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Abstract 

This article presents a new approach for pricing commodity derivatives. The key to this approach is the 

model calibration that makes the model prices of vanilla options match the market prices and the implied 

model dynamics be in good agreement with the characteristics of the historical data series. Our 

theoretical results show that the model can better capture the price and volatility dynamics. Empirical 

study shows that the model performs quite well. 
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1. Introduction 

 

Unlike other financial instruments such as equities, interest rates, and FX rates, commodity futures 

are often modeled without a drift. This is because a very large amount of historical data would be 

required to calibrate any sort of reasonable drift. In general, commodities rise and fall over time and 

it is generally difficult to associate a drift to such motion.  

 

The random component of the commodity future prices is generally broken down into major 

contributors or factors. These are known as the principal components. The principal components 

for the same commodity are generally independent – that is, we assume that there exists in the 

world N major independent factors driving the randomness in the price.  

 

As described, the general effect of each principal component on the price is random and thus in a 

simulation, a correlated random number is generated for each principal component. These random 

numbers are known as the Fourier coefficients. The final price for a given contract is then simply its 

seasonal mean plus the random Fourier coefficient multiplied by its corresponding principal 

component.  

 

The complex stochastic behavior in commodity prices cannot be fully described by one-factor models. 

Schwartz and Smith (2000) proposed a two-factor model that assumes the first factor to be a zero-mean 

Ornstein–Uhlenbeck process, representing short term fluctuations of price. The second factor is modeled 

by the arithmetic Brownian Motion, representing a long-term effect. Both factors are assumed to be 

correlated.  

 

Ladokhin & Borovkova (2021) extends Borovkova and Geman (2007) into a three-factor model that 

incorporates the synthetic spot price. The model is based on liquidly traded futures and stochastic level of 

mean reversion.  

 

In this article, we present a generic multi-factor model. The model clearly illustrates the essence of the 

multi-factor driving of commodity prices. The model describes the commodity price as a sum of mean 
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reverting factors. Factors with low mean reversion rate are called Slow/Long Factors, and represent 

uncertainties on long-term fundamentals. Factors with high mean reversion rate are called Fast/Short 

Factors, and are used to model short term risk factors such as weather, middle-east unrest, economic 

slowdown, central-bank policy changes, etc. 

 

We propose a generic calibration procedure for the multi-factor model. The calibration procedure 

consists of an offline step where the mean reversion rates, the ratio of the long and short factor 

volatilities and the correlation between the long and short factors are determined via historical analysis. 

This offline step is performed relatively infrequently (typically once a month). There’s also an online step 

of the calibration which happens every time the model is used to price an option or to simulate price 

paths.  

 

The rest of this article is organized as follows: First we present a new multi-factor model for 

commodity prices. Second, we propose a generic calibration method for the model. Then, we 

elaborate the valuation of commodity derivatives and Monto-Carlo simulation. Next, we discuss the 

empirical result. Finally, the conclusions are provided. 

 

 

2. Multi-factor Model 

 

The model assumes that the forward curve is driven by N random factors, characterized by different time 

scales. Mathematically, the over-arching formula for the futures price 𝐹𝑇 reads 

𝑑𝐹𝑇(𝑡)

𝐹𝑇(𝑡)
= ∑ 𝑝𝑖(𝑡)𝑞𝑖(𝑇)𝑒−𝛽𝑖(𝑇−𝑡)𝑑𝑊𝑖

𝑁

𝑖=1

(𝑡) 

 

Here, t is the current time, T is the futures expiration time, i is the index of the i’th factor, N is the total 

number of factors, 𝑝𝑖  is the local time dependent volatility of the i’th factor, 𝑞𝑖  is the expiry time 

dependent volatility of the i’th factor, 𝛽𝑖 is the mean reversion rate of the i’th factor, and 𝑊𝑖is a standard 

Brownian motion that is the random driver for the i’th factor. The Brown motions are correlated with 

the correlation matrix with element 𝜌𝑖,𝑗, i.e. 〈𝑑𝑊𝑖, 𝑑𝑊𝑗〉 = 𝜌𝑖,𝑗𝑑𝑡. 
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Here are several particular examples of the generic formulation above, from which the intuition of the 

model should come alive. But for now, let’s expand certain properties of the generic model a bit more. 

First, we define the i’th Mean Reverting Factor 𝑌𝑖 by the following OU process 

𝑑𝑌𝑖(𝑡) = −𝛽𝑖𝑌𝑖(𝑡)𝑑𝑡 + 𝑝𝑖(𝑡)𝑑𝑊𝑖(𝑡) 

 

We assume that the process starts from 0, i.e. 𝑌𝑖(0) = 0. The solution to this SDE is easily derivable: 

𝑑[𝑒𝛽𝑖𝑡𝑌𝑖(𝑡)] = 𝑒𝛽𝑖𝑡𝑝𝑖(𝑡)𝑑𝑊𝑖(𝑡) 

𝑌𝑖(𝑡) =  ∫ 𝑒−𝛽𝑖(𝑡−𝑠)
𝑡

0

𝑝𝑖(𝑠)𝑑𝑊𝑖(𝑠) 

 

The futures price can be expressed in terms of the mean reverting factor as follows: 

𝑑𝐹𝑇(𝑡)

