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Part 1: Collatz Conjecture: Alternative definition for Collatz's Transformations  

For: Krishna          By: Gaurav Sharma 

 

The problem 

Conjecture: The following operation is applied on an arbitrary positive integer n 

 (!) = " !
2

, #  ! ≅ 0 %&'2

3! + 1, #  ! ≅ 1 %&'2

* 
The Collatz’s conjecture states: This process will eventually reach the number 1, regardless of which 

positive integer is chosen initially. 

Abstract  

We consider n to have only odd values, and even values are written in the form; !. 2+ . We create a 

predefined function ,+(!).Define,  -(!) = ,+(!) + ,+−1(!) and prove -(!) =  (!).  
-(!) being an identical function to collatz transformations, we use the properties of said function to 

probe the conjecture.  

Format of the solution: The solution does not adhere to the conventional framework of 

paragraphed proof writing, every piece of maths that is important(to conjecture) is tabular.  

· The solution template is inspired from Leslie Lamport; how to write a 21st century proof 

· The Solution is framed in a structured template with every argument followed its proof.  

· All the subsections are tabulated to study, IF-THEN clause: for main case and sub cases. 

· Tabulation should help the reader understand the larger picture in context to some specific 

case. 

Current understanding: The heuristic and probabilistic arguments that support the conjecture are 

well known. The conjecture has been proven valid for numbers upto 268  but hasnt been proven yet 

for all numbers. There has been a lot of interesting work done in this problem by notable  

mathematicians. Few of the notable efforts have been by; Terras showing almost all values n 

eventually iterated to a value less than n, Krasikov and Lagarias showed that for any large number x, 

there were at least x0.84 initial values n between 1 and x whose Collatz iteration reached 1. 

Terrence tao showed Almost all Collatz orbits attain almost bounded values. 

The conjecture has been studied using Benford's law, Markovs chains, binary systems among other 

approaches. Variants of the Collatz function have been studied, John  Conway invented a computer 

language called fractran in which every program was a variant of the Collatz function, it turned out 

to be Turing complete.  

There has been some interesting commentary by reputed names, regarding the problem; Paul Erdos 

said about the Collatz conjecture: "Mathematics may not be ready for such problems." Jeffery 
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Lagarias stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely 

out of reach of present day mathematics. Richard K guy stated "Don't try to solve these problems! " 

Some call it the most dangerous problem in mathematics. All this commentary makes us more 

interested in looking into the problem.  

Definitions: 

Definition 0.1 

Transformation: Application of 3n+1 on odd number is termed as transformation. We don’t consider 

application of n/2 as a separate kind of transformation. Application of 3n+1 always results the form 

of !′ . 2+  and we just need to divide !′. 2+  by 2, b number of times, to get n' which may go through 

transformation once again.  

Notation 1: 

 {   }: square brackets are used to represent sets. All the sets in the analysis are open ray sets, 

that is having a certain starting point and can be extended to infinity.  

 ≡ : Equivalence is used for operations under the defined transformations in the problem, 

that is 3n+1 & n/2. Example; 5 ≡ 1. One may consider ≡ as applying transformation on odd element 

and dividing it  by max power of 2 with result being an integer.  

n is defined to be only odd and we may apply 3n+1 upon it. Any even entity shall be represented as 

121! = !&'' . 2+  

Definition 0.2 

nx(before  transformation ; applying  3n+1)

≡ ns(after  tra nsformation ; applying  3n+1 and  dividing  it  by max power  of  2) 

!3  & !4  5,1 567584 &'' 

The co-application of 3n+1 and n/2 shall be considered as a single step 

3!3 + 1 = !4 . 2+  |  !3  & !4 = 29 + 1 & 9, + ∈ ℤ+ 

D0.2 
3!3 + 1 = !4 . 2+  #4 45%1 54 !3 ≡ !4  

 

Take the Universal set {U} 

{<} = {1,2,3,4,5… . } 

On all even elements, apply map (n/2 till we get odd) on {U}, we get: !
2
→ {<},71 -1>{<′} = {1,3, 5, 7, 9… . } 

We begin our study considering set {<′} with only positive odd integers 

Rooster Notation: {<′} = {1,3, 5, 7, 9… . } 

Set Builder Notation: {<′} = {29 + 1}| 9 ∈ ℤ+  
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We define ?Ry  @& { Rb}, formulate expansion for {rb } and establish the relationship between rb& ns  

Definition 1.0: {AB}  is a set of sets contains elements corresponding to values of {U’} based upon 

parity of y with the given definition;  

D1 Condition 

ry =
ry−1 ± 1

2
|  

{R0} = {U′ }  ⟹ r0 = nx  5!' y ∈ {ℤ+} ⋃ {0} 

D1.1 y ≅ 1 mod2 

ry =  
ry−1 + 1

2
 

D1.2 y ≅ 0 mod2 

ry =  
ry−1 − 1

2
 

ry−1 ± 1 implies, we add or subtract 1 to the value of r for any given subset (y-1) 

ry−1  is mapped to ry  if and only if value of r in  ry−1  is odd. The mapping continues till r is even.  

