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ABSTRACT 

This article presents a lattice approach for LIBOR Market Model by using several 

fast drift approximation methods. The fast convergence behavior requires fewer 

discretization nodes that gives better performance without losing much accuracy. 

Moreover, the calibration is almost automatic and it is simple and easy to implement.  
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This paper presents a lattice approach within the LMM. The model has similar 

accuracy to the current pricing models in the market, but is much faster. Some other 

merits of the model are that calibration is almost automatic and the approach is less 

complex and easier to implement than other current approaches. 

We introduce a shifted forward measure that uses a variable substitution to 

shift the center of a forward rate distribution to zero. This ensures that the distribution 

is symmetric and can be represented by a relatively small number of discrete points. 

The shift transformation is the key to achieve high accuracy in relatively few discrete 

finite nodes. In addition, we present several fast and novel drift approximation 

approaches. Other concepts used in the model are probability distribution structure 

exploitation, numerical integration and the long jump technique (we only position 

nodes at times when decisions need to be made). 

This model is actually quite useful for risk management because normally full-

revaluations of an entire portfolio under hundreds of thousands of different future 

scenarios are required for a short time window. Without an efficient algorithm, one 

cannot properly capture and manage the risk exposed by the portfolio. 

 

I. LIBOR MARKET MODEL 

Let ( , F , 
0ttF ,P ) be a filtered probability space satisfying the usual 

conditions, where   denotes a sample space, F  denotes a  -algebra, P  denotes a 

probability measure, and  
0ttF  denotes a filtration. Consider an increasing maturity 

structure NTTT = ...0 10  from which expiry-maturity pairs of dates ( 1−kT , kT ) for a 

family of spanning forward rates are taken. For any time 1− kTt , we define a right-

continuous mapping function )(tn  by )(1)( tntn TtT − . The simply compounded forward 

rate reset at t for forward period ( 1−kT , kT ) is defined by 
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where ),( TtP  denotes the time t price of a zero-coupon bond maturing at time T and 

),(: 1 kkk TT −=  is the accrual factor or day count fraction for period ( 1−kT , kT ). 

Inverting this relationship (1), we can express a zero-coupon bond price in 

terms of forward rates as: 
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LIBOR Market Model Dynamics 

For brevity, we discuss the one-factor LMM only. The one-factor LMM (Brace et 

al. [1997]) under forward measure iQ  can be expressed as  
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where tX   is a Brownian motion. 

There is no requirement for what kind of instantaneous volatility structure 

should be chosen during the life of the caplet. All that is required is (see Hull-White 

[2000]): 
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where k


 denotes the market Black caplet volatility and   denotes the strike. Given 

this equation, it is obviously not possible to uniquely pin down the instantaneous 

volatility function. In fact, this specification allows an infinite number of choices. People 
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often assume that a forward rate has a piecewise constant instantaneous volatility. 

Here we choose the forward rate )(tFk  has constant instantaneous volatility regardless 

of t (see Brigo-Mercurio [2006]). 

 

Shifted Forward Measure 

The )(tFk  is a Martingale or driftless under its own measure kQ . The solution 

to equation (3b) can be expressed as 
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where ),;0()0( 1 kkk TTFF −=  is the current (spot) forward rate. Under the volatility 

assumption described above, equation (5) can be further expressed as 
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Alternatively, we can reach the same Martingale conclusion by directly deriving the 

expectation of the forward rate (6); that is 
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where tX , tY  are both Brownian motions with a normal distribution (0, t) at time t, 

)|(:)( tt EE F•=•  is the expectation conditional on the tF , and the variable substitution 

used for derivation is 

ktt
tXY −=       (8) 

After applying this variable substitution (8), equation (6) can be expressed as 














+=














+−= tk

k

ktk

k

kk YtFXtFtF 





2
exp)0(

2
exp)0()(

22

  (9) 



 4 

Since the LMM models the complete forward curve directly, it is essential to 

bring everything under a common measure. The terminal measure is a good choice for 

this purpose, although this is by no means the only choice. The forward rate dynamic 

under terminal measure NQ  is given by 
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The solution to equation (10) can be expressed as 
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where the drift is given by 
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where  )(1/)()( sFsFs jjjjj  +=  is the drift term. 

