Krebs et
al. [21] employed an RNN structure for joint beat and
downbeat tracking and only downbeat tracking using beat
synchronous features, respectively. Furthermore, some
recent works investigate Convolutional Recurrent Neural
Network (CRNN) structures for beat and downbeat track-
ing. Fuentes et al. [22] showed that CRNN structures out-
perform RNNs in downbeat tracking when taking the input
observations over a tatum grid. Cheng et al. [23] found that
CRNN structures with larger receptive fields outperform
other downbeat tracking models. Böck and Davies. [24]
used a CNN and Temporal Convolutional Network (TCN)
structure to improve the performance of their offline beat
and downbeat tracking model, and also performed data
augmentation to expose the neural network to more tempi.

The task of online downbeat tracking has received con-
siderably less attention. Goto and Muranoka [13] intro-
duced an unsupervised model which leverages a measure
inference stage for detecting chord changes. In [25], the
same beat tracking neural network with forward algorithm
from [4, 20] is paired with [21] to estimate downbeats and
other rhythmic patterns by extracting percussive and har-
monic beat-synchronous features. It is important to note
that this method must be primed with a known time signa-
ture and all possible rhythmic pattern choices. Liang [26]
proposed an online downbeat tracking method which feeds
a sliding window of data to an offline model [17]. This
method is vulnerable to the sliding window strategy draw-
backs described above.

Particle filtering is advantageous for two main reasons
when it comes to online processing. The first reason is
that it does not require future data. Popular maximum a
posteriori (MAP) algorithms like the Viterbi algorithm and
maximizer of the posterior marginals (MPM) smoothing
algorithms, e.g. forward-backward, are not applicable to

online processing. The second reason is that, among the
filtering methods which are causal, particle filtering is a
general (non-parametric) approach which can be utilized
to decode any unknown distribution. However, most mu-
sic rhythmic analysis approaches that utilize particle fil-
tering, e.g., [27–30], are classical and do not incorporate
neural networks. Alternatively, in our previous work [31],
we utilized a particle filtering inference model to infer beat
positions using the activations produced by an RNN in an
online fashion, but that approach does not attempt to esti-
mate downbeats nor meter.

In this paper, we propose BeatNet, a novel online sys-
tem for joint beat, downbeat, and meter tracking. The sys-
tem produces beat and downbeat activations using a CNN
and RNN combination, and performs inference using two
particle filtering stages. The beat tracking stage outper-
forms state-of-the-art online beat tracking methods. The
other stage simultaneously infers downbeats and time sig-
nature and achieves comparable results to state-of-the-art
offline downbeat tracking models that require the time sig-
nature as input. In contrast, BeatNet actively monitors
tempo and time signature changes over time. Finally, we
introduce an information gate mechanism in the inference
module to speed up the inference significantly, making our
method suitable for many real-time applications.

2. METHOD

In this section, we describe BeatNet, our online system for
joint beat, downbeat, and meter tracking, illustrated in Fig-
ure 1. BeatNet consists of a causal neural network stage for
producing activations and a particle filtering stage for in-
ference. The neural network comprises convolutional, re-
current and fully connected layers as described in section
2.2 which compute beat and downbeat activations for each
frame of audio. The activations are fed to a two-stage par-
ticle filtering module to infer beat and downbeat positions
and to estimate meter. The code for the BeatNet model is
open-source 1 , along with video demos and further docu-

1 https://github.com/mjhydri/BeatNet



mentation.

2.1 Feature Representation

The input of the network module is a sequence of filter-
bank magnitude responses, each of which corresponds to
one audio frame. Specifically, short-time Fourier trans-
form (STFT) with a Hann window of the length of 93 ms
and hop size of 46 ms is applied to the audio signal to
compute the log-amplitude magnitude spectrogram. Then
a logarithmically spaced filterbank ranging from 30 Hz to
17 kHz with 24 bands per octave is applied to yield a 136-d
filterbank response. The first-order temporal difference of
this response is also calculated and concatenated, resulting
in a 272-d filterbank response vector for each frame.

We also experimented with alternative feature represen-
tations, including the 329-d hand-crafted feature set from
[15], which comprises chroma features, onset strengths,
low-frequency spectral features, and melodic constant-Q
spectral features. The motivation for this feature set is to
aggregate the harmonic, percussive, bass, and melodic con-
tent of the music. However the 272-d filterbank response
feature set described above achieved notably better perfor-
mance than these hand-crafted features, and was thus cho-
sen for subsequent experiments.

2.2 Network Architecture

Following the common design of other similar works, we
employ a convolutional-recurrent neural network (CRNN)
architecture, illustrated in Figure 2, to process the input
features in order to obtain beat and downbeat activations.
Ideally, the convolution models relationships along the
frequency axis, and the unidirectional recurrence models
long-term relationships across time in a causal fashion.