𝐹𝑇(𝑡)
= ∑ 𝑞𝑖(𝑇)𝑒−𝛽𝑖𝑇𝑑[𝑒𝛽𝑖𝑡𝑌𝑖

𝑁

𝑖=1

(𝑡)] 

𝐹𝑇(𝑡) = 𝐹𝑇(0)𝑒
∑ 𝑞𝑖(𝑇)𝑒−𝛽𝑖(𝑇−𝑡)𝑌𝑖

𝑁

𝑖=1
(𝑡)−

1
2

〈log 𝐹𝑇〉0
𝑡

 

 

The quadratic variation is a specific case of a very useful quantity: Log Covariance. We define the log 

covariance of two futures contracts, 𝐹𝑇1and 𝐹𝑇2, integrating from 𝑡1to 𝑡2 as 

〈log 𝐹𝑇1 , log 𝐹𝑇2〉𝑡1

𝑡2 = ∑ 𝑞𝑖(𝑇1)𝑞𝑗(𝑇2) ∫ 𝑝𝑖(𝑠)𝑝𝑗(𝑠)

𝑡2

𝑡1

𝑁

𝑖,𝑗=1

𝑒−𝛽𝑖(𝑇1−𝑠)−𝛽𝑗(𝑇2−𝑠)𝜌𝑖,𝑗𝑑𝑠 

 

In particular, 

〈log 𝐹𝑇〉0
𝑡 = ∑ 𝑞𝑖(𝑇)𝑞𝑗(𝑇) ∫ 𝑝𝑖(𝑠)𝑝𝑗(𝑠)

𝑡

0

𝑁

𝑖,𝑗=1

𝑒−(𝛽𝑖+𝛽𝑗)(𝑇−𝑠)𝜌𝑖,𝑗𝑑𝑠 

 

The value of a vanilla option is computed by substituting the volatility √
〈log 𝐹𝑇〉0

𝑡

𝑡
 into the Black-Scholes 

formula. 

 

Substituting T=t into the equation above gives the formula for the spot price of a commodity: 
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𝑆(𝑡) = 𝑆(0)𝑒∑ 𝑞𝑖(𝑡)𝑌𝑖
𝑁

𝑖=1
(𝑡)+⋯ 

 

Finally, if we have two assets that are modeled by the multi-factor model, with potentially different 

number of factors, we can calculate the Cross-Asset Log Covariance as follows. 

𝑑𝐹1
𝑇(𝑡)

𝐹1
𝑇(𝑡)

= ∑ 𝑝𝑖,1(𝑡)𝑞𝑖,1(𝑇)𝑒−𝛽𝑖,1(𝑇−𝑡)𝑑𝑊𝑖,1

𝑁1

𝑖=1

(𝑡) 

𝑑𝐹2
𝑇(𝑡)

𝐹2
𝑇(𝑡)

= ∑ 𝑝𝑗,2(𝑡)𝑞𝑗,2(𝑇)𝑒−𝛽𝑗,2(𝑇−𝑡)𝑑𝑊𝑗,2

𝑁2

𝑗=1

(𝑡) 

〈log 𝐹1
𝑇1 , log 𝐹2

𝑇2〉𝑡1

𝑡2 = ∑ ∑ 𝑞𝑖,1(𝑇1)𝑞𝑗,2(𝑇2) ∫ 𝑝𝑖,1(𝑠)𝑝𝑗,2(𝑠)

𝑡2

𝑡1

𝑁2

𝑗=1

𝑒−𝛽𝑖,1(𝑇1−𝑠)−𝛽𝑗,2(𝑇2−𝑠)𝜌𝑖,𝑗
1,2𝑑𝑠

𝑁1

𝑖=1

 

 

Here, 𝜌𝑖,𝑗
1,2

 is the instantaneous correlation between the i’th factor of the first asset and the j’th factor of 

the second asset, i.e. 

𝜌𝑖,𝑗
1,2𝑑𝑡 =  〈𝑑𝑊𝑖,1(𝑡), 𝑑𝑊𝑗,2(𝑡)〉 

 

The cross-asset log covariance is useful in pricing basket option or foreign currency denominated 

options. 

 

The standard multi-factor model specifies a log-normal process for the futures price, and therefore does 

not incorporate volatility smile directly. The model needs to be adjusted to handle the volatility smile. 

There are several sophisticated approaches to do this.  

 

The most convenient “moneyness” metric is the so-called Quick Delta (QD). QD measures how 

many standard deviations away the forward price is relative to the strike of the option, in the log-

normal space. QD is an approximation to the Black-Scholes (put) delta. But it is more convenient 

than Black-Scholes delta for the purpose of parameterizing the volatility surface because QD for 

ATM option is exactly 50% and it is easy to convert QD to a dollar strike or the other way around. 

Mathematically, QD is defined as 
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QD = 𝑁(log
Strike

Forward
/𝜎√𝑇) 

 

Here, N is the cumulative normal density function, 𝜎 is the ATM volatility, and T is the option 

expiration. The cumulative normal density function is applied to transform the moneyness to a 

number between 0 and 1. 

 

 

3. Model Calibration 

 

In this section, we show how the two-factor model parameters are determined in the offline step of the 

calibration. The purpose of the offline step is to back out the mean reversion rate (𝛽), the volatility ratio 

(𝑝𝑆/𝑝𝐿for non-seasonal model and 𝑞𝑆/𝑞𝐿 for seasonal model), and the correlation (𝜌) between the long 

and short factors from the historical time series. There are of course many ways of studying the historical 

data and it is clearly beneficial to benchmark the model dynamics against history in multiple ways. I’ll 

show 3 different methods here. 

