ON THE GENERAL ERDOS-MOSER EQUATION VIA THE
NOTION OF OLLOIDS
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ABSTRACT. We introduce and develop the notion of the olloid. We apply
this notion to study a variant and a generalized version of the Erd&s-Moser
equation under some special local condition.

1. Introduction

The Erdés-Moser equation is an equation of the form

P2k pmP = (m+ 1)k
where m and k are positive integers. The only known solution to the equation
is 1' + 2! = 3! and Paul Erdés is known to have conjectured that the equation
has no further solution. The exponent k and the arguments in the the Erd&s-
Moser equation has also been studied quite extensively. In other words, several
contraints on the exponent k& and the argument m of the Erdés-Moser equation
have been studied under a presumption that other solutions - if any - exists. In
particular, it has been shown that k£ must be divisible by 2 and that there is no
solution with m < 1000900 [1]. The methods introduced by Moser were later
refined and adapted to show that m > 1.485 x 109321155 [2]. This was improved
to the lower bound m > 2.7139 x 101:667:658,416 iy [5] via large scale computation
of In(2). It is also shown (see [3]) that 6 < k+ 2 < m < 2k. It is also known
that lem(1,2,---,200) must divide k and that any prime factor of m 4+ 1 must be
irregular and > 1000 [4]. In 2002, it was shown that all primes 200 < p < 1000

must divide the exponent k in the Erdds-Moser equation

ok 4o pmb = (m+ 1)k
where m and k are positive integers.
In this paper we introduce and study the notion of the olloid and develop a tech-
nique for extending the solution of the generalized Erdés-Moser equation upto ex-

ponents k£ under some special local conditions of the underlying generator. In
particular, we obtain the following result

Theorem 1.1 (The generalized extension method). Let h : N — Rt have con-
tinuous derivative on [1,s] and decreasing on RY with f : N — (0,00) such that
fls+1)>h(i) for all1 < i< s for s € N. If the equation

b0 = f(s +1)"
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for k> 1 has a solution and there exist some r € N such that

B S () D W () U S W)
ST >1/ g<t>2dt+g<s>l/ MOE +g<s>r11/ a2 ™

h(i)
f(s+1)

with
g(i) ==

for 1 <1i<s. Then the equation
SR = s+ 1R
i=1

also has a solution.

This result is a consequence of the more fundamental result using the notion of
the olloid.

Lemma 1.2 (Expansion principle). Let F¥ be an s-dimensional olloid of degree
k for a fired k € N with k > 1. If g : N — R* is a generator with continuous
derivative on [1,s] and decreasing on R such that

B Y O S ) D B ()
ST >1/ g(t)?d”g@)l/ a2 +g<s>rll/ a2 ™

forr € N then g : N — R¥ is also a generator of the olloid FX*" of degree k +r.

2. The notion of the olloid

In this section we launch the notion of the olloid and prove a fundamental
lemma, which will be relevant for our studies in the sequel.

efinition 2.1. Let = U, U, ..., Ug) € ( u; =1, k> . en we
Definition 2.1. Let F* R® k=1, k>1;. Th

1=1
call F¥ an s-dimensional olloid of degree k > 1. Wesay g : N — R is a generator of
the s-dimensional olloid of degree k if there exists some vector (vi,vs,...,vs) € FF

such that v; = g(4) for each 1 < i < s.

Question 2.2. Does there exists a fixed generator g : N — R with infinitely many
olloids?

Remark 2.3. While it may be difficult to provide a general answer to question
2.2, we can in fact provide an answer by imposition certain conditions for which
the generator of the olloid must satisfy. In particular, we launch a basic and a
fundamental principle relevant for our studies in the sequel.

