
ON THE GENERAL ERDŐS-MOSER EQUATION VIA THE

NOTION OF OLLOIDS

THEOPHILUS AGAMA

Abstract. We introduce and develop the notion of the olloid. We apply

this notion to study a variant and a generalized version of the Erdős-Moser
equation under some special local condition.

1. Introduction

The Erdős-Moser equation is an equation of the form

1k + 2k + · · ·+ mk = (m + 1)k

where m and k are positive integers. The only known solution to the equation
is 11 + 21 = 31 and Paul Erdős is known to have conjectured that the equation
has no further solution. The exponent k and the arguments in the the Erdős-
Moser equation has also been studied quite extensively. In other words, several
contraints on the exponent k and the argument m of the Erdős-Moser equation
have been studied under a presumption that other solutions - if any - exists. In
particular, it has been shown that k must be divisible by 2 and that there is no
solution with m < 101000000 [1]. The methods introduced by Moser were later
refined and adapted to show that m > 1.485 × 109321155 [2]. This was improved
to the lower bound m > 2.7139 × 101,667,658,416 in [5] via large scale computation
of ln(2). It is also shown (see [3]) that 6 ≤ k + 2 < m < 2k. It is also known
that lcm(1, 2, · · · , 200) must divide k and that any prime factor of m + 1 must be
irregular and > 1000 [4]. In 2002, it was shown that all primes 200 < p < 1000
must divide the exponent k in the Erdős-Moser equation

1k + 2k + · · ·+ mk = (m + 1)k

where m and k are positive integers.
In this paper we introduce and study the notion of the olloid and develop a tech-
nique for extending the solution of the generalized Erdős-Moser equation upto ex-
ponents k under some special local conditions of the underlying generator. In
particular, we obtain the following result

Theorem 1.1 (The generalized extension method). Let h : N −→ R+ have con-
tinuous derivative on [1, s] and decreasing on R+ with f : N −→ (0,∞) such that
f(s + 1) > h(i) for all 1 ≤ i ≤ s for s ∈ N. If the equation

s∑
i=1

h(i)k = f(s + 1)k
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for k > 1 has a solution and there exist some r ∈ N such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

with

g(i) :=
h(i)

f(s + 1)

for 1 ≤ i ≤ s. Then the equation
s∑

i=1

h(i)k+r = f(s + 1)k+r

also has a solution.

This result is a consequence of the more fundamental result using the notion of
the olloid.

Lemma 1.2 (Expansion principle). Let Fk
s be an s-dimensional olloid of degree

k for a fixed k ∈ N with k > 1. If g : N −→ R+ is a generator with continuous
derivative on [1, s] and decreasing on R+ such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N then g : N −→ R+ is also a generator of the olloid Fk+r
s of degree k + r.

2. The notion of the olloid

In this section we launch the notion of the olloid and prove a fundamental
lemma, which will be relevant for our studies in the sequel.

Definition 2.1. Let Fk
s :=

{
(u1, u2, . . . , us) ∈ Rs |

s∑
i=1

uk
i = 1, k > 1

}
. Then we

call Fk
s an s-dimensional olloid of degree k > 1. We say g : N −→ R is a generator of

the s-dimensional olloid of degree k if there exists some vector (v1, v2, . . . , vs) ∈ Fk
s

such that vi = g(i) for each 1 ≤ i ≤ s.

Question 2.2. Does there exists a fixed generator g : N −→ R with infinitely many
olloids?

Remark 2.3. While it may be difficult to provide a general answer to question
2.2, we can in fact provide an answer by imposition certain conditions for which
the generator of the olloid must satisfy. In particular, we launch a basic and a
fundamental principle relevant for our studies in the sequel.

Lemma 2.4 (Expansion principle). Let Fk
s be an s-dimensional olloid of degree

k > 1 for a fixed k ∈ N. If g : N −→ R+ is a generator with continuous derivative
on [1, s] and decreasing on R+ such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N then g : N −→ R+ is also a generator of the olloid Fk+r
s of degree k + r.
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Proof. Suppose g : N −→ R+ is a generator of the olloid Fk
s with continuous

derivative on [1, s]. Then there exists a vector (v1, v2, . . . , vs) ∈ Fk
s such that vi =

g(i) for each 1 ≤ i ≤ s, so that we can write

s∑
i=1

g(i)k = 1.