 

The first method is Principal Component Analysis. PCA is a mathematical procedure that uses an 

orthogonal transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called Principal Components. The number of principal 

components is less than or equal to the number of original variables. 

 

 This transformation is defined in such a way that the first principal component has the largest possible 

variance (that is, accounts for as much of the variability in the data as possible), and each succeeding 

component in turn has the highest variance possible under the constraint that it be orthogonal to (i.e., 

uncorrelated with) the preceding components. Principal components are guaranteed to be independent if 

the data set is jointly normally distributed. 

 

The following graphs illustrate the quality of fitting for West Texas Intermediate (WTI). The historical 

period is between July 24, 2011 and July 24, 2013, with more recent data given higher importance. The 

weighting of the data follows an exponential formula with the decay rate corresponding to a half life of 
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125 business days. The two-factor model parameters are 0.35 for mean reversion rate, 1.6 for volatility 

ratio and -20% for correlation. 

 

 

 

 

FIGURE 1 illustrates the quality of fitting for West Texas Intermediate (WTI). 

 

 

The second method is to directly compare certain statistical metrics between the historical data and the 

model. As far as the most liquid non-vanilla options are concerned, the most important statistics are the 

relative volatilities of different futures and the correlations between these futures. The figures below 

illustrate the quality of fitting in terms of these two metrics. The historical data and two-factor model 

parameters are the same as above. 
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FIGURE 2 illustrates the relative volatilities of different futures for West Texas Intermediate (WTI). 

More specifically, the graph plots the ratio of the instantaneous volatility of the nearby number in the x-

axis versus the instantaneous volatility of the 12th nearby. 

 

 

 

 

 

FIGURE 3 illustrates the correlation between different futures for West Texas Intermediate (WTI). More 

specifically, the graph plots the instantaneous correlation of the nearby number in the x-axis and the 12th 

nearby. 
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The third method is so-called relative value analysis. Both the first and second methods are purely 

historical analysis. The strength of the relative value analysis is that it combines information from 

historical analysis and information from market implied volatilities of the vanilla options.  

 

The key quantity that links the history and the future is the ratio between the realized swap volatility and 

the realized futures volatility. For example, if in calendar 2013, the realized volatility ratio between Cal14 

swap and the Feb14 future contract was 0.9. Suppose on Jan 2, 2014, we need to price a Cal15 swaption 

and the Feb15 vanilla option is priced at 20% implied volatility.  

 

Note that the two-factor model parameters we backed out from historical analysis are not used directly to 

price new deals or manage our risks. Historical analysis is backward looking, while derivatives pricing 

should reflect our forward-looking view. Therefore, we use the introspective step to complement the 

historical analysis with the information embedded in the market non-vanilla option prices about how the 

future will hold.  

 

Once the mean reversion rates, the volatility ratio and the correlations are fixed, the only thing left is to 

impute the overall level of the factor volatilities. The purpose of the online step of the calibration is to 

solve for the factor volatilities such that the model prices vanilla options at exactly their market prices. We 

now return to the general Multi-factor model setting to lay out the procedure of the online calibration. 

With the fixed volatility ratio, we can express the t-dependent factor volatilities in terms of the constant 

volatilities vector and a t-dependent scaling factor 𝛼(𝑡), i.e. 

𝑝𝑖(𝑡) = 𝑝𝑖𝛼(𝑡) 

 

We assume the scalar function 𝛼(𝑡) is a piecewise constant function, with the time knots being the 

standard option expiration dates 𝑡1, 𝑡2, 𝑡3, …. Namely, 

𝛼(𝑡) = 𝛼𝑘,   for  𝑡𝑘−1 ≤ 𝑡 < 𝑡𝑘 (where 𝑡0 = 0) 

 

The log variance of a futures contract with maturity 𝑇𝑀 up to its standard option expiry  𝑡𝑀 reduces to 
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〈log 𝐹𝑇𝑀〉0
𝑡𝑀 = ∑ ∫ 𝑝𝑖(𝑠)𝑝𝑗(𝑠)

𝑡𝑀

0

𝑁

𝑖,𝑗=1

𝑒−(𝛽𝑖+𝛽𝑗)(𝑇𝑀−𝑠)𝜌𝑖,𝑗𝑑𝑠

= ∑ 𝑝𝑖𝑝𝑗𝜌𝑖,𝑗𝑒−(𝛽𝑖+𝛽𝑗)𝑇𝑀 ∑ 𝛼𝑘
2

𝑀

𝑘=1

𝑁

𝑖,𝑗=1

𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑘 − 𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑘−1

𝛽𝑖+𝛽𝑗
 

 

We now use a bootstrapping procedure to solve for 𝛼𝑘for k=1, 2 … .The price of the first option (with 

the nearest expiration) depends only on 𝛼1, and so 𝛼1can be backed out from the option price. The price 

of the second option depends on both 𝛼1and 𝛼2. Since 𝛼1is already determined, we just need to solve 

for 𝛼2to match the second option. We continue this procedure to solve for the values for all 𝛼𝑘. 

