Higher Order Belief Divergence

Yingcheng Huang^a, Fuyuan Xiao^{a,*}

^a School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

4 Abstract

In this paper, a novel belief divergence, higher order belief Jensen-Shannon divergence is proposed to measure the discrepancy between BPAs in Dempster–Shafer evidence theory.

5 Keywords: Dempster–Shafer evidence theory, Belief divergence, Higher order, Fractal,

7 1. The proposed method

Definition 1 (Higher order basic probability assignment). Let a frame of discernment be $\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$ with its powerset 2^{Θ} , and let *m* be a BPA on Θ . A novel BPA, higher order basic probability assignment (HOBPA) m^h is defined as

$$m^{h}(A_{i}) = \sum_{A_{i} \subseteq A_{j}} h^{||A_{j}| - |A_{i}||} \frac{m(A_{j})}{(h+1)^{|A_{j}|} - h^{|A_{j}|}}$$

$$= \sum_{A_{i} \subseteq A_{j}} \frac{m^{h-1}(A_{j})}{(h+1)^{|A_{j}|} - h^{|A_{j}|}},$$
(1)

- ⁸ where *h* is the order coefficient, and m^0 denotes the zeroth order of *m*, i.e., *m* itself; A_i represents
- ⁹ any hypothesis in 2^{Θ} expect the empty set \emptyset ; A_j is hypotheses in 2^{Θ} that make A_i be the subsets
- ¹⁰ of A_j ; $|A_i|$ represents the cardinality of A_i and $|A_j|$ represents the cardinality of A_j . **Definition 2** (HOBJS divergence) Let a frame of discernment be $\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$ with powerset 2^{Θ} , and let m_1 and m_2 be two BPAs on Θ . Higher order belief Jensen-Shannon (HOBJS) divergence between m_1 and m_2 is defined as

$$D^{h}_{BJS}(m_{1}||m_{2}) = \frac{1}{2} \sum_{A_{i} \subseteq \Theta} m^{h}_{1}(A_{i}) \log \frac{2m^{h}_{1}(A_{i})}{m^{h}_{1}(A_{i}) + m^{h}_{2}(A_{i})} + \frac{1}{2} \sum_{A_{i} \subseteq \Theta} m^{h}_{2}(A_{i}) \log \frac{2m^{h}_{2}(A_{i})}{m^{h}_{1}(A_{i}) + m^{h}_{2}(A_{i})},$$
(2)

¹¹ where *h* is the order coefficient, and A_i represents any hypothesis in 2^{Θ} except the empty set \emptyset .

1

2

3

⁶ Multi-source information fusion, Pattern classification.

^{*}Corresponding author: Fuyuan Xiao, School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China.