Applying (8) to (11a), we have the forward rate dynamic under the shifted 

terminal measure as 
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Drift Approximation 

Under terminal measure, the drifts of forward rate dynamics are state-

dependent, which gives rise to sufficiently complicated non-lognormal distributions. 

This means that an explicit analytic solution to the forward rate stochastic differential 

equations cannot be obtained. Therefore, most work on the topic has focused on ways 

to approximate the drift, which is the fundamental trickiness in implementing the 

Market Model.  
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Frozen Drift (FD). Replace the random forward rates in the drift by their 

deterministic initial values, i.e., 
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Arithmetic Average of the Forward Rates (AAFR). Apply the midpoint rule 

(rectangle rule) to the random forward rates in the drift, i.e.,  
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Arithmetic Average of the Drift Terms (AADT). Apply the midpoint rule to 

the random drift terms, i.e.,  
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Geometric Average of the Forward Rates (GAFR). Replace the random 

forward rates in the drift by their geometric averages, i.e., 
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Geometric Average of the Drift Terms (GADT). Replace the random drift 

terms by their geometric averages, i.e., 
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Conditional Expectation of the Forward Rate (CEFR). In addition to the 

two endpoints, we can further enhance our estimate based on the dynamics of the 

forward rates. The forward rate )(sF j  follows the dynamic (9) (The drift term is 

ignored). We can derive the expectation of the forward rate conditional on the two 

endpoints and replace the random forward rate in the drift by the conditional 

expectation of the forward rate. 
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Proposition 1. Assume the forward rate )(sF j  follows the dynamic (9), with 

the two known endpoints given by )0(jF  and )(tF j . Based on the conditional 

expectation of the forward rate )(sF j , the drift of )(tFk  can be expressed as 
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where the conditional expectation of the forward rate is given by 
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 Proof. See Appendix A. 

Conditional Expectation of the Drift Term (CEDT). Similarly, we can 

calculate the conditional expectation of the drift term and replace the random drift 

term by the conditional expectation. 

Proposition 2. Assume the forward rate )(sF j  follows the dynamic (9), with 

the two known endpoints given by )0(jF  and )(tF j . Based on the conditional 

expectation of the drift term j , the drift of )(tFk  can be expressed as 
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where the conditional expectation of the drift term is given by 
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 Proof. See Appendix A. 

 The accuracy and performance of these drift approximation methods are 

discussed in section IV. 

 

II. THE LATTICE PROCEDURE IN THE LMM 

There are two primary types of lattices for pricing financial products: tree 

lattices and grid lattices (or rectangular lattices or Markov chain lattices). The tree 

lattices, e.g., traditional binomial tree, assume that the underlying process has two 

possible outcomes at each stage. In contrast with the binomial tree lattice, the grid 

lattices (see Amin [1993], Gandhi-Hunt [1997], Martzoukos-Trigeorgis [2002], Hagan 

[2005], and Das [2011]) shown in Exhibit 1,  which permit the underlying process to 

change by multiple states, are built in a rectangular finite difference grid (not to be 

confused with finite difference numerical methods for solving partial differential 

equations). The grid lattices are more realistic and convenient for the implementation 

of a Markov chain solution.  

This article presents a grid lattice model for the LMM. To illustrate the lattice 

algorithm, we use a callable exotic as an example. Callable exotics are a class of 

interest rate derivatives that have Bermudan style provisions that allow for early 

exercise into various underlying interest rate products. In general, a callable exotic 

can be decomposed into an underlying instrument and an embedded Bermudan option.  

We will simplify some of the definitions of the universe of instruments we will 

be dealing with for brevity. Assume the payoff of a generic underlying instrument is a 

stream of payments  iiiii CTFZ −= − )( 1  for i=1,…,N, where iC  is the structured coupon. 

