The distribution of prime numbers

Mohammed Bouras
mohammed.bouras33@gmail.com

Abstract

In this paper, we discovered a new sequence of prime numbers, every term of this sequence is either a prime number or equal to 1 .

Keywords. Prime numbers, sequence, Rowland sequence.

1. Introduction

A number is said to be a prime number if the number is divisible by 1 and itself; otherwise it's composite.

The distribution of prime numbers which was treated in many researches. The Rowland sequence of prime numbers compose entirely of 1 's and primes, the sequence defined by the recurrence relation

$$
r(n)=r(n-1)+\operatorname{gcd}(n, r(n-1)) ; r(1)=1
$$

The sequence of differences $r(n+1)-r(n)$
$1,1,1,5,3,1,1,1,1,11,3,1,1,1,1,1,1,1,1,1,1,23,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$, $1,1,1,1,1,47,3,1,5,3,1$, $1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,101,3,1,1,7,1,1,1,1,11,3,1,1,1,1,1,13,1,1,1,1$, $1,1,1,1,1, .$.
(sequence A132199 in the OEIS).
In this paper, we present a New way to generate the distribution of prime numbers.

2. The sequence of $b(n)$ and $a(n)$

The sequence $b(n)$ satisfy the following recursive formula

$$
b(n)=(n-1) b(n-1)-n b(n-2) ; n \geq 3
$$

With the starting conditions $b(3)=1$, and $b(4)=7$.
The first few values of $b(n)$.
$b(n)=\{1,7,23,73,277,1355,8347,61573,523913, .$.

In this section, we present our sequence of prime numbers defined in the conjecture as follows.

Conjecture 2.1. The sequence $a(n)$ of the prime numbers satisfy the following formula

$$
a(n)=\frac{n^{2}-n-1}{\operatorname{gcd}\left(b(n), n^{2}-n-1\right)} ; \text { for } n \geq 3
$$

Where $\operatorname{gcd}(\mathrm{x}, \mathrm{y})$ denotes the greatest common divisor of x and y .
The values of $a(n)$.
$5,11,19,29,41,11,71,89,109,131,31,181,19,239,271,61,31,379,419,461,101,29,599,59$, $701,151,811,79,929,991,211,59,41,1259,1,281,1481,1559,149,1721,1,61,1979,2069$, $2161,1,2351,79,2549,241,1,2861,2969,3079,3191, \ldots$

Conjecture 2.2. every term of this sequence is either a prime number or equal to 1 .

References

[1] Richard Guy, Unsolved Problems in Number Theory, Springer science (2004).
[2] Eric S. Rowland, A Natural Prime-Generating Recurrence, Journal of Integer Sequences, Vol. 11 (2008).
[3] N. J. A. Sloane et al., The On-line Encyclopedia of integers sequences, https://oeis.org (Concerned with the sequence A132199)