For value of r being even, we define said set as rb .  

Example: Say, nx = 13, r0 = 130(by definition) 

- For  ry = r1: because y is odd, ry =
ry−1+1

2
 implies r1 =

r0+1

2
= 7, so r1 = 71 

 Since value of r in r1 is odd, we extent the set further;  

- For  ry = r2: because y is even, ry =
ry−1−1

2
 implies r2 =

r1−1

2
= 3, so r2 = 32  

 Since value of r in r2 is odd, we extend the set further.  

- For  ry = r3: because y is odd, ry =
ry−1+1

2
 implies r3 =

r2+1

2
= 2, so r2 = 23  

 Since value of r in r3 is even, we cannot extend the set further. Thus, b=3  and rb = 23 

Definition 2.0: {AE}  

rb = ry | , #! ry = 29,9 ∈ ℤ+ 

Since, rb  is same as ry  with the only condition is that value of r in ry  is even. So, rb  carries the same 

defination as ry  

D2 Condition 

rb =
rb−1 ± 1

2
| b ∈ ℤ+ 

D2.1 b ≅ 1 mod2 

rb =  
rb−1 + 1

2
 

D2.2 b ≅ 0 mod2 

rb =  
rb−1 − 1

2
 

If one applies relevant map on rb  where value of r is even, result is a rational solution which is not a 

positive integer or zero, thus is invalid.  

Remark: For condition r=0, we use the classification of zero being even described by Penner 1999, 

p. 34: Lemma B.2.2  
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Explanation:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1: extension of ,0 → ,8  & ,0 → ,+  

ry =
ry−1 + 1

2
 

⇒ r1 =
r0 + 1

2
 

Apply map  

from r0 → r1 

 

ry =
ry−1 − 1

2
 

⇒ r2 =
r1 − 1

2
 

Apply map  

from r1 → r2 

 

{<′ } = {R0} {R1} {R2} {R3} 

ry =
ry−1 + 1

2
 

⇒ r3 =
r2 + 1

2
 

Apply map  

from r2 → r3 

 

Rb = R3 Rb = R2 Rb = R1 

10  

30  

50  

70  

90  

110  

130  

so on... 

11  

31  

51  

71  

21  

41  

61  

so on... 

so on... 

 

12  

32  

52  

72  

02  

22  

42  

so on... 

 so on... 

 

13  

33  

53  

73  

23  

43  

63  

so on... 

so on... 

 

When r=odd, expansion of set from ry−1  to ry   

Expansion 

stops when 

r is even. 

ry = rb   

If r is odd, 

Then set is 

expanded 

If r is 

even, 

Then set 

does not 

expand 

{R0} = {U′ } 

r0 = nx  R1 R2 R3 R4 

If r is odd, 

Then set is 

expanded 

If r is odd, 

Then set is 

expanded 

If r is odd, 

Then set is 

expanded 

If r is odd, 

Then set is 

expanded 

Rb = R1 Rb = R2 

If r is 

even, 

Then set 

does not 

expand 

Rb = R3 

If r is 

even, 

Then set 

does not 

expand 

Rb = R4 

If r is 

even, 

Then set 

does not 

expand 
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Theorem 1: for all values of nx , the rb  has well defined values that depend upon the parity of b 

⇔  b = even, rb =
3nx − 2+ + 1

3. 2+  ∧ ⇔  b = odd, rb =
3nx + 2+ + 1

3. 2+  |3!3 + 1 = !4 . 2+  & !3  ,!4
= 29 + 1 & 9, + ∈ ℤ+ 

Proof:  