 

The difference with the seasonal model is to use T-dependent volatility functions. Analogous to the non-

seasonal model, the factor volatility functions can be expressed as a constant vector multiplied by a T-

dependent scalar, namely: 

𝑞𝑖(𝑇) = 𝑞𝑖𝜆(𝑇) 

 

The log variance of a futures contract with maturity 𝑇𝑀 up to the its standard option expiry 𝑡𝑀 is equal to 

〈log 𝐹𝑇𝑀〉0
𝑡𝑀 = ∑ ∫ 𝑞𝑖(𝑇𝑀)𝑞𝑗(𝑇𝑀)

𝑡𝑀

0

𝑁

𝑖,𝑗=1

𝑒−(𝛽𝑖+𝛽𝑗)(𝑇𝑀−𝑠)𝜌𝑖,𝑗𝑑𝑠

= 𝜆2(𝑇𝑀) ∑ 𝑞𝑖𝑞𝑗𝜌𝑖,𝑗𝑒−(𝛽𝑖+𝛽𝑗)𝑇𝑀

𝑁

𝑖,𝑗=1

𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑀 − 1

𝛽𝑖+𝛽𝑗
 

 

This is easier to solve than the non-seasonal model and no bootstrapping procedure is required. 

The instruments used in this calibration are vanilla options on futures, i.e., vanilla options expiring in 

𝑡𝑀on the futures expiring on 𝑇𝑀. The vanilla option volatilities used in the calibration are marked by the 

trading desk. 

 

There are two main sources of swaption market prices that we use to gauge how other deals are valuing 

the swaptions. The first source is the inter-dealer broker market. The second source is the monthly 

Totem swaption valuation service that provides a consensus (average) price among the participants of 
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this service. Both sources are valuable, and neither is perfect. The broker quotes are typically spotty, i.e., 

we may get a quote once in a few days or sometimes weeks. And the broker quotes only reflect the view 

of one dealer who is quoting. The third problem with deal quotes is that dealers tend to skew the bids 

lower since the market flow is essentially one way (dealers are buying swaption from clients).  

 

In commodities, our current profit and loss (PnL) policy on swaptions is to use Totem as the official 

MTM for each month end. This is implemented by comparing the model price and Totem consensus at 

each month end and adjusting the official PnL by the difference. As a result, we would like to mark the 

model to be “close” to Totem prices. We use quotation mark on “close” because we do not want to 

match the Totem prices exactly, given the limitations of the Totem data noted earlier. It is better for us to 

also use broker quotes as a supplement. If broker quotes are noticeably lower than Totem, we should in 

general mark the model conservative to Totem. If the broker quotes are noticeably higher than Totem, it 

is OK to mark the model slightly aggressive to Totem. 

 

Let us use a real-life example to illustrate this process. At Feb 2014 month end, we have the following 

comparison between the model price and Totem consensus for WTI swaptions. The model prices are 

within 1% of Totem for Cal17, 18, and 19. For cal15 and 16, the model price is conservative by more 

than 1%. Shall we recalibrate the model to show higher prices for Cal15 and 16? 

 

 

Straddle Swaption Model Price Totem Consensus Diff % 

Cal15 9.49 9.97 -4.8% 

Cal16 12.86 13.07 -1.6% 

Cal17 15.07 15.13 -0.4% 

Cal18 16.69 16.71 -0.1% 

Cal19 17.87 17.8 0.4% 

 

Table 1: The comparison of the model price and market price for WTI swaptions 

 

 

In the next few weeks, we got the following broker quotes and compared with our model. Clearly, our 

model is higher than the broker bids. So we are fine with the model being conservative relative to Totem, 
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knowing that we are not over-conservative (which would be the case if our model is even lower than the 

broker bid). No re-calibration is needed. 

 

 

Instrument Quote Date Ref Swap Bid Offer Model Price 

Cal15 ATM Call 3/19/2014                    88.00                    4.57            4.97                  4.75  

Cal16 ATM Call 3/19/2014                    83.50                    6.05            6.45                  6.49  

Cal17 ATM Call 3/24/2014                    81.75                    6.93            7.33                  7.42  

Cal18 ATM Call 3/24/2014                    80.50                    7.60            8.10                  8.22  

Cal19 ATM Call 3/24/2014                    80.00                    8.26            8.76                  8.87  

 

Table 2: The comparison between broker quotes and model prices. 

 

 

Finally, if the model needs to be recalibrated, we tune the model parameters (mean reversion, vol ratio, 

and correlation) to put the swaption prices back in the acceptable (as determined by the procedure above) 

range again. Please refer to the following table for the sensitivity to the model parameters. Tweaking the 

mean reversion higher has an impact of reducing the swaption price in the front tenors, and increasing 

the swaption price in the back tenors.  

 

 

4. Pricing Commodity Derivatives via Multi-Factor Model 

 

Asian option settles on the average of the futures price over a sampling period. Typically, the prompt 

future is used as the sampling contract. Since the arithmetic average of the lognormal variables is no 

longer lognormal, one typically utilizes some approximation to price Asian options. The most common 

method is to assume that the arithmetic average is still a lognormal variable and to use moment matching 

to determine the variance of this average. 

 

Suppose the Asian option has M sampling dates 𝑡1, 𝑡2, . . . , 𝑡𝑀, with sampling weights 𝑤1, 𝑤2, . . . , 𝑤𝑀. 

