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Abstract

In this paper, I present a generalization of the key notions of limits of sequences

and Cauchy sequences from analysis and metric spaces to more general topological

groups. In the second part of this paper, the process of constructing the real numbers

from Cauchy sequences of rationals is generalized, allowing us to construct new

groups from non-complete topological groups.
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Introduction

The notion of a topological group dates back to 1873�1874. The idea of topological group
originated with Sophus Lie, who was concerned with a very important special case of such
groups, now known as Lie groups. Topological groups and Lie groups form a important
sub-�eld of mathematics.

In the theory of analysis and metric spaces, sequences play a key role, however, the
generalization of sequences to topological spaces is usually achieved using �lters and nets.
This is because a normal sequences of points in a topological space fail to capture the
general topological structure of the space. Nonetheless, its study still has the potential to
give group theorists/topologists some tools to help generalize or prove some other results.
In this paper we explore some basic constructions and results related to sequences on
topological groups. Thought I am not a professional mathematician, these are the �rst
results I found while trying to generalize these central concepts of analysis and metric
spaces to the realm of topological groups.

1 Preliminaries on topological groups

In this section we review some basic de�nitions and results of topological groups.

De�nition 1.1 (Topological Group): A topological group G is a topological space
that is also a group such that the group operation:

· : G×G → G
(x, y) 7→ x · y

and the inversion map:

−1 : G → G
x 7→ x−1

are continuous functions. Note that here we are considering G × G as a topological
space with the product topology.
Now let's introduce a proposition that will be very useful later in section 2:

Proposition 1.2: Let G be a topological group:

1. Let a, b ∈ G and let W be an open neighbourhood of a · b. Then, there are open
neighbourhoods V and U of a and b respectively such that V · U ⊆ W , where
V · U := {v · u : v ∈ V, u ∈ U}.

2. Let a ∈ G and let W be an open neighbourhood of a−1. Then, there is an open
neighbourhood U of a such that U−1 ⊆ W , where U−1 :=

{
u−1 : u ∈ U

}
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Proof:
1) Let a, b ∈ G and let W be an open neighbourhood of ab. Let M = ·−1(W ), where

·−1(W ) denotes the pre-image of W with respect to the group operation, i.e, ·−1(W ) :=
{(x, y) ∈ G×G : x · y ∈ W} .

BecauseM is the pre-image of the open setW and because the function · is continuous,
M is open in G × G. Because a · b = ab, then (a, b) ∈ M . Now let B = {Bi}i∈I be a
basis for the topology on G, then {Bi ×Bj : i, j ∈ I} is a basis for the product topology
in G×G [1]. Because M is open and (a, b) ∈ M then

(a, b) ∈ Bi ×Bj ⊆ M

for some i, j ∈ I. Note that Bi and Bj are open neighbourhoods of a and b respec-
tively. Now we just need to show that Bi · Bj ⊆ W . Let x ∈ Bi and y ∈ Bj , then
(x, y) ∈ Bi × Bj ⊆ M . By the de�nition of M we conclude that x · y ∈ W , and thus
Bi ·Bj ⊆ W

2 ) For the sake of simplicity, we shall denote a−1 as inv(a). Let a ∈ G and let W
be an open neighbourhood of inv(a). Let U = inv−1(W ). Because W is open and inv
is continuous, U is an open subset of G and a ∈ U . Now, let x ∈ U . Because U is the
pre-image of W with respect to inv, inv(x) ∈ W . So we can conclude that inv(U) ⊆ W .
■

2 Limits of sequences on topological groups

In this section, the basic notions about limits of sequences on topological groups are
explicitly stated and some results about them are proven. Among those results, we give
special attention to the generalization of Cauchy sequences and complete spaces to the
area of topological groups. Later, on section 3, we will use Cauchy sequences to �extend�
some topological groups (this notion will be clearly de�ned and explained then).

Let's start by de�ning limit of a sequence in a topological space:

De�nition 2.1 (Limit): Let G be a topological group and let (xn)n be a sequence of
points in G. We say that (xn)n converges to a ∈ G if, for any open neighbourhood V of
a, we have that:

∃k ∈ N : n ≥ k =⇒ xn ∈ V

If (xn)n converges to a, we write: limn xn = a, limxn = a or simply xn → a.

This de�nition of limit is purely a topological concept, and it's compatible with the
already existing de�nition of limit of a sequence when studying metric spaces, and in
particular, R.

Note that in general, the limit of a sequence (an)n may not be unique, for example,
let G be a topological group with the trivial topology, this is τ = {∅, G}. Then every
sequence (an)n on G is convergent and it converges to every point on G. To see this,
let g ∈ G be any element. Then there is only one open neighbourhood of g, and that
neighbourhood is the entire group G. Now, note that n ≥ 1 =⇒ an ∈ G, so indeed
lim an = g.
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On the next proposition we will see a su�cient condition what will make every limit
on G unique:

Proposition 2.2: Let G be an Hausdor� topological group. Then, if a sequence (xn)n
of points in G converges, its limit is unique.

Proof: Suppose that limn xn = a and limn xn = b with a ̸= b. Because G is an
Hausdor� space, there are open neighbourhoods A and B of a and b respectively such
that A ∩B = ∅. Because limn xn = a , there is a natural number k1 such that:

n ≥ k1 =⇒ xn ∈ A

and because limn xn = b , it exists a natural number k2 such that:

n ≥ k2 =⇒ xn ∈ B

Let k = max {k1, k2} then, if n ≥ k we have that xn ∈ A ∧ xn ∈ B ⇐⇒ xn ∈
A∩B = ∅ which is impossible. Thus it's impossible for a to be di�erent from b, meaning
that the limit is unique. ■

Note: From now on, we will always assume (unless stated otherwise) that any every
topological group we are working with is an Hausdor� space as we only want to keep
working in spaces where the limit of a sequence is unique.