T1.0 Condition ⇔  b = even, rb =
3nx − 2+ + 1

3. 2+  ∧ ⇔  b = odd, rb =
3nx + 2+ + 1

3. 2+  | 

3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

T1.1 IF  

rb =
rb−1 ± 1

2
 

Proof: 
By definition D2 

T1.2.1 If b=even 

Base case b=2 r2 =
3nx − 22 + 1

3. 22
 

Proof: 

r2 =
r2−1 − 1

21
=

nx + 1
21 − 1

21
=

nx − 3
3

22
=

3nx − 3

3. 22
=

3nx − 22 + 1

3. 22
 

T1.2.2 + = 25| ∈ ℤ+ 

r2a =
3nx − 225 + 1

3. 225  

Proof: 
Assumed for induction 

T1.2.3 + = 25 + 2| 5 ∈ ℤ+ r2a+2 =
3nx − 225+2 + 1

3. 225+2
 

Proof: Using T1.2.2 

r2a+2 =
r2a+2−1 − 1

21
⟹ r2a+2 =

3nx − 225 + 1

3. 225 + 1

21 − 1

21
  

r2a+2 =
3nx − 225+2 + 1

3. 225+2
(by algebra) 

T1.2.4 Then, 

rb =
3nx − 2+ + 1

3. 2+  

Proof: 
Using mathematical induction in T1.2.2 & T1.2.3 and substituting 2a 

with b 

T1.3.1 If, b=odd 

Base case b=1 r1 =
3nx + 21 + 1

3. 21
 

Proof: 

r1 =
nx + 1

21
=

nx +
3
3

21
=

nx +
21 + 1

3
21

=
3. nx + 21 + 1

3. 21
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T1.3.2 + = 25 + 1| 5 ∈ ℤ+ r2a+1 =
r2a + 1

21
 

Proof: 
Using definition D2.1 

T1.3.3 Then, 

r2a+1 =
3nx + 225+1 + 1

3. 225+1
 

Proof: Using T1.2.2  

r2a+1 =
r2a + 1

21
⟹ r2a+1 =

3nx − 225 + 1
3. 225 + 1

21
 

r2a+1 =
3nx + 225+1 + 1

3. 225+1
(by algebra) 

T1.0 THEN #  b = even, rb =
3nx − 2+ + 1

3. 2+  ∧ 

 #  b = odd, rb =
3nx + 2+ + 1

3. 2+  

Proof: 
By T1.2.4 & T1.3.3 

∎ 

Upon calculating based on Theorem 1, for values in rb , we get;  

,1 =
nx + 1

21
, ,2 =

nx − 1

22
, ,3 =

nx + 3

23
, ,4 =

nx − 5

24
, ,5 =

nx + 11

25
, ,6 =

nx − 21

26
… 

Theorem 2: 

∀(rb + rb−1) = ns  | rb  & rb−1 ∈ nx  & 3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

We establish the operation "rb + rb−1" is identical to application of 3n+1 ( on odd) followed by n/2 

(on even) till we get odd 

Proof:  

T2.0 Condition ∀(rb + rb−1) = ns  |  

rb  & rb−1 ∈ nx  & 3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

T2.1 IF ∀(rb + rb−1) = ns  ⟹ ∀(rbeven + rb−1) = ns  ∧ ∀(rbodd + rb−1) = ns  

Proof: Since, parity of b seems to play a role, we put in the effort to study each case 

separately. 

T2.2.1 If. Case 1: 

b=even=2j 

| K ∈ ℤ+ 
r2j =

3nx − 22K + 1

3. 22K  & ,29−1 =
3!3 + 22K−1 + 1

3. 22K −1
 

Proof: Using Theorem 1 

T2.2.2  

r2j + r2j−1 =
(3!3 + 1)

22K  
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Proof: 
Using Algebra 

T2.2.3 Then ∀(rbeven + rb−1) = ns 

Proof: 
Substitute 2j with beven & 2j-1 with b-1 in T2.2.2 and equate with D0.2 

rbeven + rb−1 = ns =
(3!3 + 1)

2+  

T2.3.1 If, Case 2: 

b=odd=2j+

1| K ∈ ℤ+ 
,+ =

3!3 + 22j+1 + 1

3. 22j+1
& ,2j+1−1 =

3!3 − 22j+1−1 + 1

3. 22j+1−1
 

Proof: 
Using Theorem 1 

T2.3.2  ,2j+1 + ,2j+1−1 =
(3!3 + 1)

22j+1
 

Proof: Using Algebra 

T2.3.3 Then,  ∀(rbodd + rb−1) = ns  

Proof: 
Substitute 2j+1 with bodd & 2j+1-1 with b-1 in T2.3.2 and equate with D0.2 

rbodd + rb−1 = ns =
(3!3 + 1)

2+  

T2.0 THEN, ∀(rb + rb−1) = ns  

Proof: 
Using T2.2.3 & T2.3.3 

∎ 

Let g(!3) = rb(!3) + rb−1(!3) 

Then, (rb + rb−1) = ns ⟹ g(!3) = f(!3) 
Thus we create an identical function to the collatz transformations 

∎ 

Now, we explore if there exists some element !3 , which under defined collatz transformations 

becomes infinity. 