The average price for which we need to calculate the log variance is the following: 
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𝐹 = ∑ 𝑤𝑘𝐹𝑇𝑘(𝑡𝑘)

𝑀

𝑘=1

 

 

By the moment matching approximation, the log variance of F can be solved as 

𝕍[log 𝐹] = log
𝔼[𝐹2]

𝔼2[𝐹]
 

 

The expected value in the numerator can be further expanded as follows 

𝔼[𝐹2] = ∑ 𝑤𝑗𝑤𝑘𝔼[𝐹𝑇𝑗(𝑡𝑗)𝐹𝑇𝑘(𝑡𝑘)]

𝑀

𝑗,𝑘=1

= ∑ 𝑤𝑗𝑤𝑘𝔼[𝐹𝑇𝑗(𝑡𝑗)]𝔼[𝐹𝑇𝑘(𝑡𝑘)]

𝑀

𝑗,𝑘=1

𝑒〈log 𝐹
𝑇𝑗 ,log 𝐹𝑇𝑘〉0

Min(𝑡𝑗,𝑡𝑘)

 

 

Finally, the log variance is plugged into the Black-Scholes equation to arrive at the Asian option price. 

 

Another example is commodity swaption. A swaption is similar to Asian option as it is also an option on 

the average of futures prices. The difference is that a swaption expires before the averaging period starts. 

The formula to price a swaption using the Multi-factor model is very similar to the Asian option formula 

above, except that the sampling dates 𝑡1, 𝑡2, . . . , 𝑡𝑀 are all the same and equal to the swaption expiration 

date.  

 

Moreover, for OTC swaptions, the discount factors from the swap settlement dates to the swaption 

expiration date are baked into the sampling weights. More specifically, if the undiscounted sampling 

weights for the underlying futures are (𝑢1, 𝑢2, . . . , 𝑢𝑀), and the discount factors from the swaption 

expiration date to the settlement dates of each underlying swaplet are (𝑑1, 𝑑2, . . . , 𝑑𝑀) , then the 

discounted sampling weights which are used in swaption pricing are 

(𝑤1, 𝑤2, . . . , 𝑤𝑀) =  (𝑢1 ∗ 𝑑1, 𝑢2 ∗ 𝑑2, . . . , 𝑢𝑀 ∗ 𝑑𝑀) 

 

Let’s denote by d the domestic economy (typically USD), and by f the foreign economy. Let’s use 𝑃 to 

stand for the domestic risk-free measure, and �̃� for the foreign measure. X(t) is the spot FX rate at time t 



 

 14 

to converts 1 unit of foreign currency into the domestic currency. Y(t) = 1/X(t) is the spot FX rate that 

converts 1 unit of the domestic currency to the foreign currency. As usual, 𝐹𝑇(𝑡) denotes the futures 

price in the domestic currency, and we define 𝐺𝑇(𝑡) = 𝐹𝑇(𝑡)𝑌(𝑡) to be the futures price in the foreign 

currency. 

 

The dynamics of X(t) is governed by the following SDE, where the Brownian motion W is in the 

domestic measure 𝑃, 

𝑑𝑋(𝑡)

𝑋(𝑡)
= (𝑟𝑑(𝑡) − 𝑟𝑓(𝑡)) 𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊(𝑡) 

 

Here, 𝑟𝑑(𝑡)  and 𝑟𝑓(𝑡)  are the deterministic interest rates for the domestic and foreign currencies 

respectively. By Ito lemma, 

𝑑𝑌(𝑡) = −
𝑑𝑋

𝑋2
+

〈𝑑𝑋〉

𝑋3
= 𝑌(𝑡) [(𝑟𝑓(𝑡) − 𝑟𝑑(𝑡)) 𝑑𝑡 − 𝜎𝑋(𝑡)(𝑑𝑊(𝑡) − 𝜎𝑋(𝑡)𝑑𝑡)] 

 

By the Girsanov theorem, we can rewrite this SDE in the foreign measure �̃� , where 𝑑�̃�(𝑡) =

𝑑𝑊(𝑡) − 𝜎𝑋(𝑡)𝑑𝑡 is a Brownian motion in the foreign measure, 

𝑑𝑌(𝑡)

𝑌(𝑡)
= (𝑟𝑓(𝑡) − 𝑟𝑑(𝑡)) 𝑑𝑡 − 𝜎𝑋(𝑡)𝑑�̃�(𝑡) 

 

Therefore, Y and X have the same volatility and covariance. 

 

Consider an Asian option that settles on the average price in the foreign currency: 

𝐺 = ∑ 𝑤𝑘𝐺𝑇𝑘(𝑡𝑘)

𝑀

𝑘=1

= ∑ 𝑤𝑘𝐹𝑇𝑘(𝑡𝑘)𝑌(

𝑀

𝑘=1

𝑡𝑘) 

 

It is convenient to price the foreign option in the foreign measure �̃�, and we use the same moment 

matching method as the native option, 

𝕍[log 𝐺] = log
𝔼�̃�[𝐺2]

𝔼�̃�
2[𝐺]

 

 

The first moment is easy to compute 
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𝔼�̃�[𝐺] = ∑ 𝑤𝑘𝔼𝑃[𝐹𝑇𝑘(𝑡𝑘)]𝔼�̃�[𝑌(𝑡𝑘)]

𝑀

𝑘=1

 

 

The first expectation in the right-hand side of the equation is simply today’s futures price, and the second 

expectation is today’s forward FX rate. 