Now let's see how the notion of limit (which is purely a topological concept) interacts
with the group structure of G:

Proposition 2.3: Let (an)n and (bn)n be two convergent sequences on a topological
group G, then:

1. The sequence (an · bn)n converges and lim(an · bn) = lim(an) · lim(bn)

2. The sequence (a−1
n )n converges and lim(a−1

n ) = lim(an)
−1

Proof:
1) Let lim an = a, lim bn = b and W be an open neighbourhood of a · b. According

to proposition 1.2, there are open neighbourhoods V and U of a and b, respectively, such
that: V ·U ⊆ W . Using the fact that (an)n converges to a ∈ V and (bn)n to b ∈ U , there
are constants k1 and k2 such that: n ≥ k1 =⇒ an ∈ V and n ≥ k2 =⇒ bn ∈ U . Let
k = max{k1, k2}, then

n ≥ k =⇒ an ∈ V ∧ bn ∈ U

This means that n ≥ k =⇒ an ·bn ∈ V ·U ⊆ W . Thus we conclude that lim(an ·bn) =
a · b = lim(an) · lim(bn).
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2) Let lim an = a and let W be an open neighbourhood of a−1. According to proposi-
tion 1.2, there is an open neighbourhood V of a such that V −1 ⊆ W . Using the fact that
(an)n converges to a ∈ V , there is a constant k such that: n ≥ k =⇒ an ∈ V , i.e:

n ≥ k =⇒ a−1
n ∈ V −1 ⊆ W

Thus we conclude that lim(a−1
n ) = a−1 = lim(an)

−1. ■

Throughout the rest of the paper proposition 2.3 will be mentioned in a lot of proofs,
so keep it in mind.

The next proposition is also interesting in itself, but its true purpose is to aid us on a
proof in the next section.

Proposition 2.4: Let f : G → H be an continuous surjective map, and let (an)n be a
convergent sequence on G. Then, (f(an))n converges on H and lim f(an) = f(lim an).

Proof: Let a ∈ G be the limit of the sequence (an)n in G and V an open neighbour-
hood of f(a) in H. Then f−1(V ) is an open neighbourhood of a in G. This means that
∃N ∈ N : n ≥ N =⇒ an ∈ f−1(V ) =⇒ f(an) ∈ f(f−1(V )) =⇒ f(an) ∈ V [2]. So,
f(an) converges to f(a) = f(lim an) in H. ■

Now we are ready to generalize and introduce the notion of Cauchy sequences on
topological groups:

De�nition 2.5: Let (an)n be a sequence of points in a topological group G. We say
that (an)n is a Cauchy sequence if, for every open neighbourhood V of e (here e denotes
the identity element of G), there is a constant k ∈ N such that:

n,m ≥ k =⇒ an · a−1
m ∈ V ∨ a−1

n · am ∈ V

Note that if the topological group is abelian, then the condition above just becomes:

n,m ≥ k =⇒ an · a−1
m ∈ V

This notion of Cauchy sequence is compatible with the one we had when working with
Rn and Q.

Now, we shall see (exactly like what happens in every metric space), that every con-
verging sequence is a Cauchy sequence as well.

Proposition 2.6: Let (an)n be a convergent sequence in a topological group G. Then
(an)n is a Cauchy sequence.
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Proof: Let lim an = a ∈ G and let V be an open neighbourhood of e. According to
proposition 2.3, the sequence (a−1

n ) converges to a−1 and because a · a−1 = e, there are
open neighbourhoods W1 and W2 of a and a−1 such that W1 ·W2 ⊆ V (proposition 1.2).

Now, let N1, N2 ∈ N be such that:

n ≥ N1 =⇒ an ∈ W1

n ≥ N2 =⇒ a−1
n ∈ W2

and let N = max{N1, N2}. Then:

m ≥ n ≥ N =⇒ an ∈ W1 ∧ a−1
m ∈ W2 ⇐⇒ an · a−1

m ∈ W1 ·W2 ⊆ V ■

With this in mind, the most natural thing to do next is to study the convergence of
Cauchy sequences on a general Hausdor� topological group G. As we will see, sometimes,
a sequence being Cauchy does not imply that it converges. For example, consider the
following sequence on (Q,+) : 3, 3.1, 3.14, 3.141, 3.1415, ... This sequence (whose terms
form the decimal expansion of π) is a Cauchy sequence but obviously it does not converge
on Q. This notion will play a key role in the de�nition of the Cauchy extension of a
topological group in the next section. But �rst, we will prove the following proposition,
which is very similar in structure to proposition 2.4.

Proposition 2.7: Let G and H be topological groups and f : G → H be a continuous
surjective homomorphism between them.

If (an)n is a Cauchy sequence on G, then (f(an))n is also a Cauchy sequence on H.

Proof: Let's assume that for every open neighbourhood V of eG, we have that ∃k ∈ N :
n,m ≥ k =⇒ an · a−1

m ∈ V (in the case where a−1
n · am ∈ V the proof is analogous). Let

L be an open neighbourhood of eH in H. Because f is continuous, f−1(L) is an open
neighbourhood of eG in G, which means that: ∃k ∈ N : n,m ≥ k =⇒ an · a−1

m ∈ f−1(L).
But this implies that f(an · a−1

m ) ∈ f(f−1(L)) ⇐⇒ f(an) · f(am)−1 ∈ L [2]. So, for any
open neighbourhood L of eH , there is some k ∈ N such that:

m,n ≥ k =⇒ f(an) · f(am)−1 ∈ L

and therefore (f(an))n is a Cauchy sequence on H. ■

Now we are ready to de�ne what a complete topological group is using Cauchy se-
quences:

De�nition 2.8: Let G be a topological group. We say that G is complete if every
Cauchy sequence converges.

Now, on the next propositions, we will see how this notion of a complete topological
group interacts with the group and topological structure of G.
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Proposition 2.9: Let G be a topological group and let F ≤ G be a closed subgroup
with the usual subspace topology induced by G, then:

1. If (an)n∈N is a convergent sequence on G such that, for all n, an ∈ F , then its limit
is also a point of F .

2. if G is complete, then F is also complete.