Let us assume to the contrary that there exists no r ∈ N such that g : N −→ R+

is a generator of the olloid Fk+r
s . By applying the summation by parts, we obtain

the inequality

1

g(s)

s∑
i=1

g(i)k+1 ≥ 1−
s∫

1

g′(t)

g(t)2
dt(2.1)

by using the inequality

s∑
i=1

g(i)k+1 <

s∑
i=1

g(i)k = 1.

By applying summation by parts on the left side of (2.1) and using the contrary
assumption, we obtain further the inequality

1

g(s)2

s∑
i=1

g(i)k+2 ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt.(2.2)

By induction we can write the inequality as

1

g(s)r

s∑
i=1

g(i)k+r ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for any r ≥ 2 with r ∈ N. Since g : N −→ R+ is decreasing, it follows that

1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt > 1

and using the requirement

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N, we have the inequality

1 =

s∑
i=1

g(i)k

≥
s∑

i=1

g(i)k+r > 1

which is absurd. This completes the proof of the Lemma. �
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Lemma 2.4 - albeit fundamental - is ultimately useful for our study of variants
and possibly extensions of the Erdős-Moser equation. It can be seen as a tool for
extending the solution of equations of the form

s∑
i=1

g(i)k = 1

for k > 1 - under the presumption that it exists - to the solution of equations of
the form

s∑
i=1

g(i)k+r = 1

for a fixed r ∈ N under some special requirements of the generator g : N −→ R.

3. Application to solutions of the generalized Erdős-Moser equation

In this section we apply the notion of the olloid to study solutions of the Erdős-
Moser equation. We launch the following method as an outgrowth of Lemma 2.4.

Theorem 3.1 (The generalized extension method). Let h : N −→ R+ have con-
tinuous derivative on [1, s] and decreasing on R+ with f : N −→ (0,∞) such that
f(s + 1) > h(i) for all 1 ≤ i ≤ s for s ∈ N. If the equation

s∑
i=1

h(i)k = f(s + 1)k

for k > 1 has a solution and there exist some r ∈ N such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

with

g(i) :=
h(i)

f(s + 1)

for 1 ≤ i ≤ s. Then the equation
s∑

i=1

h(i)k+r = f(s + 1)k+r

also has a solution.

Proof. Suppose the equation
s∑

i=1

h(i)k = f(s + 1)k(3.1)

has a solution. Then equation (3.1) can be recast as

s∑
i=1

(
h(i)

f(s + 1)

)k

= 1(3.2)

which can also be transformed into the sum
s∑

i=1

g(i)k = 1
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with

g(i) :=
h(i)

f(s + 1)
.

The function

g(i) :=
h(i)

f(s + 1)

for 1 ≤ i ≤ s is decreasing and has continuous derivative on [1, s] since h : N −→ R+

have continuous derivative on [1, s] and decreasing on R+, so that if there exists
some r ∈ N such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

with

g(i) :=
h(i)

f(s + 1)

for 1 ≤ i ≤ s, then by appealing to Lemma 2.4 the equation
s∑

i=1

g(i)k+r = 1(3.3)

also has a solution. We note that equation (3.3) can also be transformed to the
equation

s∑
i=1

(
h(i)

f(s + 1)

)k+r

= 1(3.4)

so that it has a solution. Since equation (3.4) can be recast as

s∑
i=1

h(i)k+r = f(s + 1)k+r

and the claim follows immediately. �

It is important to note that if the values of h on the positive integers is still a
positive integer and have continuous derivative on [1, s] and decreasing on R+, then
the integer solution of the more general Erdős-Moser equation

s∑
i=1

h(i)k = f(s + 1)k

can be extended to the integer solutions of the equation
s∑

i=1

h(i)k+r = f(s + 1)k+r

under the local condition of the normalized values of h on [1, s + 1]. One could
also examine the problem with the sequence h : N −→ R+ and ask if it is possible
to take h to be an arithmetic progression. A similar question could be asked for
sequences h : N −→ R+ of general types. It is important to recognize that the tool
we have developed only allows us to extend solutions of the general Erdős-Moser
equation under a certain local condition of normalized generators of the olloid.
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