The input features are fed into a 1D convolutional layer
with 2 filters of kernel size 10, followed by ReLU activa-
tion. The two filter responses are max pooled with ker-
nel size 2 along frequency and then concatenated into a
single feature embedding for each frame. Then, a fully-
connected layer with 150 neurons reduces the dimension-
ality of the embedding, and feeds it through two subse-
quent unidirectional Long Short-Term Memory (LSTM)
layers, each with a hidden size of 150. The embedding
is then fed through a final fully-connected layer and a soft-
max operation to obtain three activations which represent
beat, downbeat, and non-beat, respectively. Note that due
to the softmax function, the final activations for each class
always sum to one.

2.3 Particle Filtering Inference

In this section, we discuss the two-stage online Monte
Carlo particle filtering inference module, which gener-
ates the beat and downbeat predictions. Sequential Monte
Carlo particle filtering is a sampling-based model which it-
eratively estimates any unknown distribution p(x) by gath-
ering a large number of independent samples from an ar-
bitrary proposal distribution. The unknown distribution of

Figure 2. Proposed CRNN architecture for processing in-
put features and computing beat and downbeat activations.

interest in our case, up to the K-th frame, is the follow-
ing posterior p(x1:K |y1:K) of underlying beat or down-
beat positions x1:K conditioned on beat observations y1:K .
It can be inferred according to the key equations below.
For more detailed information, please refer to our previous
work [31].
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N→∞

N∑
i=1

ω(i)∑N
i=1 ω

(i)
δ
(
x− x(i)

)
, (1)

p
(
x
(i)
1:K |y1:K

)
∝

K∏
k=1

p
(
yk|x(i)k

)
p
(
x
(i)
k |x

(i)
k−1

)
, (2)

ω
(i)
k = p

(
yk|x(i)k

)
ω
(i)
k−1, (3)

where ω(i) is the importance weight of particle i, and δ(·)
is the Dirac function. Eq. (1) describes the estimation of
p(x) using a large number of particles (N →∞) and their
importance weights. Eq. (2) is a dynamic model which
updates the posterior of each frame k using the transition
(motion) and observation (correction) probabilities. Eq.
(3) describes a recursive process to update the importance
weights using the current observation and the importance
weights of the previous step.

2.3.1 State spaces, transition and observation models

We use a cascade of two sequential Monte Carlo particle
filters, one for beat tracking, and the other for downbeat
and meter tracking. The state space and transition model of
the beat estimator are similar to [32]. The beat state space
is a type of 2D bar pointer model and its transition for the
phase (horizontal) and the tempo (vertical) of the frame are
described in Eqs. (4) and (5), respectively. The phase of
frame k within a beat interval and the tempo at frame k
are respectively denoted by φb,k and φ̇b,k. A constant λb
influences the intensity of potential jumps across the tempo
axis.

We propose a new beat observation model in Eq. (6),
where xb,k and yb,k are the beat state and beat observa-
tions at frame k. For non-beat states we allocate a small
likelihood as γ = 0.03 instead of using the non-beat ac-
tivation output from the neural network. For beat frames,
since downbeats can also be considered beats, we assess



the maximum of the beat and downbeat activations. If the
maximum exceeds a certain threshold, i.e., T = 0.4, then
it is set as the likelihood; Otherwise, γ is used. When γ is
used, we also bypass the costly re-sampling step in the beat
particle filtering module. Therefore, the threshold serves as
an information gate, through which the computational cost
is significantly reduced.

φb,k = (φb,k−1 + φ̇b,k−1) mod (φmaxb + 1), (4)

p(φ̇b,k|φ̇b,k−1) =

{
exp

(
−λb

∣∣∣ φ̇b,k

φ̇b,k−1

∣∣∣) if φb,k = 0

1(φ̇b,k = φ̇b,k−1) if φb,k > 0
,

(5)

p(yb,k|xb,k) =


max(bk, dk) if φb,k = 0 and

max(bk, dk) ≥ T
γ otherwise

,

(6)
The second particle filter detects downbeats and the

time signature jointly. The state space is similar to that
of beat tracking. However, here we introduce φ̇d,k corre-
sponding to the meter, i.e., φ̇d,k ∈ 2, 3, ..., φ̇maxd , and φd,k
to describe the phase of the beat within the bar interval,
i.e. φd,k ∈ 0, 1, 2, ..., φmaxd . Eqs. (7) and (8) describe
the phase and meter transition models. We only let me-
ter change at the states belonging to the downbeat area i.e.
φd,k = 0, and λd is a constant parameter that decides what
percent of the particles jump to other meters at the down-
beat states. Also, in Eq. (9) we define the observation
model used in the downbeat particle filter. The first states
within the bar (downbeat area) take the downbeat activa-
tion and the rest of them (beat states) take the beat acti-
vation. Note that as the second particle filter operates less
often, i.e., only when a beat is detected, no information
gate is needed here.