Proof:

1. Let a be the limit of (an)n∈N and suppose that a ∈ G\F . Because F is closed, G\F
is an open neighbourhood of a. Thus, according to the de�nition of convergence:

∃N ∈ N : n ≥ N =⇒ an ∈ G \ F ⇐⇒ an /∈ F

which is a contradiction, so a ∈ F .

2. Let (an)n∈N be a Cauchy sequence of points in F . Let's start by proving that (an)n
is also a Cauchy sequence on G. Let's assume that for every open neighbourhood
V of e in F , we have that ∃k ∈ N : n,m ≥ k =⇒ an · a−1

m ∈ V (in the case where
a−1
n · am ∈ V the proof is analogous). Let W be any open neighbourhood of e in G.
Then W ∩ F is an open neighbourhood of e in F and thus:

∃k ∈ N : n,m ≥ k =⇒ an · a−1
m ∈ W ∩ F =⇒ an · a−1

m ∈ W

This leads to (an)n being Cauchy on G. As G is complete, this sequence converges
and, according to the �rst item in this proposition, its limit is in F . Thus, the
sequence converges in F , meaning that every Cauchy sequence in F converges. ■

Now we will see a way of constructing new complete topological groups by considering the
cartesian product of complete topological groups. We'll start by proving a proposition
that will be very useful in doing so.

Proposition 2.10: Let {Gi}ki=1 be a collection of topological groups and let (ain)n be a
sequence on Gi. If each (ain)n converges on Gi, then sequence (a1n, ..., a

k
n)n in G1× ...×Gk

converges and, in that case, we have that lim(a1n, ..., a
k
n) = (lim a1n, ..., lim akn).

Proof: Let's start by assuming that each (ain)n converges on Gi and let its limit be ai.
Let bn = (a1n, ..., a

k
n). Our goal is to show that lim bn = (a1, ..., ak).

Let W be an open neighbourhood of (a1, ..., ak) and let Bi =
{
Bi

j

}
j∈Ji

be a basis for

the topology on Gi. Then, M :=
{
B1 × ...×Bk : Bi ∈ Bi

}
is a basis for the product

topology on G1 × ...×Gk [1]. Because W is open, there is some L ∈ M such that:

(a1, ..., ak) ∈ L ⊆ W

L can be written as B1
j1

× ... × Bk
jk

for some ji ∈ Ji. Note that Bi
ji

is an open
neighbourhood of ai, and so, for all i:

∃Ni ∈ N : n ≥ Ni =⇒ ain ∈ Bi
ji
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Let N = maxi {Ni}. Then,

n ≥ N =⇒ ain ∈ Bi
ji , ∀i ∈ {1, ..., k}

,and ain ∈ Bi
ji
, ∀i ∈ {1, ..., k} ⇐⇒ (a1n, ..., a

k
n) ∈ B1

j1
× ...×Bk

jk
⇐⇒ bn ∈ L. So,

n ≥ N =⇒ bn ∈ L ⊆ W

and thus lim bn = (a1, ..., ak) = (lim ain, ..., lim akn). ■

Proposition 2.11: Let G1, ..., Gk be topological groups and G =
∏k

j=1 Gj . Then G is
complete if and only if Gi is complete, for all i = 1, ..., k.

Proof:

1. We shall begin by proving that if Gi is complete, for all i = 1, ..., k, then G is
complete:

Let (bn)n be a Cauchy sequence on G. We can write each term of the sequence as:
bn =

(
a1n, ..., a

k
n

)
, where (ain)n is a sequence on Gi, for any i ∈ {1, ..., k}.

Let's start by proving that for any i ∈ {1, ..., k}, the sequence (ain)n is a Cauchy
sequence on Gi:

Let i ∈ {1, ..., k} and let Vi be any open neighbourhood of ei in Gi, where ei is the

identity element of Gi . Then the set
∏k

j=1 Vj ⊆ G is also open, and thus an open
neighbourhood of ē := (e1, ..., ek), which is the identity element on G. Because (bn)n is a
Cauchy sequence:

∃N ∈ N : n,m ≥ N =⇒ bn · b−1
m ∈

k∏
j=1

Vj

But note that bn · b−1
m =

(
a1n ·

(
a1m
)−1

, ..., ain ·
(
aim
)−1

, ..., akn ·
(
akm
)−1
)
∈
∏k

j=1 Vj =⇒

ain ·
(
aim
)−1 ∈ Vi. Thus we conclude that ∃N ∈ N : n,m ≥ N =⇒ ain ·

(
ain
)−1 ∈ Vi, for

all i ∈ {1, ..., k}, meaning that the sequence (ain)n is a Cauchy sequence on Gi.
Because Gi is complete, for any i ∈ {1, ..., k}, the sequence (ain)n converges on Gi.

Let lim ain = ai ∈ Gi. According to proposition 2.10, bn converges and its limit is
(lim a1n, ..., lim akn) = (a1, ..., ak).

2. Now let's prove that if G is complete, then Gi is complete, for all i = 1, ..., k:
For this, I will assume that i = 1 just for the sake of simplicity. However, the proof

for an arbitrary i is done in the exact same way.
Let (an)n be an Cauchy sequence on G1 and consider the sequence (an, e2, ..., ek)n on

G. We will start by showing that (an, e2, ..., ek)n is a Cauchy sequence on G: Let V be
an open neighbourhood of ē = (e1, ..., ek). Because V is open, using the notation we used
to prove the previous item, there exists a set L ∈ M such that:

ē ∈ L ⊆ V
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and L can be written as B1
j1

× ... × Bk
jk

for some ji ∈ Ji. Note now that each Bi
ji
is

an open neighbourhood of ei and in particular B1
j1
is an open neighbourhood of e1 in G1.