The callable exotic is a Bermudan style option to enter the underlying instrument on 

any of a sequence of notification dates 
ex

M

exex ttt ,...,, 21 . For any notification date ex

jtt = , we 

define a right-continuous mapping function )(tn  by 
)(1)( tntn TtT −
. If the option is 
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exercised at t, the reduced price of the underlying instrument, from the structured 

coupon payer’s perspective, is given by 
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where the ratio )(
~

tI  is usually called the reduced value of the underlying instrument 

or the reduced exercise value or the reduced intrinsic value. 

Lattice approaches are ideal for pricing early exercise products, given their 

“backward-in-time” nature. Bermudan pricing is usually done by building a lattice to 

carry out a dynamic programming calculation via backward induction and is standard. 

The lattice model described below also uses backward induction but exploits the 

Gaussian structure to gain extra efficiencies.  

First, we need to create the lattice. The random process we are going to model 

in the lattice is the LMM (12). Unlike traditional trees, we only position nodes at the 

determination dates (the payment and exercise dates). At each determination date, 

the continuous-time stochastic equation (12) shall be discretized into a discrete-time 

scheme. We have the discrete form of the forward rate as 
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The zero-coupon bond (2) can be expressed in discrete form as 
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We now have expressions for the forward rate (21) and discount bond (22), conditional 

on being in the state tiy ,  at time t, and from these we can perform valuation for the 

underlying instrument.  

At the maturity date, the value of the underlying instrument is equal to the 

payoff, i.e., 
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)(),( ,, NN TiNTiN yZyTI =      (23) 

The underlying state process tX  in the LMM (11) is a Brownian motion. The 

transition probability density from state ( tix , , t ) to state ( Tjx , , T ) is given by 
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Applying the variable substitution (8), equation (24) can be expressed as 
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Equation (20) can be further expressed as a conditional value on any state ( tiy ,

, t ) as: 
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This is a convolution integral. Some fast integration algorithms, e.g., Cubic 

Spline Integration, Fast Fourier Transform (FFT), etc., can be used for optimization. 

We use the Trapezoidal Rule Integration in this paper for ease of illustration. 

Next, we determine the option values in each final notification node. On the 

last exercise date, if we have not already exercised, the reduced option value in any 

state Miy ,  is given by 
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Then, we conduct the backward induction process that is performed by 

iteratively rolling back a series of long jumps from the final exercise date ex

Mt  across 

notification dates and exercise opportunities until we reach the valuation date. Assume 

that in the previous rollback step ex

jt , we calculated the reduced option value: 
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 is 
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where the reduced continuation value is given by 
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We repeat the rollback procedure and eventually work our way through the first 

exercise date. Then the present value of the Bermudan option is found by a final 

integration given by 
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The present value or the price of the callable exotic from the coupon payer’s 

perspective is: 

)0()0()0( _ instrumentunderlyBermudanpayer pvpvpv −=     (30) 

This framework can be used to price any interest rate products in the LMM 

setting and can be easily extended to the Swap Market Model (SMM). 

 

  

III. CONCLUSION 

We use the following techniques in our model: shifted forward measure, drift 

approximation, probability distribution structure exploitation, long jump, numerical 

integration, incomplete information handling, and calibration. Combining these 

techniques, the model achieves sufficient accuracy in relatively few time steps and 

discrete nodes, which makes it a very efficient method. 

For ease of illustration, we present the lattice model based on the Trapezoidal 

Rule integration. A better but slightly more complicated solution is to spline the payoff 

functions. The cubic spline of the option payoffs can achieve higher accuracy, 
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especially for Greeks calculations, and higher speed. Although cubic spline takes some 

time, the lattice will require much fewer nodes (23 ~ 28 nodes are good enough) and 

can perform a much faster integration. In general, the spline method can provide a 

speedup factor around 3 ~ 5 times. 

We have implemented the lattice model to price a variety of interest rate 

exotics. The algorithm can always achieve a fast convergence rate. The accuracy, 

however, is a bit trickier, depending on many factors: drift approximation approaches, 

numerical integration schemes, volatility selections, and calibration, etc. Some work, 

such as calibration, is more of an art than a science. 
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