φd,k = (φd,k−1 + φ̇d,k−1) mod (φmaxd + 1), (7)

p(φ̇d,k|φ̇d,k−1) =


λd if φd,k = 0 and

φ̇d,k 6= φ̇d,k−1
1− λd if φd,k = 0 and ,

φ̇d,k = φ̇d,k−1
1(φ̇d,k = φ̇d,k−1) if φd,k > 0

(8)

p(yd,k|xd,k) =

{
dk if φd,k = 0
bk if φd,k > 0

, (9)

2.3.2 Inference process

Algorithm 1 describes the inference process in detail. Par-
ticles are initialized randomly for both inference modules
by sampling from a uniform distribution within their state
space. By proceeding to a new frame, particles within
the beat state space are transferred to the new positions
by sampling from the transition model, and new impor-
tance weights are then calculated and normalized. If the
activations of the frame satisfy the information gate con-
dition, the re-sampling process is invoked for all particles;
Otherwise, the re-sampling step is skipped as it is likely a
non-beat frame. Afterwards, if the median of the particles
is within the tolerance window Tw of a beat area and the

time of the current frame is longer enough than the last de-
tected beat considering the estimated tempo, the frame is
classified as a beat frame. A similar process follows for the
downbeat and meter inference module.

Algorithm 1 Joint Inference Procedure
beats, downbeats, meters = [], [], []
Sample (x
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b,0) ∼ U(Sb), (x
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Nd
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b,k

end if
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(i)
b,k) < Tw and (k∆ − beats[−1]) >

0.4 median(φ̇
(i)
b,k) then

Append (beats, k∆)
Sample (x
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if mode(φ
(j)
d,k) == 0 then

append (downbeats, k∆)
append (meters, mode(φ̇

(j)
d,k))

end if
end if

end for

A visualization of the inference process is presented in
Figure 3. Each pair of plots demonstrates one step of the
inference procedure, where the top and the bottom plots
show the beat and downbeat tracking process, respectively.
In the first pair of plots, the beat particles are initialized
randomly. In the second pair, the first beat is detected and
the downbeat state particles are simultaneously initialized
randomly. In the third pair, beat tracking particles have
converged, but the downbeat particles have not yet con-
verged. Here the downbeat clutter is located in the low-
est row of the downbeat state space, which represents a
six-beat time signature. The next few plot pairs illustrate
convergence of both the beat and downbeat particles, pro-
ducing an estimate of the tempo and beat phase (top plots),
and the meter and bar phase (bottom plots).

3. EXPERIMENTS

3.1 Methodology

In order to analyze the performance of BeatNet, we com-
pare it to several publicly available online beat track-
ing methods, We additionally provide the online down-
beat tracking performance of BeatNet for each of the ex-
periments. Following standard evaluation practices, in



Figure 3. Inference example, detailed in Section 2.3.2.

Dataset # Files Total Length
Ballroom [33, 34] 685 5 h 57 m
Beatles [2] 180 8 h 9 m
Carnatic [35] 176 16 h 38 m
GTZAN [36, 37] 999 8 h 20 m
Rock Corpus [38] 200 12 h 53 m

Table 1. Datasets used for training and testing.

this work, F-measure with a tolerance window of Tw =
±70 ms is used as the evaluation metric for all experi-
ments.

We utilize all five datasets [2, 33–38] described in Ta-
ble 1 for training, validation, and testing, with different
splits and arrangements for various experiments. In the
first comparison, we evaluate BeatNet on the GTZAN
dataset, which covers 10 different music genres and was
unseen from training of all comparison methods. In order
to demonstrate the generalization ability of our approach,
we also experiment with two other comparison schema
where we respectively set aside the Ballroom and Rock
datasets during training and use them entirely for evalu-
ation. Note that all of the supervised comparison methods
included the Ballroom and Rock datasets in their training
set, so we only compare BeatNet with unsupervised meth-
ods in these cases.

3.2 Training Details

For training the beat and downbeat activation neural net-
work described in Section 2.2, all weights and biases
are initialized randomly, and the network is trained using
Adam optimizer with a learning rate of 5 × 10−4 and a
batch size of 200. Since the number of non-beat frames
within a music piece is typically much larger than the num-
ber of beat and downbeat frames, our objective function
is chosen to be weighted cross entropy loss of the beat,
downbeat, and non-beat, where the weights are inverse
proportional to the frequency of occurrence of each type of
frame. Batches comprise 8-second long excerpts randomly
sampled from each audio file available in the training set.
Given that some datasets (e.g., Beatles) contain full songs
and others (e.g., Ballroom) contain short excerpts of songs,
we sample from longer audio files more often during the
training Batch creation. Training proceeds until the perfor-
mance on the validation set has not increased over a span
of 20 epochs for a given experiment.

