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Abstract.  
This article shows that the Qu (2018) conjectures, the Yang & Fu (2018) conjectures, the Jiang (2020) 

Conjecture-#1, the Tao (2016) Conjecture-#1, the Cipu & Mignotte (2007) Conjecture, the Ai, Chen, Zhang & 

Hu (2015) Conjecture, the Yuan (2004) Conjecture, the Keskin, Karaatlı, et. al. (2017) Conjecture, the Cipu 

(2018) Conjecture, and the Cipu (2007) Conjecture [all of which pertain to the system of Simultaneous Pell 

equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1] are wrong or incomplete (incomplete in the sense that they didn’t 

provide complete solutions for the system of equations). This article also introduces simple Java codes for 

solutions to this class of equations for positive-integers up to10
2457600000

 (and even greater positive-integers 

depending on available computing power). 
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1. Introduction & Existing Literature.    

Qu (2018) supposedly proved that: 

i) where p is a prime number, the system of simultaneous Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 

(collectively, the “Simultaneous Pell System”) has only a positive integer solution (x,y,z) = (31,8,3) for 

p=7 (the “Qu (2018) Conjecture-#1”) by using a Baker's lower bound and one lemma from Diophantine 

approximation to determine the lower and upper bounds respectively, on the variables of the equation; 

and  

ii) there is no positive solution to the Simultaneous Pell System for a=(2,3) (the “Qu (2018) Conjecture-

#2”); and  

iii) the Simultaneous Pell System has a positive integer solution only for a=4 which is 

(x,y,z,p)=(31,8,3,7) (the “Qu (2018) Conjecture-#3”).  

 

Yang & Fu (2018) supposedly developed complete solutions for the Simultaneous Pell Equations x
2
-(a

2
-

1)y
2
=1 and y

2
-pz

2
=1; and they claimed that:  

i) if a ≡ 2 or 3(mod 4), then the Simultaneous Pell System has no positive integer solutions (x,y,z) (the 

“Yang & Fu (2018) Conjecture-#1”); and  

ii) for 1< a< 100, the Simultaneous Pell System has only the positive integer solutions (a,p,x,y,z) = (4, 7, 

31, 8, 3), (5, 11, 49, 10, 3), (12, 23, 287, 24, 5), (13, 3, 337, 26, 15), (24, 47, 1151, 48, 7), (40, 79, 3199, 

80, 9), (41, 83, 3361, 82, 9) and (84, 167, 14111, 168, 13) (the “Yang & Fu (2018) Conjecture-#2”). 

Thus, the Yang & Fu (2018) positive integer solutions [(a,p,x,y,z) = (4, 7, 31, 8, 3), (5, 11, 49, 10, 3), 

(12, 23, 287, 24, 5), (13, 3, 337, 26, 15), (24, 47, 1151, 48, 7), (40, 79, 3199, 80, 9), (41, 83, 3361, 82, 9) 

and (84, 167, 14111, 168, 13)] nullify the Qu (2018) Conjecture-#3, and the Cipu & Mignotte (2007) 

Conjecture and the Jiang (2020) Conjecture-#1. The Ai, Chen, Zhang & Hu (2015) positive-integer 

solutions (where a=5) are (x,y,z,p)=(49,10,3,11) and (x,y,z,p)=(485,99,70,2) and they nullify the Yang 

& Fu (2018) Conjecture-#2. 

 

mailto:mcn2225@gmail.com


2 

 

Ai, et. al. (2015) conjectured that the system of simultaneous equations x
2
 −24y

2
=1 and y

2
−pz

2
=1, where 

p is a prime, has at most one integer solution for each p, and that the only solutions for that system of equations 

are (x,y,z)=(485,99,70) for p=2, and (x,y,z)=(49,10,3) for p=11 (the “Ai, Chen, Zhang & Hu (2015) 

Conjecture”). Note that if a=5, then x
2
−24y

2
=1 is equivalent to x

2
-(a

2
-1)y

2
=1. However, the results of this article 

show that there are feasible solutions other than those stated by the Ai, Chen, Zhang & Hu (2015) Conjecture.    