 

The second moment can be expanded as 

𝔼�̃�[𝐺2] = ∑ 𝑤𝑗𝑤𝑘𝔼�̃�[𝐺𝑇𝑗(𝑡𝑗)𝐺𝑇𝑘(𝑡𝑘)]

𝑀

𝑗,𝑘=1

= ∑ 𝑤𝑗𝑤𝑘𝔼�̃�[𝐺𝑇𝑗(𝑡𝑗)]

𝑀

𝑗,𝑘=1

𝔼�̃�[𝐺𝑇𝑘(𝑡𝑘)]𝑒〈log 𝐺
𝑇𝑗 ,log 𝐺𝑇𝑘〉0

Min(𝑡𝑗,𝑡𝑘)

 

 

The expected values are computed the same way as in the first moment. What remains is to calculate the 

log-covariance term: 

〈log 𝐺𝑇𝑗 , log 𝐺𝑇𝑘〉
0

Min(𝑡𝑗,𝑡𝑘)

= 〈log 𝐹𝑇𝑗 , log 𝐹𝑇𝑘〉
0

Min(𝑡𝑗,𝑡𝑘)
+ 〈log 𝐹𝑇𝑗 , log 𝑌〉

0

Min(𝑡𝑗,𝑡𝑘)
+ 〈log 𝑌 , log 𝐹𝑇𝑘〉

0

Min(𝑡𝑗,𝑡𝑘)

+ 〈log 𝑌 , log 𝑌〉
0

Min(𝑡𝑗,𝑡𝑘)
 

 

Since the FX process is modeled as a single-factor model, the log-covariance terms in the right-hand 

equation are a particular case of the cross-asset log-covariance formula. 

 

 

5. Multi-Factor Model Simulation 

 

Suppose we want to simulate the mean reverting factors on M sampling dates 𝑡1, 𝑡2, . . . , 𝑡𝑀, and we have 

already generated the paths up to time 𝑡𝑘−1. To simulate the next time step, we note that 

𝑌𝑖(𝑡𝑘) = 𝑒−𝛽𝑖(𝑡𝑘−𝑡𝑘−1)𝑌𝑖(𝑡𝑘−1) +  ∫ 𝑒−𝛽𝑖(𝑡𝑘−𝑠)
𝑡𝑘

𝑡𝑘−1

𝑝𝑖(𝑠)𝑑𝑊𝑖(𝑠) 
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The N-by-N covariance matrix of the integral term is easily derivable from the Ito isometry: 

〈∫ 𝑒−𝛽𝑖(𝑡𝑘−𝑠)
𝑡𝑘

𝑡𝑘−1

𝑝𝑖(𝑠)𝑑𝑊𝑖(𝑠), ∫ 𝑒−𝛽𝑗(𝑡𝑘−𝑠)
𝑡𝑘

𝑡𝑘−1

𝑝𝑗(𝑠)𝑑𝑊𝑗(𝑠)〉

= ∫ 𝑒−(𝛽𝑖+𝛽𝑗)(𝑡𝑘−𝑠)
𝑡𝑘

𝑡𝑘−1

𝑝𝑖(𝑠)𝑝𝑗(𝑠)𝜌𝑖,𝑗𝑑𝑠 

 

We then calculate the Cholesky decomposition of the covariance matrix. Equipped with a random 

number generator capable of drawing N independent Gaussian random numbers, we can simulate the 

integral term and hence generate the paths for the mean reverting factors at the next time step 𝑡𝑘. 

 

To make the multi-asset algorithm complete, we need to discuss how to determine the pairwise 

correlation 𝜌𝑖,𝑗
𝑎,𝑏

 between the i’th factor of the asset and the j’th factor of the b asset (where a could be 

equal to b, in which case the correlation is between different factors of the same asset). Obviously, one 

cannot hope to assign arbitrary values to these correlations and still get a semi-positive-definite (SPD) 

matrix that can be Cholesky decomposed. The simplest way to ensure SPD is to compute the correlation 

matrix directly from historical data. 

 

But where do we get historical data on the factors? The factors are a model construct and are not directly 

observable from the historical data. What we observe is the historical futures prices, and we need to 

somehow “transform” them into factors. Here’s a simple way to do this. 

 

Take the two-factor model for WTI as an example. We pick two nearby contracts, one from the front 

end of the curve, say the 3rd nearby, i.e., 𝑇1 = 𝑡 + 3/12, and other from the back end of the curve, say 

the 36th nearby, i.e., 𝑇2 = 𝑡 + 36/12. According to the model, 

𝑑𝐹𝑇1(𝑡)

𝐹𝑇1(𝑡)
= 𝜎(𝑡)[𝑝𝑆𝑒−𝛽(𝑇1−𝑡)𝑑𝑊𝑆(𝑡) + 𝑝𝐿𝑑𝑊𝐿(𝑡)] 

𝑑𝐹𝑇2(𝑡)

𝐹𝑇2(𝑡)
= 𝜎(𝑡)[𝑝𝑆𝑒−𝛽(𝑇2−𝑡)𝑑𝑊𝑆(𝑡) + 𝑝𝐿𝑑𝑊𝐿(𝑡)] 

 

The left-hand sides of the equations, the log returns of the two futures, are directly observable from the 

historical time series. We can solve for the factors as follows: 
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𝑝𝑆𝜎(𝑡)𝑑𝑊𝑆(𝑡) =

𝑑𝐹𝑇1(𝑡)
𝐹𝑇1(𝑡)