Because (an)n is a Cauchy sequence on G1 we conclude that there exists an N ∈ N such
that:

n,m ≥ N =⇒ an · a−1
m ∈ B1

j1

And so we can conclude that:

n,m ≥ N =⇒ (an, e2, ..., ek) · (am, e2, ..., ek)
−1 ∈ B1

j1 × ...×Bk
jk

⊆ V

So (an, e2, ..., ek) is indeed a Cauchy sequence, and this allows us to conclude that,
because G is complete, that lim(an, e2, ..., ek) exists.

Let (an, e2, ..., ek) = (a1, ..., ak) and K be an open neighbourhood of a1. Then, the
set

K ×
k∏

j=2

Gj

is an open neighbourhood of (a1, ..., ak). Therefore

∃N ∈ N : n ≥ N =⇒ (an, e2, ..., ek) ∈ K ×
k∏

j=2

Gj =⇒ an ∈ K

And thus, lim an = a1, meaning that G1 is complete. ■

The next lemma is purely in the area of topology. We will use it in the proof of
proposition 2.13.

Lemma 2.12: Let X be a �nite Hausdor� topological space. Then X is a discrete
space.

Proof: Let X = {x1, ..., xn} . Let's start by proving that each {xi} is closed. Let xi be
�xed and let xj ∈ X be any other element of X. Because X is Hausdor�, there are open
neighbourhoods of xi and xj , Vi and Vj such that Vi ∩ Vj = ∅. In particular, xi /∈ Vj for
all j ̸= i. Now we only have to prove that X \ {xi} is open. We can do this be verifying
that:

X \ {xi} =
⋃
j ̸=i

Vj

Let x ∈ X \ {xi} ,then x = xj for some j and thus x ∈ Vj ⊆
⋃

j ̸=i Vj . Now let
x ∈

⋃
j ̸=i Vj , then x ∈ Vj for some j. Because xi /∈ Vj then x ̸= xi and thus x ∈ X \ {xi}.

Because each Vj is open, then X \ {xi} =
⋃

j ̸=i Vj is an open set, and thus {xi} is
closed, for all i = 1, ..., n.

Now, let V ⊆ X. It is known that:

X \ V =
⋃

x∈X\V

{x}

And because we are dealing with a �nite union of closed sets, the set X \ V is closed,
and thus the set V is open. Because V is arbitrary, we conclude that any subset is open.
Therefore the space is discrete. ■
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Proposition 2.13: If G is a �nite topological group, then G is complete.

Proof: Let (an)n be a Cauchy sequence on G. According to lemma 2.12, G is a discrete
space and hence the set {e} is an open neighbourhood of the identity element. Because
(an)n is a Cauchy sequence:

∃N ∈ N : n,m ≥ N =⇒ an · a−1
m ∈ {e} ⇐⇒ an · a−1

m = e

Now, �x n = N . It follows that

m ≥ N =⇒ aN · a−1
m = e ⇐⇒ am = aN

Thus, if m ≥ N , the sequence stays constant. Now, let V be an open neighbourhood
of aN :

m ≥ N =⇒ am = aN ∈ V

Thus, according to the de�nition of limit, lim an = aN and thus every Cauchy se-
quence converges. ■

Note that, on this proof, we never actually used the fact that G is �nite, we just used
that fact that it was a discrete space, thus we can generalize this as follows:

Proposition 2.14: Let G be a discrete topological group. Then, G is complete.

Proof: The proof is analogous to the one in proposition 2.13. ■

Proposition 2.15: Let G be a topological group and let H be an open subgroup of G.
Then H is also closed.

Proof: We will start by partitioning the group G into left cosets of H

G =
⋃
i∈I

xiH

for some representatives of the cosets {xi}i∈I . Note that, for some i0 ∈ I, we have
that xi0H = H, so we have the following decomposition of G:

G = H ∪

(⋃
i∈J

xiH

)

With J = I \{i0}. Using the fact that, for any g ∈ G, the map f : G → G, x 7→ g ·x is
a homeomorphism [3], we can conclude that every xiH is an open set (because the set H
is in itself open) meaning that

⋃
i∈J xiH is an open set. Now, note that xiH ∩ xjH = ∅,

for i ̸= j, so this means that H ∩
(⋃

i∈J xiH
)
= ∅. With this in mind we can write G \H

as:
G \H =

⋃
i∈J

xiH
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Therefore, G \H is indeed open and thus H is also a closed subgroup. ■

This proposition allows us to conclude the following interesting corollaries:

Corollary 2.16: Let G be a connected topological group. Then G has no proper open
subgroups.

Proof: Let's assume that H is a proper open subgroup of G. Then H is also closed,
according to proposition 2.15. But, because G is connected, the only clopen sets are G
and ∅ [4]. The empty set is not a subgroup of G, so we conclude that H = G, which is a
contradiction since H is a proper subgroup of G. ■

Corollary 2.17: Let G be a complete topological group. Then, any open subgroup of
G is also complete.

Proof: Let H be an open subgroup of G. According to proposition 2.15, H is closed
and, according to proposition 2.9, H being a closed subgroup of a complete group implies
that H itself is complete. ■

We will now see how di�erent topological groups interact with the notion of com-
pleteness. In particular, we will see how completeness is preserved under homeomorphic
isomorphisms:

Proposition 2.18: Let G and H be two homeomorphic and isomorphic topological
groups. If G is complete, then H is complete.

Proof: Let f : G → H be a homeomorphic isomorphism , i.e f is a group isomorphism
and a homeomorphism, and let (an)n be a Cauchy sequence on H. Our main goal of the
proof is:

1. Proving that
(
f−1(an)

)
n
is a Cauchy sequence on G and thus a convergent sequence;

2. Proving that lim an = f(a), where a = lim f−1(an).

1- Let V be an open neighbourhood of eG in G, where eG is the identity element in G.
Then f(V ) is an open neighbourhood of eH in H, where eH is the identity element in H.
Because (an)n is a Cauchy sequence on H, there exists a N ∈ N such that:

n,m ≥ N =⇒ an · a−1
m ∈ f(V ) =⇒ f−1(an · a−1

m ) ∈ f−1(f(V ))

Because f is a group isomorphism, then f−1 is also an isomorphism, so have that:
f−1(an · a−1

m ) = f−1(an) · f−1(am)−1 and because f is bijective, f−1(f(V )) = V . So

n,m ≥ N =⇒ f−1(an) · f−1(am)−1 ∈ V
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,and thus
(
f−1(an)

)
n
is a Cauchy sequence on G .