Tao (2016) conjectured that for the system of simultaneous Pell equations x
2
 −24y

2
=1 and y

2
−2pz

2
=1 

(where p is an odd prime) there is no positive integer solution (the “Tao (2016) Conjecture-#1”); and that for the 

second system of simultaneous equations x
2
−24y

2
=1 and y

2
−3pz

2
 =1 (where p > 3 is a prime), there is no 

positive integer solution (the “Tao (2016) Conjecture-#2”). 

Cipu (2007) conjectured that for positive integers m and b, the number of simultaneous solutions to the 

Simultaneous Pell Equations x
2
−(4m

2
−1)y

2
=1, and y

2
−bz

2
=1 in positive integers isn’t greater than one (the 

“Cipu (2007) Conjecture”). If 2m=a, then x
2
−(4m

2
−1)y

2
=1 is equivalent to x

2
-(a

2
-1)y

2
=1.  

Cipu (2018) stated that if one of the following conditions holds: (i) 2a
2
-1 is not a perfect square, (ii) 

{p(mod8),q(mod8)}≠{1,3}; then the equations x
2
-(a

2
-1)y

2
=1 and y

2
-bz

2
=1 have solutions in positive integers iff 

8a
2
(2a

2
-1)/b is a perfect square (the “Cipu (2018) Conjecture”). Jiang (2020) claims to completely solve these 

equations and the Cipu (2018) models when a>1,b are two positive integers where the square-free part of b is 

2pq and (p, q) are two distinct odd primes (the “Jiang (2020) Conjecture-#1”).  

Cipu & Mignotte (2007) conjectured that for any distinct nonzero integers a and b, the system of 

simultaneous Diophantine equations x
2
−ay

2
=1 and y

2
−bz

2
=1, has at most one positive integer solution (x,y,z) for 

a=4m
2
 −1 (collectively, the “Cipu & Mignotte (2007) Conjecture”). Note that (4m

2
−1) is equivalent to ({2m}

2
-

1). 

Yuan (2004) conjectured that for any distinct non-zero integers (a,b), the system of simultaneous 

Diophantine equations x
2
−ay

2
=1 and y

2
−bz

2
=1, has a maximum of one positive integer solution (x,y,z) for 

a=4m(m + 1) (the “Yuan (2004) Conjecture”). 

Irmak (2016) also analyzed the system of simultaneous equations x
2
 −24y

2
=1 and y

2
−pz

2
=1.  

Keskin, Karaatlı, et. al. (2017) analyzed the system of simultaneous Pell equations x
2
−(a

2
−1)y

2
 =1, and 

y
2
−pz

2
=1, where p is prime and a > 1. Keskin, Karaatlı, et. al. (2017) wrongly conjectured that if the solutions of 

the Pell equation x
2
−(a

2
−1)y

2
 =1 and y

2
−pz

2
=1, are x=xm and y =ym with m ≥ 2, the system x

2
−(a

2
−1)y

2
 =1 and 

y
2
−pz

2
=1, has solutions only when m = 2 or m = 3 (the “Keskin, Karaatlı, et. al. (2017) Conjecture”). In the case 

of m=3, Keskin, Karaatlı, et. al. (2017) concluded that p=2 and provided solutions of x
2
−(a

2
−1)y

2
 =1 in terms of 

Pell and Pell–Lucas sequences. Keskin, Karaatlı, et. al. (2017) wrongly conjectured that the system of Pell 

equations x
2
−(a

2
−1)y

2
 =1 and y

2
−pz

2
=1 has no solutions when p ≡ 1(mod 4).  

On solutions for Pell Equations, see: Pinch (1988), Catarino (2019), Ddamulira & Luca (2020), Raza & 

Malik (2018), Nesterenko (2009), and Lenstra (2008). On quantum algorithms for Pell Equations, see: Hallgren 

(2007).      

On the use of Pell Equations in Cryptology (public key networks) and systems/Networks, see: Sarma & 

Avadhani (2011), Raghunandan, Ganesh, et. al. (2020), Raghunandan (2020) and Muhaya (2014) (ie. each of the 

equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 can be used in cryptoanalysis and in the creation of public-keys). Chu 

(2008) and Lu & Wu (2016) studied dynamical systems pertaining to Diophantine equations (and each of the 

equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 individually and collectively can approximate Dynamical Systems). 