−
𝑑𝐹𝑇2(𝑡)
𝐹𝑇2(𝑡)

𝑒−𝛽(𝑇1−𝑡) − 𝑒−𝛽(𝑇2−𝑡)
 

𝑝𝐿𝜎(𝑡)𝑑𝑊𝐿(𝑡) =
𝑒−𝛽(𝑇2−𝑇1) 𝑑𝐹𝑇1(𝑡)

𝐹𝑇1(𝑡)
−

𝑑𝐹𝑇2(𝑡)
𝐹𝑇2(𝑡)

𝑒−𝛽(𝑇2−𝑇1) − 1
 

 

Note that in this formula, the mean reversion rate is already determined by the procedure in Model 

Calibration. From this, the historical correlation between any two factors (either from the same asset or 

different assets) can be calculated. 

 

 

6. Empirical and Numerical Study 

 

The key element in pricing this option is the early expiry volatility of the December 2015 contract during 

the period from now to the expiration of the December 2014 contract. If we use a seasonal model to 

price this option, the early volatility of the option depends entirely on the trader’s volatility mark for the 

December 2015 contract. If we use a non-seasonal model to price this option, the early volatility depends 

entirely on the trader’s volatility mark for December 2014 contract. In other words, the Vega of the 

option would be attributed to different contract months depending on which calibration strategy to use. 

 

The intuition is that the seasonal model interprets this scenario as saying that even though the December 

2014 contract becomes more volatile, it doesn’t say anything about the December 2015 contract. On the 

other hand, the non-seasonal model interprets the market scenario as saying that not only December 

2014 contract becomes more volatile, but December 2015 contract also becomes more volatile, during 

the period from now to the expiration of the 2014 contract.  

 

Which interpretation is correct? Both satisfy the requirement of matching the model to the market 

implied volatilities for vanilla options. But both are only approximations to what’s happening in the real 

world, and neither is absolutely correct under all circumstances. The truth often lies in between. So, we’re 

interested in seeking a hybrid model that combines the seasonal and non-seasonal calibration strategy. 

Equipped with this extra flexibility, we will be more capable of capturing the responsive behavior of the 

market swaption prices, when the term structure of implied volatilities changes. 
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Below are details on how to calibrate a hybrid model. Let’s assume that the volatility ratio is given by the 

constant vector 𝑝𝑖 = 𝑞𝑖, and we use the symbol 𝜀 to denote the degree to which we want the hybrid 

model to be more like the seasonal or non-seasonal model. This “non-fungibility” parameter is a number 

between 0 and 1, and the hybrid model reduces to the seasonal model when 𝜀 = 1 and it becomes the 

non-seasonal model when 𝜀 = 0. Let’s also denote the implied volatility, the option expiration and 

futures expiration of the M’th contract as 𝜎𝑀 , 𝑡𝑀, 𝑇𝑀respectively. 

 

The first step is to calibrate a fully seasonal model, and then assign the result “partially” to the T-

dependent local volatility function q(T). For this purpose, we recall that in a seasonal model, the scalar 𝜆 

satisfies the equation 

𝜎𝑀
2 𝑡𝑀 = ∑ ∫ 𝑞𝑖(𝑇𝑀)𝑞𝑗(𝑇𝑀)

𝑡𝑀

0

𝑁

𝑖,𝑗=1

𝑒−(𝛽𝑖+𝛽𝑗)(𝑇𝑀−𝑠)𝜌𝑖,𝑗𝑑𝑠

= 𝜆2(𝑇𝑀) ∑ 𝑞𝑖𝑞𝑗𝜌𝑖,𝑗𝑒−(𝛽𝑖+𝛽𝑗)𝑇𝑀

𝑁

𝑖,𝑗=1

𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑀 − 1

𝛽𝑖+𝛽𝑗
 

 

So 

𝜆(𝑇𝑀) = 𝜎𝑀√

𝑡𝑀

∑ 𝑞𝑖𝑞𝑗𝜌𝑖,𝑗𝑒−(𝛽𝑖+𝛽𝑗)𝑇𝑀𝑁
𝑖,𝑗=1

𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑀 − 1
𝛽𝑖+𝛽𝑗

 

 

Now we set the T-dependent local volatility to be a fraction (in the log space) of the solution above, 

according to the non-fungibility parameter: 

𝑞𝑖(𝑇) = 𝑞𝑖
𝜀𝜆𝜀(𝑇) 
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The “residual” fungible implied volatilities 𝜎𝑀/𝜆𝜀(𝑇𝑀) are then to be matched using a boot-strapping 

approach., the same way as in the non-seasonal model. Recall that the equations to solve for are 

𝜎𝑀
2 𝑡𝑀/𝜆2𝜀(𝑇𝑀) = ∑ ∫ 𝑝𝑖(𝑠)𝑝𝑗(𝑠)

𝑡𝑀

0

𝑁

𝑖,𝑗=1

𝑒−(𝛽𝑖+𝛽𝑗)(𝑇𝑀−𝑠)𝜌𝑖,𝑗𝑑𝑠

= ∑ 𝑝𝑖𝑝𝑗𝜌𝑖,𝑗𝑒−(𝛽𝑖+𝛽𝑗)𝑇𝑀 ∑ 𝛼𝑘
2

𝑀

𝑘=1

𝑁

𝑖,𝑗=1

𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑘 − 𝑒(𝛽𝑖+𝛽𝑗)𝑡𝑘−1

𝛽𝑖+𝛽𝑗
 

 

We set the t-dependent local volatility to be 

𝑝𝑖(𝑡) = 𝑝𝑖
1−𝜀𝛼(𝑇) 

 

It is easy to verify that such calibrated model always matches the implied volatilities of all vanilla options, 

i.e. 