Lemma 2.4 (Expansion principle). Let F¥ be an s-dimensional olloid of degree
k> 1 for a fized k € N. If g : N — RT is a generator with continuous derivative
on [1,s] and decreasing on R™ such that

B Y L S ) DO B ')
ST >1/ g(t)?d”g@)l/ a2 +g<s>rll/ a2 ™

forr € N then g : N — R¥ is also a generator of the olloid FX*" of degree k + r.
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Proof. Suppose g : N — R* is a generator of the olloid F¥ with continuous

derivative on [1,s]. Then there exists a vector (vi,vs,...,vs) € F¥ such that v; =
g(7) for each 1 < i <'s, so that we can write

S
> gyt =
i=1
Let us assume to the contrary that there exists no r € N such that g : N — RT

is a generator of the olloid FX*". By applying the summation by parts, we obtain
the inequality

S ke [0
(2.1) > gt =1 1/9 dt

by using the inequality

>+ < Y oli)t =

i=1

By applying summation by parts on the left side of (2.1) and using the contrary
assumption, we obtain further the inequality

LS ke [0, 1 [
22) 9(8)2129() = 1/9 ey /g

By induction we can write the inequality as
R r 1
Nk+r g
——= > gt =1 / —
g9(s)" = g(t 2 9(8
1
for any r > 2 with r € N. Since g : N — R™T is decreasing, it follows that

I O I S I R S A
: / " g<s>1/ OO / O

and using the requirement

1 [y 1 / 1 [g
1- >/g(t)dt+—/g(t)dt+~-~+ /g<tldt
g
1 1 1

[ 4 1 [dw
G g(sv—ll/ i

g(s)”

for r € N, we have the inequality

1= g(i)t
=1
S
>3 g0 > 1
=1

which is absurd. This completes the proof of the Lemma. [
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Lemma 2.4 - albeit fundamental - is ultimately useful for our study of variants
and possibly extensions of the Erdés-Moser equation. It can be seen as a tool for
extending the solution of equations of the form

Zg(i)’“ =1

for £k > 1 - under the presumption that it exists - to the solution of equations of
the form

i =
i=1

for a fixed r € N under some special requirements of the generator g : N — R.

3. Application to solutions of the generalized Erdés-Moser equation

In this section we apply the notion of the olloid to study solutions of the Erdé&s-
Moser equation. We launch the following method as an outgrowth of Lemma 2.4.

Theorem 3.1 (The generalized extension method). Let h : N — R have con-
tinuous derivative on [1,s] and decreasing on RY with f : N — (0,00) such that
f(s+1) > h(i) for all1 <i <s for s € N. If the equation

S = s+ 1)t

for k > 1 has a solution and there exist some r € N such that

1 / 1[4 1 [y
1 >/g(t)dt+—/g(t)dt+--~+ /g(t)dt
1 1

g(t)*  g(s) ) g(t)” g(s)™=1

with hi)
g(i) := m

for 1 <i<s. Then the equation
Zh(i)kJrT — f(S + 1)k+r
i=1

also has a solution.

Proof. Suppose the equation

(3.1) S h()F = f(s+ 1)k
i=1

has a solution. Then equation (3.1) can be recast as

3.2 — =1

(32) 2 (765m)

which can also be transformed into the sum

PIONES!
=1
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with
h(i)
fls+1)
. h(i)
90 = 5+ 1)
for 1 <i < sis decreasing and has continuous derivative on [1, s] since h : N — Rt

have continuous derivative on [1,s] and decreasing on RT, so that if there exists
some r € N such that

B S (O W W 0O DS B W)
1g@r>[mw“+m$/mwﬁ+ *mw*/?m”t

. h(i
g(i) = 2D
f(s+1)
for 1 <14 < s, then by appealing to Lemma 2.4 the equation

(3.3) g =1

g9(i) ==

The function

with

also has a solution. We note that equation (3.3) can also be transformed to the
equation

s h(l) k+r
3.4 — =1
(34) Z}(ﬂs+n>
so that it has a solution. Since equation (3.4) can be recast as

SR = f(s 4+ 1)
=1

and the claim follows immediately. O

It is important to note that if the values of h on the positive integers is still a
positive integer and have continuous derivative on [1, s] and decreasing on R, then
the integer solution of the more general Erdés-Moser equation

> h(i)* = f(s+ 1)
i=1
can be extended to the integer solutions of the equation
SR = s+ 1)
i=1

under the local condition of the normalized values of h on [1,s + 1]. One could
also examine the problem with the sequence h : N — R™ and ask if it is possible
to take h to be an arithmetic progression. A similar question could be asked for
sequences h : N — RT of general types. It is important to recognize that the tool
we have developed only allows us to extend solutions of the general Erdos-Moser
equation under a certain local condition of normalized generators of the olloid.
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