!3 ≡ !3 | !4 = ∞ 

Corollary 1: We identify the condition when any given element after undergoing transformation will 

definitely increase.  

# + = 1,∀ns > ∀nx ∧ # + > 1,∀ns < ∀nx|3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

#!M,1541/'1M,1541: M&!'#>#&!  &, 5!8 >,5!4 &,%5>#&! = N &, + = 1, ∀ns > ∀ns &, + > 1, ∀ns < ∀ns

* |ns > 1  
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Proof:  

C1.0 Condition # + = 1,∀ns > ∀nx ∧ # + > 1,∀ns < ∀nx|3!3 + 1 = !4 . 2+  & !3  ,!4
= 29 + 1 & 9, + ∈ ℤ+ 

C1.1 IF 
rb + rb−1 = ns  

Proof: 
By Theorem 2 

C1.2.1 If Case 1: + = 1 
r1 + r0 = ns 

Proof: 
By definition D1:  r0 = nx  

C1.2.2 Then 
ns > nx 

Proof: 

r1 + r0 =
nx + 1

2
+ nx > nx ⟹ ns > nx  

C1.3.1 If Case 2:  + = 2 
ns = r2 + r1 

Proof: By Theorem 2 

C1.3.2  

ns =
3nx + 1

4
 

Proof: 

ns =
nx − 1

22
+

nx + 1

2
=

3nx + 1

4
 

C1.3.2.1 If nx = 1 

Then 
ns = nx 

Proof: 

3nx + 1 = ns . 22  & nx = 1 ⟹ ns =
3.1 + 1

4
= 1 

C1.3.2.2 If nx > 1 

Then 
nx > ns 

Proof: 

3nx + 1 = ns . 22  & nx = 1 + nʹ ⟹ ns =
3 + 1 + 3!ʹ

4
= 1 +

3!ʹ

4
 

!ʹ = 29ʹ & 9ʹ ∈ ℤ+ 

C1.4.1 If Case 3: + ≥ 3 
3nx + 1 = ns . 2≥3 

Proof: 
By definition D0.2: because + ≥ 3 

C1.4.2 Then 
nx > ns 

Proof: 
if ns > nx , then ns = nx + j | K ∈ ℤ+ 

3nx + 1 = ns . 2≥3 ⟹ 3nx + 1 = (nx + j). 2≥3 

1 − j. 2≥3 = nx . (2≥3 − 3) 

for K ≥ 1, left hand side is negative, implying nx  is negative, implying 

nx ∉ ℤ+. This is false.  
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C1.5  
ns < nx  with b > 2 

Proof: 
By C1.3.2.2 & C1.4.2 

C1.0 THEN # + = 1,∀ns > ∀nx ∧ # + > 1,∀ns < ∀nx 

Proof: 
By C1.2.2 & C1.5 

∎ 

We consider applying transformation of some number multiple times such that it will definitely 

increase in all the applied transformations. We study the condition ns  is always greater than nx  

during these multiple transformations. Corollary 1 states, it is only possible when b is always equal 

to 1 during all of these multiple transformations.  

Corollary 2: 

,1(4) =
3

2
,1(3) | ,1(3) #4 ,+   &, !3  , ,1(4) #4 ,+   &, !4  & + = 1 , 3!3 + 1 = !4 . 2+  & !3  ,!4

= 29 + 1 & 9 ∈ ℤ+ 

When we repeatedly apply transformation: we always label the element that we apply 

transformation upon as !3 , the transformed element is always labelled as !4  

Example: Say, !3 = 9 then !4 = 7, now apply transformation on 7, so 7 becomes !3  !3 = 7 then !4 = 11, again continue applying transformation upon 11, so 11 becomes !3  !3 = 11 then !4 = 17... and so on.  