𝜎𝑀
2 𝑡𝑀 = ∑ ∫ 𝑝𝑖(𝑠)𝑝𝑗(𝑠)

𝑡𝑀

0

𝑁

𝑖,𝑗=1

𝑞𝑖(𝑇𝑀)𝑞𝑗(𝑇𝑀)𝑒−(𝛽𝑖+𝛽𝑗)(𝑇𝑀−𝑠)𝜌𝑖,𝑗𝑑𝑠 

 

When 𝜀 = 0, the model is equivalent to the fully non-seasonal model, and when 𝜀 = 1, the model is 

equivalent to the fully seasonal model. For the early expiration option example earlier, when 𝜀 = 1/2, we 

will have about half of the vega attributed to December 2014 contract and half to the December 2015 

contract. 

 

Finally, how do we calibrate the non-fungibility parameter 𝜀 in the model? Since the main impact of the 

parameter is to the Vega attribution, we can monitor market swaption prices over a period of time where 

the term structure of implied volatilities goes through significant changes, and choose 𝜀 such that the 

responsive behavior of the model matches the market prices the best. This can be tricky though since 
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there could be other factors affecting the changes in swaption prices, especially over an extended period 

of time. 

 

As an illustration, we pick four month-end dates in 2013, and calculate the IPV (difference between 

model price and Totem consensus) for our existing WTI swaption positions, using 3 different models: 

fully non-seasonal, fully seasonal and hybrid with 50% non-fungibility parameter. The model parameters 

are chosen such that the swaption NPV as of October 8, 2013 are about the same for the 3 models. One 

can see that for this 4-month period, the hybrid model is more stable than the non-seasonal model, but it 

is hard to judge between the seasonal and hybrid models. But for oil assets, the hybrid model is naturally 

preferred over the fully seasonal model. 

 

 

Figure 5. Month-end term structure of implied volatilities. 

 

Model Params Non-Seasonal Seasonal Hybrid 

Mean Reversion 0.59 0.53 0.56 

Volatility Ratio 1.32 1.67 1.44 

Correlation 0% 0% 0% 
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Non-Fungibility 0% 100% 50% 

 

Table 4. Calibrated model parameters for seasonal, non-seasonal, or hybrid assumptions 

 

WTI Swaption IPV Non-Seasonal Seasonal Hybrid 

6/28/2013  $              432,064   $        504,492   $           458,317  

7/31/2013  $              444,942   $        695,192   $           561,262  

8/30/2013  $              (25,346)  $        635,440   $           300,675  

9/30/2013  $              346,722   $        555,789   $           442,195  

 

Table 5. Valuations results under seasonal, non-seasonal or hybrid assumptions 

 

 

Figure 6. The plots of month-end swaption IPVs 

 

 

There’s no way to offset this curve risk effectively with vanilla options. Of course, the most effective way 

to “hedge” this is to sell the swaptions we bought. But it’s quite often that we cannot do this without 
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incurring big costs. Another lesser effective way is to use time spread options as a hedge. But time spread 

options are as illiquid as swaptions. 

 

The manifestation of this in the model is that the risks to the model parameters, including volatility ratio, 

mean reversion and correlations are, to the most part, un-hedgable (unless one sells the swaptions he 

bought). These parameters are not directly observable from the market either. So how to mark these 

parameters and manage the uncertainty with these parameters presents a challenge to the model. But 

there are at least 3 types of mitigation to this challenge. 

 

First, MR imposes a hard limit on how much swaption Vega traders can warehouse. This limits our 

exposure to the un-hedgable swaption risks. 

 

Second, VCG verifies the model valuation at least monthly through the IPV process. This ensures that 

we mark the model to the market expectation of how the “curve” dynamics will actualize. 

 

Finally, we review the historical analysis periodically to ensure we are not stepping into an overheated 

market. But typically mark-to-market is the rule rather than exception. No amount of historical analysis 

can tell us for sure what is going to happen in the future. 

 

 

 

7. Conclusions 

 

The article presents a multi-factor model for pricing commodity derivatives. A primary application is to 

price commodity swaptions. Swaptions are a relatively illiquid product in commodities market, and the 

natural flow tends to be one-sided. As a result, dealers typically warehouse long swaption risks. Delta and 

Vega of these swaptions can be effectively hedged with liquid vanilla options and futures. 

 

Earlier, we have categorized the model calibration strategy into seasonal and non-seasonal. Intuitively, the 

futures contracts for a seasonal asset (such as power or gas) are less fungible than futures contracts for a 

non-seasonal asset (such as oil). Hence, we use a boot-strapping strategy to calibrate local volatilities for 

non-seasonal assets, but for seasonal assets we calibrate the local volatilities of each contract separately. 
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The current form of the multi-factor model is presented in a way that the volatility ratio and mean 

reversions do not have a term structure. But the model is easily extendable to include a t dependency of 

volatility ration and mean reversions. This “term structure” model will make it easier to fit market prices 

of swaptions across different tenors. 
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