3.3 Results and Discussion

The evaluation results of the proposed BeatNet model and
comparison methods are presented in Table 2. All online
comparison methods only perform beat tracking, and all
except IBT [11] and Aubio [9] are supervised methods
using deep neural networks. We can see that the online
beat tracking portion of BeatNet outperforms all compari-
son methods. The Böck FF [6, 20] and Don’t Look Back
(DLB) models [31] achieve the next best performance.



Method F-Measure F-Measure
Beats Downbeats

Comparison of Online Methods
GTZAN Dataset

Aubio [9] 57.09 —
BeatNet 75.44 46.49
Böck ACF [4] 64.63 —
Böck FF [6, 20] 74.18 —
DLB [31] 73.77 —
IBT [11] 68.99 —

Ballroom Dataset
Aubio [9] 56.73 —
BeatNet 77.41 47.45
IBT [11] 70.79 —

Rock Corpus Dataset
Aubio [9] 59.83 —
BeatNet 73.13 44.98
IBT [11] 68.55 —

Comparison of Offline Methods
GTZAN Dataset

BeatNet + DBN 80.64 54.07
Böck [20] 79.09 51.36

Table 2. Comparison of BeatNet with other beat and
downbeat tracking methods on various datasets.

Böck FF uses the forward algorithm to estimate beats in
a similar manner to the other online joint model described
earlier [25]. Aside from the different neural network struc-
tures, the beat tracking inference processes of the DLB
model [31] and BeatNet are largely the same. The main
difference is that the latter benefits from the information
gate, which decreases the computational time drastically.

Additionally, we report the performance comparison
with an offline joint beat and downbeat tracking model [20]
on the GTZAN dataset. In this case, we replaced the
particle filtering modules of BeatNet with the DBN used
in [20] to directly compare neural network architectures
in BeatNet and [20]. Same to [20], we also provided
the time signatures to the DBN. For [20], we utilized the
Madmom [39] library, which is the official implementa-
tion of the paper. Note that due to the existence of dif-
ferent GTZAN beat annotations, the reported offline re-
sults obtained by us differ from those of the original pa-
per [20]. However, since we used the same annotations
for all of the experiments, the offline comparison is valid.
As the table suggests, with the same DBN estimator, both
neural networks yield similar results for beat tracking.
However, for downbeat tracking, the BeatNet architecture
yields marginally better performance. These results are
interesting, since we are comparing a causal network to
a non-causal network which leverages bidirectional recur-
rence. However, our network is larger and contains more
parameters.

The comparison between BeatNet (second row)
and [20] (last row) is also interesting. BeatNet underper-
forms [20] by 3.65% on beat tracking and by 4.9% on

downbeat tracking. However, it is noted that BeatNet is
an online method and it does not require the time signature
input, while [20] is offline method and it requires the time
signature input.

One limitation of our model is that the performance of
the downbeat tracker depends on the beat tracker. This
means that if the beat tracker makes incorrect predictions,
errors will carry through to the downbeat tracker. This is
a common characteristic of cascade systems such as [25].
Another limitation is the high computation cost of sequen-
tial Monte Carlo particle filtering methods. This limitation
has been partially addressed in our previous work [31] by
using efficient models, e.g., [32] in the inference stage. The
information gate proposed in this paper further reduces the
computational cost.

On a typical windows machine with AMD Ryzen 9
3900X CPU and 3.80 GHz clock, the processing time for
the pre-processing stage and passing a frame through the
neural network is 0.12 ms and 0.01 ms, respectively. These
times are relatively insignificant, as the inference process
takes more time. The inference process takes 5.23 and
8.87 seconds using 1000 and 1750 particles, respectively,
to process a 30-sec long music excerpt. This is much faster
than the previous sampling-based model [31] which took
21.30 seconds using a 1000 particle setup. Larger numbers
of particles lead to longer processing times with a roughly
linear relationship. Hence, we reported these results using
1500 particles for the beat inference block and 250 for the
downbeat inference block (1750 particles in total) to keep
the process minimal.

4. CONCLUSION

We proposed BeatNet, a new online system for joint beat,
downbeat, and meter tracking. The system incorporates
a convolutional-recurrent neural network for generating
beat and downbeat activations in each audio frame, and
a two-stage particle filtering algorithm to estimate tempo,
beats, downbeats, and musical meter. An information gate
is added to the beat tracking particle filter to skip many
re-sampling steps hence reduces the computational cost
significantly. The system is compared to multiple on-
line and offline methods under various experimental condi-
tions, and it achieves superior performance for both online
beat and downbeat tracking.
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