2- Because G is complete, the sequence
(
f−1(an)

)
n
converges. Let a = lim f−1(an)

and V be any open neighbourhood of f(a) in H. Because f is continuous, f−1(V ) is an
open neighbourhood of a. Using the fact that lim f−1(an) exists, we know that there is
a N ∈ N such that:

n ≥ N =⇒ f−1(an) ∈ f−1(V ) =⇒ f(f−1(an)) ∈ f(f−1(V ))

f(f−1(an)) is simply an and f(f−1(V )) = V , because f is bijective. So we conclude
that:

∃N ∈ N : n ≥ N =⇒ an ∈ V

Therefore, lim an = f(a) and the topological group H is complete. ■

In this part of the section, we will see a generalization of the previous result:

Proposition 2.19: Let G and H be two homeomorphic Hausdor� topological spaces.
If there is a binary operation on G that makes G a complete topological group, then there
is one binary operation that turns H into a complete topological group.

Proof: Let f : G → H be an homeomorphism between these two topological spaces, let
· : G×G → G be a binary operation such that (G, ·) is a complete topological group and
let ⊗ : H ×H → H be a binary operation on H de�ned as:

a⊗ b = f(f−1(a) · f−1(b))

We will start by verifying that (H,⊗) is indeed a group:

1. (H,⊗) has an identity element:

Let a ∈ H and e be the identity element on G. Then

f(e)⊗ a = f(e · f−1(a)) = f(f−1(a)) = a

We can prove analogously that a⊗ f(e) = a.
So we have that f(e) is the identity element on (H,⊗).

2. Every element of (H,⊗) has an inverse:

Let a ∈ H. Because f is bijective, there is a unique b ∈ G such that a = f(b). Now:

a⊗ f(b−1) = f(b)⊗ f(b−1) = f(b · b−1) = f(e)

we can prove in the exact same way that f(b−1) ⊗ a = f(e). So the inverse of any
element a (= f(b)) is a a−1⊗ = f(b−1). (I will use a−1⊗ to denote inversion on (H,⊗) )

3. ⊗ is associative:

12



Let a, b, c ∈ H. Then, because f is bijective, there are unique a′, b′, c′∈ G such that
a = f(a′), b = f(b′) and c = f(c′). Now:

(a⊗ b)⊗ c = (f(a′)⊗ f(b′))⊗ f(c′) = (f(a′ · b′))⊗ f(c′) = f((a′ · b′) · c′))
= f(a′ · (b′ · c′)) = f(a′)⊗ (f(b′ · c′)) = f(a′)⊗ (f(b′)⊗ f(c′)) = a⊗ (b⊗ c)

So we have that (H,⊗) is indeed a group.

Note that, because ⊗ is the composition of continuous maps, it is continuous. As
we denoted in (2.), the inversion map can be de�ned as: −1⊗ : H → H such that
a−1⊗ = f(f−1(a)−1) , which is also a composition of continuous maps, and therefore the
inversion map on H is also continuous. So we have that (H,⊗) is a topological group.

Let a, b ∈ G be any two elements. Note that

f(a · b) = f(f−1(f(a)) · f−1(f(b))) = f(a)⊗ f(b)

So f is not only an homeomorphism, but also an isomorphism between the groups
(G, ·) and (H,⊗).

Thus we have two topological groups that are homeomorphic and isomorphic to one
another and (G, ·) is complete and so, according to Proposition 2.18, (H,⊗) is complete
as well. ■

In this section, we de�ned what the limit of a sequence on a topological group is, which is
purely a topological concept and only depends on the topological structure of the space.

We saw that this topological concept seems very compatible with the group structure
of the space, for example (proposition 2.3). Afterwards, we generalized the concept of
a Cauchy sequence, using not only the topological but also the group structure of the
space and, with that, we were able to generalize the concept of a complete space that is
so important in the study of metric spaces.

In the next chapter, we will see how we can use these concepts to construct new groups
from non-complete topological groups- for example, how we can build R from Q.

3 Cauchy extension of topological groups

One very important result in constructive mathematics is the construction of real num-
bers. There are various ways of constructing the real numbers but the two most straight-
forward and simple ones are Dedekind cuts and the construction from Cauchy sequences
of rational numbers, this last one usually credited to Georg Cantor. In this section, we
will see how we can use the generalization we made in the previous section of Cauchy
sequences to generalize this last construction even further.

On top of assuming that all topological groups we are working with are Hausdor�
(which we were doing since the beginning of the second section), only in this section of
the paper we will also assume that every topological group we are working with is Abelian.

Let's start by de�ning some key concepts that we will use:
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De�nition 3.1: Let G be a topological group, then we will de�ne:

1. Seq(G) as the set of all Cauchy sequences on G;

2. ∼ as the equivalence relation on Seq(G) de�ned as:

(an)n ∼ (bn)n ⇐⇒ lim(an · b−1
n ) = e

Let's start by proving that ∼ is actually an equivalence relation on Seq(G):

Proof:

1. Let (an)n ∈ Seq(G), then lim(an ·a−1
n ) = lim(e) = e, so we have that (an)n ∼ (an)n

(∼ is re�exive)

2. Let (an)n, (bn)n ∈ Seq(G) such that (an)n ∼ (bn)n, then lim(bn·a−1
n ) = lim

(
(an · b−1

n )−1
)
.