Proof:  

C2.0 Condition ,1(4) =
3

2
,1(3)| ,1(3) #4 ,+   &, !3  , ,1(4) #4 ,+   &, !4  & + = 1 , 3!3 + 1

= !4 . 2+  & !3  ,!4 = 29 + 1 & 9 ∈ ℤ+ 

C2.1 IF 
rb  for !x = ,b(x) & rb  for !s = ,b(s)| 3!x + 1 = !4 . 2+  

Proof: 
By definition 

C2.2  !x = 2,1(x) − 1 & !s = 2,1(s) − 1 

Proof: By algebra on definition of ,1 

,1(x) =
!3 + 1

2
& ,1(s) =

!4 + 1

2
 

C2.3  
r1(x) = !4 − nx  

Proof: 
r1 + r0 = !4 ⇒ r1(3) + !3 = !4  

C2.4  
r1(x) = Q2,1(4) − 1R − Q2,1(3) − 1R 
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Proof: 
Using substitution of !4  & nx from C2.2  in C2.3 

C2.0 THEN ,1(s) =
3

2
,1(x) 

Proof: 
Using algebra on C2.4 

∎ 

Corollary 1 implies for n greater than 1; b greater than 1 is the only condition for increase during 

transformations. 

Corollary 2 implies for n greater than 1, an element can grow finite number of times, as any number 

(3,1(x)) that is divided by 2 will eventually result; an odd number. Thus after some finite number of 

transformations, the element n will definitely decrease because b happens to be greater than 1.  

Note: we have not concluded that n reaches a value less than itself, we conclude that for all n cannot 

grow continuously.  

Thus, the transformational process, n continuously grows and transforms to infinity; that is 

described by the following equation 

!S1 ≡ !S2 ≡ !S3 ≡ !S4 ≡ !S5 … ≡ !S∞  | !S1 < !S2 < !S3 < !S4 < !S5 < ⋯ < !S∞ 7ℎ1,1 !S∞

= ∞ & ,+ = ,1 ∀ !S1 ,!S2 ,!S3 ,!S4 , !S5 … 

is false and invalid. One concludes that continuous increase to infinity is not possible.  

Notation: 2 

<≠> is used to describe relationship between 2 elements; one element may be greater than or 

smaller than the other element, but both the elements are not equal.  

Note: It would seem improper to use greater than or less than notation describing any series. The 

problem would arrive out of insufficient information; 'a < b > c ' implies that; a is less than b and b is 

greater than c, but it is unknown if a is less than or greater than c. However, It is okay to use such 

notation in the context of our analysis, as we don't know the relationship between a & b and b & c 

and a & c, all we know is none of the elements in the series can be equal to any other element, all 

the elements are unique to one and other. We consider every element during the transformational 

process to be not equal to any other element, as that would imply, the elements loops, thus n 

cannot transform to infinity.  

Consider the transformational process described as:  

!S1 ≡ !S2 ≡ !S3 ≡ !S4 ≡ !S5 … ≡ !S∞| !S1 <≠> !S2 <≠> !S3 <≠> !S4 <≠> !S5 … 

The transformation from !S1  >& !S∞  with discontinuous growth may be described by the above 

equation. So, it is still possible for some number to grow to infinity at a relatively slower rate.  

Hence, the question of discontinuous growth to infinity remains valid and thus open. 

Proposition 1:  

!3 ≢ ∞| 3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 
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We prove proposition by contradiction.  

Proof:  

P1.0 Condition ! ≢ ∞| 3!3 + 1 = !4 . 2+  & !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

P1.1 IF !3 ≡ ∞| !3  ,!4 = 29 + 1 & 9, + ∈ ℤ+ 

Proof: 
Assumed to establish contradiction 

P1.2  ,+ + ,+−1 = !4  

Proof: 
By Theorem 2 

P1.3  !3 ≡ ∞ ⟹ !4 = ∞ 

Proof: By P1.1 

P1.4  ,+ + ,+−1 = ∞ 

Proof: 
By P1.1 & P1.2 

P1.5  ,+ ∉ ℤ+ 

Proof: ,+ + ,+−1 = 3,+ ± 1 = ∞ 

,+ =
∞∓ 1

3
 

P1.0 THEN ! ≢ ∞ 

Proof: 
By contradiction in P1.1 & P1.5 

∎ 

Thus, no number can transform discontinuously to infinity.  

There are three possible conditions in the Collatz system as described by Lagarias; 

1. n explodes to infinity (divergent trajectory) 

2. numbers looping at some other point other than n=1 (Non-trivial cyclic trajectory) 

3. numbers looping at 1 (convergent trajectory) 

Our analysis eliminates the first condition. If one can eliminate the possibility of second condition, 

then the only condition left would be valid for all the numbers establishing the conjecture to be 

valid.  ∎ 
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