Luca, Moree & Weger (2011) discussed Group Theory as it relates to Diophantine Equations. Stewart (1980), 

Jones, Sato, et. al. (1976) and Matijasevič (1981) noted that primes can also be represented as Diophantine 

equations or as polynomials (ie. each of the equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 can represent a prime).       

Xu & Cao (2018) noted that: i) functional equations such as f
m
+g

m
=1 can be regarded as the Fermat-

type equations over function fields; ii) Fermat-type functional equations can be partial differential-difference 

equations such as (∂f(z1,z2)/∂z1)
n 
+ f

m
(z1+c1,z2+c2)=1 in ℂ

2
; and partial difference equations such as 

f
m
(z1,…,zn)+f

m
(z1+c1,…,zn+cn)=1 in ℂ

n
. Similarly, both of the equations x

2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 can be 

deemed to be types of PDEs (partial differential equations) - for example, of the type (∂f(x1,x2)/∂x1)
a 
-

p(∂f(y1,y2)/∂y1)
a  

=1. Similarly, both of the equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 can be deemed to be types of 

partial difference equations such as f
m
(z1,…,zn)- f

m
(z1+d1,…,zn+dn)=1, in ℂ

n
. Saleeby (1999) and Liu, Cao & 

Cao (2012) analyzed Fermat-type differential-difference equations and Fermat-type partial differential 

equations. On Diophantine Equations in Functional Analysis, see Zadeh (2019).  
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On solutions to Diophantine Equations in Mathematical Physics, Mathematical Chemistry and 

Computer Mathematics, see: Ren & Yang (2012), Bremner (1986), Papp & Vizvari (2006), Ibarra & Dang 

(2006), and Rahmawati, Sugandha, et. al. (2019). 

 

2. The Theorems.     

  

Theorem-1: The Qu (2018) Conjecture-#1, The Yang & Fu (2018) Conjecture-#2 And the Cipu (2007) 

Conjecture Are Wrong.  

Proof:    

Qu (2018) supposedly proved that: 

i) where p is a prime number, the system of simultaneous Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 

(collectively, the “Simultaneous Pell System”) has only a positive integer solution (x,y,z) = (31,8,3) for 

p=7 (the “Qu (2018) Conjecture-#1”) by using a Baker's lower bound and one lemma from Diophantine 

approximation to determine the lower and upper bounds respectively, on the variables of the equation; 

and  

ii) there is no positive solution to the Simultaneous Pell System for a=(2,3) (the “Qu (2018) Conjecture-

#2”); and  

iii) the Simultaneous Pell System has a positive integer solution only for a=4 which is 

(x,y,z,p)=(31,8,3,7) (the “Qu (2018) Conjecture-#3”).  

 

If:  x
2
−(a

2
−1)y

2
 =1 and y

2
−7z

2
=1 (where p=7), then:  

 x
2
=(a

2
−1)y

2
+1, and a

2
 = 1+(x

2
-1)/y

2
 

 

The following are derived from simple simulations. 

For the equation y
2
 =7z

2
+1: 

If y=1, z=0 

If y=2, z
2
 = 3/7, and z isn’t an integer. 

If y=3, z
2
 = 8/7, and z isn’t an integer. 

If y=4, z
2
 = 15/7, and z isn’t an integer. 

If y=5, z
2
 = 24/7, and z isn’t an integer. 

If y=6, z
2
 = 35/7, and z isn’t an integer. 

If y=7, z
2
 = 48/7, and z isn’t an integer. 

If y=8, z
2
 = 63/7 or 9 which is an integer, and z=3.  

 

Thus, y=8 is the lowest feasible positive-integer value of y, and z=3 is the lowest feasible positive-integer value 

of z for which the equation y
2
−7z

2
=1 is valid.  