Because of Proposition 2.3, this is just
(
lim an · b−1

n

)−1
= e−1 = e, so we conclude

that (bn)n ∼ (an)n (∼ is symmetric )

3. Now, let (an)n, (bn)n, (cn)n ∈ Seq(G) such that: (an)n ∼ (bn)n and (bn)n ∼ (cn)n.
Note that lim(an · c−1

n ) = lim((an · b−1
n ) · (bn · c−1

n )) and, by Proposition 2.3 this is
equal to lim(an · b−1

n ) · lim(bn · c−1
n ) = e · e = e. So we have that (an)n ∼ (cn)n (so

∼ is transitive) ■

This next lemma simply states that the group operations are compatible with the notion
of Cauchy sequences. This lemma will be very useful on justifying some constructions we
will do in further propositions and de�nitions.

Lemma 3.2: Let G be a topological group, and let (an)n∈N,(bn)n∈N be two Cauchy
sequences on G, then:

1. (an · bn)n∈N is a Cauchy sequence

2. (a−1
n )n∈N is a Cauchy sequence

Proof:

1. Let V be an open neighbourhood of e and n,m ∈ N. Firstly, note that:

an · bn · (am · bm)
−1

=
(
an · a−1

m

)
·
(
bn · b−1

m

)
and that e · e is an element of V so, according to proposition 1.2, there are open
neighbourhoods U and W of e such that:

U ·W ⊆ V

Because (an)n and (bn)n are both Cauchy sequences, there are some constants
N1, N2 ∈ N such that:

n,m ≥ N1 =⇒ an · a−1
m ∈ U
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n,m ≥ N2 =⇒ bn · b−1
m ∈ W

Now, let N = max {N1, N2}. Then:

n,m ≥ N =⇒ an · a−1
m ∈ U ∧ bn · b−1

m ∈ W =⇒
(
an · a−1

m

)
·
(
bn · b−1

m

)
∈ V

Since (an · bn) · (am · bm)
−1

=
(
an · a−1

m

)
·
(
bn · b−1

m

)
, we conclude that

∃N ∈ N : n,m ≥ N =⇒ (an · bn) · (am · bm)
−1 ∈ V

Thus (an · bn)n∈N is a Cauchy sequence on G.

2. Let V be an open neighbourhood of e. Because (an)n∈N is a Cauchy sequence:

∃N ∈ N : n,m ≥ N =⇒ an · a−1
m ∈ V ⇐⇒ (a−1

n )−1 · (am)−1 ∈ V

So (a−1
n )n is indeed Cauchy. ■

Now we are ready to de�ne how we can generalize Cantor's construction of the real
numbers to any general abelian Hausdor� topological group G:

De�nition 3.3: Let G be a topological group. We de�ne the Cauchy extension, or
simply the extension of G, denoted as ext(G) as the set of all equivalence classes of
Seq(G) with respect to the equivalence relation ∼, as de�ned earlier. In other words:
ext(G) := Seq(G)/ ∼.

Before, we simply constructed the set ext(G). Now, in this next proposition, we shall
give it a natural group structure induced by the group operation present in G.

Proposition 3.4: Let (G, ·) be a topological group. Then ext(G) together with the
following binary operation:

⊗ : ext(G)× ext(G) → ext(G)

([(an)n], [(bn)n]) 7→ [(an · bn)n]

is an abelian group. Here, [(an)n] denotes the equivalence class of (an)n. Note that
because of lemma 3.2, the sequence (an · bn)n is also Cauchy so it makes sense to talk
about its equivalence class.

Proof: First, we need to verify that the operation is well de�ned. Let [(an)n], [(bn)n] ∈
ext(G) and let (cn)n and (dn)n be other representatives of the equivalence classes [(an)n], [(bn)n].
Our goal is to show the following:

[(an)n]⊗ [(bn)n] = [(cn)n]⊗ [(dn)n] ⇐⇒ [(an · bn)n] = [(cn · dn)n]

Because we are working with equivalence classes, it su�ces to show that (an · bn)n ∼
(cn · dn)n. Consider the following limit: lim((an · bn) · (cn · dn)−1). Using the fact that
G is Abelian, we can rearrange this as follows: lim((an · c−1

n ) · (bn · d−1
n )) and, according

to proposition 2.3, this is: lim(an · c−1
n ) · lim(bn · d−1

n ) = e · e = e. So, (an · bn)n ∼
(cn · dn)n ⇐⇒ [(an · bn)n] = [(cn · dn)n] ⇐⇒ [(an)n] ⊗ [(bn)n] = [(cn)n] ⊗ [(dn)n],
therefore the operation is well de�ned.

Now, let's show that the set together with the operation satis�es the group axioms:
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1. Let (en)n denote the constant sequence en = e ,∀n ∈ N and let [(an)n] ∈ ext(G) .
Then:

[(en)n]⊗ [(an)n] = [(en · an)n] = [(an)n] = [(an · en)n] = [(an)n]⊗ [(en)n]

So [(en)n] is the identity element.

2. Let [(an)n] ∈ ext(G). According to lemma 3.2, (a−1
n )n is a Cauchy sequence, so it

makes sense to consider the equivalence class of (a−1
n )n. Then

[(an)n]⊗ [(a−1
n )n] = [(an · a−1

n )n] = [(en)n] = [(a−1
n · an)n] = [(a−1

n )n]⊗ [(an)n]

So [(a−1
n )n] is the inverse of [(an)n].

3. Let [(an)n], [(bn)n], [(cn)n] ∈ ext(G). Then:

([(an)n]⊗ [(bn)n])⊗[(cn)n] = [((an·bn)·cn)n] = [(an·(bn·cn))n] = [(an)n]⊗([(bn)n]⊗ [(cn)n])

4. Finally, let [(an)n], [(bn)n] ∈ ext(G). The only thing left to check is that (ext(G),⊗)
is Abelian:

[(an)n]⊗ [(bn)n] = [(an · bn)n] = [(bn · an)n] = [(bn)n]⊗ [(an)n]

So we conclude that (ext(G),⊗) is an Abelian group. ■

Now that we have a group structure to ext(G), we can see how this new group relates to
the original group, G. As we shall see, we have two main cases:

� if G is already complete, then ext(G) will be isomorphic to G;

� if G is not complete, then G will be isomorphic to some subgroup of ext(G) and, in
that way, we can look at G as a subgroup of ext(G).

Proposition 3.5: Let G be a complete topological group, then ext(G) is isomorphic to
G.

Proof: Consider the following map

f : G → ext(G)

a 7→ [(an)n]

where (an)n is the constant sequence an = a,∀n ∈ N.
Let's start by proving that the map f is an homomorphism:

� Let a, b ∈ G, then f(a · b) = [(a · b)n] where (a · b)n is the constant sequence
(a · b)n = a · b,∀n ∈ N. But note that this is just the product of the two constant
sequences (an)n · (bn)n = (an · bn)n, with an = a, bn = b,∀n ∈ N. Then,

f(a · b) = [(an · bn)n]
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But if you recall the de�nition from proposition 3.4 ext(G), [(an · bn)n] is just
[(an)n]⊗ [(bn)n]. But f(a) = [(an)n] and f(b) = [(bn)n]. So

f(a · b) = f(a)⊗ f(b)

and f is indeed a group homomorphism.

� Let [(bn)n] ∈ ext(G). Because (bn)n is Cauchy on a complete topological group
G, it converges. Let i's limit be a ∈ G and let (an)n be the constant sequence
an = a,∀n ∈ N. We'll start by proving that [(bn)n] = [(an)n] using that fact that
this is true if and only it (bn)n ∼ (an)n. Consider the following limit: lim(bn · a−1

n ).
By proposition 2.3, this limit is equal to

lim(bn) · lim(an)
−1 = a · a−1 = e

so (bn)n ∼ (an)n and therefore [(bn)n] = [(an)n]. Now note that f(a) = [(an)n] =
[(bn)n], so the f is surjective.

� Now to prove that f is injective, let a, b ∈ G. Assume that f(a) = f(b), this is
[(an)n] = [(bn)n], where both (an)n and (bn)n are the constant sequences an = a
and bn = b, for all n ∈ N. We want to show that this implies that a = b. The
fact that [(an)n] = [(bn)n] means that (an)n ∼ (bn)n, and by the de�nition of ∼
this means that lim(an · b−1

n ) = e. According to proposition 2.3, this is the same
as lim(an) · lim(bn)

−1 = e. Because (an)n and (bn)n are constant, we have that
lim an = a and lim bn = b. So it follows that

a · b−1 = e ⇐⇒ a = b

Therefore f is injective and therefore a bijection. So G ≃ ext(G). ■

We can use this proposition together with propositions 2.13 and 2.14 to easily prove the
following:

Corollary 3.6: If G is either �nite or a discrete topological group, then G ≃ ext(G).

Proof: IfG is �nite then, according to proposition 2.13, it is also complete, and therefore
G ≃ ext(G) (proposition 3.5).

If G is discrete, according to proposition 2.14, it is also complete, and therefore, due
to proposition 3.5, G ≃ ext(G). ■

Proposition 3.7: LetG be a topological group. ThenG is isomorphic to some subgroup
of ext(G).

Proof: Consider the same map f : G → ext(G) that we used to prove proposition 3.5.
The proof that f is an injective homomorphism doesn't depend on whether G is com-

plete or not, so we can use what we did when proving proposition 3.5 to conclude that
f is an injective group homomorphism. Then, because f is an homomorphism, f(G) is
a subgroup of ext(G). If we restrict the codomain of f to f(G) we get a bijective group
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homomorphism from G to f(G), so we conclude that G ≃ f(G) ≤ ext(G). ■

Note that using the map f : G ↪→ ext(G) we identify each element of G with one from
ext(G), so, in that sense, we can use some abuse of notation to write G ≤ ext(G).

We will now see that the extensions of two isomorphic and homeomorphic groups are
itself isomorphic.

Proposition 3.8: Let G and H be two isomorphic and homeomorphic topological
groups. Then, ext(G) ≃ ext(H).

Proof: Let f : G → H be both an isomorphism and a homeomorphism. Consider the
following map

g : ext(G) → ext(H)

[(an)n] 7→ [(f(an))n]

Note that this operation is well de�ned because, according to proposition 2.7, f(an)n
is also Cauchy, so it makes sense to talk about its equivalence class in ext(H). Let's �rst
prove that g is a group homomorphism. Let [(an)n], [(bn)n] ∈ ext(G). We want to show
that g([(an)n] ⊗ [(bn)n]) = g([(an)n]) ⊗ g([(bn)n]). Using the de�nition of g and ⊗, we
have that

g([(an)n]⊗ [(bn)n]) = g([(an · bn)n]) = [(f(an · bn))n]
Because f is a group homomorphism, we can rewrite this as

[(f(an) · f(bn))n] = [(f(an))n]⊗ [(f(bn))n] = g([(an)n])⊗ g([(bn)n])

So it follows that g is a group homomorphism.
Let's now prove that g is surjective. Let [(bn)n] ∈ ext(H). According to proposition

2.7, (f−1(bn))n is a Cauchy sequence on G, because f−1 is both an isomorphism and a
homeomorphism. Note that g([(f−1(bn))n]) = [(f(f−1(bn)))n] = [(bn)n], therefore g is
surjective.

To prove that g is injective, let [(an)n], [(bn)n] ∈ ext(G) such that g([(an)n]) =
g([(bn)n]). Thus [(f(an))n] = [(f(bn))n]. It follows that (f(an))n ∼ (f(bn))n, i.e:

lim(f(an) · f(bn)−1) = eH

Using the fact that f is an isomorphism:

lim(f(an · b−1
n )) = eH

Because f(an · b−1
n ) converges on H, and f−1 : H → G is an isomorphism and a

homeomorphism, according to proposition 2.4, f−1(f(an · b−1
n )) = an · b−1

n converges on
G and its limit is f−1(lim(f(an · b−1

n ))) = f−1(eH) = eG. So, lim(an · b−1
n ) = eG and

therefore (an)n ∼ (bn)n, i.e, [(an)n] = [(bn)n], so we conclude that f is injective.
Therefore ext(G) ≃ ext(H). ■

Now with all this we are ready to prove the cantor construction of the real numbers
using Cauchy extensions as we de�ned them
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Theorem 3.9 (Cantor construction of the Real numbers): Let Q denote the
additive group of rational numbers with the subspace topology induced by R. Then
ext(Q) ≃ R, where R is the additive group of real numbers.

Proof: Consider the following map f : R → ext(Q) that maps every real number a with
decimal expansion r1...rk, a1...an... to the equivalence class of the sequence: (r1...rk, a1...an)n
(here we use , to denote the decimal point so we can use ... freely without causing any
confusion), in which r1 can be negative, and all the other digits being non-negative. For
example, f(π) is the equivalence class of the sequence 3, 3.1, 3.14, 3.141, 3.1415, ....

We shall begin by proving that for any real number f(a) is indeed de�ned (this is, we
need to show that (r1...rk, a1...an)n is indeed a Cauchy sequence on Q).

Let a ∈ R with decimal expansion r1...rk, a1...an...and letm ≥ n, then |(r1...rk, a1...am)−
(r1...rk, a1...an)| = |0, 0...an+1...am| ≤ 10−n.

Now, let V be any open neighbourhood of 0 ∈ Q. This means that V = A ∩ Q, for
some open set A ⊂ R. Because A is open in R and 0 ∈ A, there is some ε > 0 such that
0 ∈ (−ε, ε) ⊆ A, so: 0 ∈ (−ε, ε) ∩Q ⊆ V .

Because lim10−n = 0, there is some q ∈ N such that: n ≥ q =⇒ 10−n ≤ ε
which means that m ≥ n ≥ q =⇒ |(r1...rk, a1...am) − (r1...rk, a1...an)| ≤ ε ⇐⇒
(r1...rk, a1...am) − (r1...rk, a1...an) ∈ (−ε, ε). We also have that (r1...rk, a1...am) −
(r1...rk, a1...an) ∈ Q, thus

m ≥ n ≥ q =⇒ (r1...rk, a1...am)− (r1...rk, a1...an) ∈ (−ε, ε) ∩Q ⊆ V

Then, (r1...rk, a1...an)n is a Cauchy sequence and [(r1...rk, a1...an)n] is indeed a well-
de�ned element of ext(Q).

Now we need to prove that f is a group homomorphism.
Let a, b ∈ R with a and b having decimal expansions r1...rk, a1...an... and l1...lk, b1...bn....

Then a+b = r1...rk, a1...an...+l1...lk, b1...bn... and f(a+b) = [(r1...rk, a1...an+l1...lk, b1...bn)n] =
[(r1...rk, a1...an)n]⊗ [(l1...lk, b1...bn)n], according to the de�nition of the group operation
of ext(Q). But [(r1...rk, a1...an)n] = f(a) and [(l1...lk, b1...bn)n] = f(b), therefore:

f(a+ b) = f(a)⊗ f(b)

And this allows us to conclude that f is indeed a group homomorphism.
Knowing that f is an homomorphism, we can apply the �rst homomorphism theorem

and obtain the following:
R/ker(f) ≃ Im(f)

Let's now �nd the kernel of f .
As we saw in proposition 3.4, the identity element of ext(Q) is the equivalence class

[(0n)n] where 0n = 0, ∀n ∈ N is a constant sequence. Let a ∈ R be a real number
with decimal expansion r1...rk, a1...an... such that f(a) =[(0n)n]. This would imply that
(r1...rk, a1...an)n ∼ (0n)n ⇐⇒ lim(r1...rk, a1...an−0n) = lim(r1...rk, a1...an) = 0, which
means that, for every ε > 0 , there is some N ∈ N such that:

n ≥ N =⇒ |r1...rk, a1...an| < ε

So, setting ε = 0.99 < 1, then |r1...rk, a1...an| < ε = 0.99 if and only if r1, ..., rk = 0,
so we get that: a = 0, a1...an...
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Let ε = 10−l, for l ∈ {1, 2, 3, ...}. Then |r1...rk, a1...an| < ε = 10−l =⇒ a1, a2, ..., al =
0- This is true for all l ∈ {1, 2, 3, ...}, so, for all n ∈ N, an = 0.Therefore, the decimal
expansion of a is 0, 000... or, in other words, a = 0.

Thus we have that ker(f) = {0}. Because R/{0} ≃ R (this is easy to verify by
considering the isomorphism f : R → R/{0} given by f(a) = a + {0}), according to the
�rst isomorphism theorem:

R ≃ Im(f)

The �nal part of this proof is f being surjective.
Let [(an)n] ∈ ext(Q). Because (an)n ⊆ Q ⊆ R is a Cauchy sequence and because

R is complete, (an)n converges on R. Let b ∈ R be its limit with decimal expansion
r1...rk, b1...bn... .

We want to show that f(b) = [(an)n]. For that we need to verify that (r1...rk, b1...bn)n ∼
(an)n ⇐⇒ lim(r1...rk, b1...bn−an) = 0. Due to proposition 2.3, lim(r1...rk, b1...bn−an) =
lim(r1...rk, b1...bn)− lim(an) = b− b = 0, and so, indeed, (r1...rk, b1...bn)n ∼ (an)n ⇐⇒
f(b) = [(an)n].

Being proven that f is surjective, we have shown that Im(f) = ext(Q). So, according
to the isomorphism theorem:

R ≃ Im(f) = ext(Q)

which concludes our proof. ■

In this paper we generalized important notions of Analysis and metric spaces such as
limits and Cauchy sequences to the realm of topological groups.

I tried, yet failed, to give ext(G) a meaningful topology induced by the topological
structure of G. If I make any progress on the matter and �nd its implications interesting
a continuation of this paper will be posted in the future.
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