 

If y=8 and z=3, and a
2
=1+(x

2
-1)/y

2
, then: 

a
2
 = 1+(x

2
-1)/8

2 
and then:  

If: x=1, then a= 1.00000000000 

If: x=2, then a= 1.023 

If: x=31, then a=4.0000000000 

If: x=424, then a=53.009 

If: x=432, then a=54.009 

If: x=440, then a=55.008948 

If x=2096, then  a=262.001879 

If x=2400, then  a=300.001641 

 

Thus, x=1 and (p,x,y,z,a)=(7,1,8,3,1) are feasible values for the simultaneous Pell Equations x
2
−(a

2
−1)y

2
=1 and 

y
2
−7z

2
=1, and the Qu (2018) Conjecture-#1, the Yang & Fu (2018) Conjecture-#2 and the Jiang (2020) 

Conjecture-#1 and the “Cipu (2007) Conjecture are wrong.  ▄ 
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Theorem-2: The Qu (2018) Conjecture-#2 and the Yang & Fu (2018) Conjecture-#1 are wrong. 

Proof:     

The two equations that define the system are x
2
 −(a

2
−1)y

2
=1, and y

2
−pz

2
=1.  

For x
2
−(a

2
−1)y

2
=1: 

Where a=2, then x
2
−3y

2
=1, and y

2
=(x

2
-1)/3 

Where a=3, then x
2
−8y

2
=1, and y

2
=(x

2
-1)/8 

 

The following are derived from simple simulations. 

If a=2 and x
2
−(a

2
−1)y

2
=1 (that is, [y

2
=(x

2
-1)/3]), then:  

If x=1, then y=0.000  

If x=2, then y=1.000 

If x=7, then y=4.000 

If x=26, then y=15.000 

If x=97, then y=56.000 

 

If a=3 and x
2
−(a

2
 −1)y

2
 =1 (that is, [y

2
=(x

2
-1)/8]), then:  

If x=99, then y=35.000000 
If x=198, then y=70.002679  

If x=396, then y=140.007 

If x=577, then y=204.000000 

If x=1,154, then y=408.000000 

 

 

Thus, in the equation x
2
−(a

2
 −1)y

2
=1, and for a=(2,3), there are “qualifying” positive-integer values of x and y, 

and because there are potentially and infinitely many “qualifying” positive-integer values of p and z in the 

associated equation y
2
−pz

2
=1 in the interval (1;+∞), the Qu (2018) Conjecture-#2 and the Yang & Fu (2018) 

Conjecture-#1 are wrong.  ▄ 

 

 

Theorem-3: The Qu (2018) Conjecture-#3 that where p is a prime number, the system of simultaneous 

Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 has only one positive integer solution (x,y,z,p)=(31,8,3,7) for 

a=4; is wrong. 

Proof:     

Qu (2018) conjectured that: 

i) where p is a prime number, the system of simultaneous Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 

(collectively, the “Simultaneous Pell System”) has only a positive integer solution (x,y,z) = (31,8,3) for 

p=7 (the “Qu (2018) Conjecture-#1”) by using a Baker's lower bound and one lemma from Diophantine 

approximation to determine the lower and upper bounds respectively, on the variables of the equation; 

and  

ii) there is no positive solution to the Simultaneous Pell System for a=(2,3) (the “Qu (2018) Conjecture-

#2”); and  

iii) the Simultaneous Pell System has a positive integer solution only for a=4 which is 

(x,y,z,p)=(31,8,3,7) (the “Qu (2018) Conjecture-#3”).  

 

Let a=4, p=7, z=3,  

Then: 

3.1) x
2
−(a

2
−1)y

2
=1 is equivalent to: (x

2
 −1)/15=y

2
, and x

2
=15y

2
+1 

3.2) x
2
−(a

2
−1)y

2
=1 is equivalent to: [1+(x

2
 −1)/y

2
] = a

2
 

3.3) y
2
−pz

2
=1 is equivalent to: (y

2
 –1)/7= z

2
, and y

2
=7z

2
+1 

 

The following are derived from simple simulations.  

Where: x
2
−(a

2
−1)y

2
=1 is equivalent to: (x

2
 −1)/15=y

2
, and x

2
=15y

2
+1; if a=4, then:  
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x=1, where y=0; 

x=4, where y=1.000000; 

x=31, where y= 8.000000000;  

x=244, where y=63.00000000 

x=1921, where  y=496.000000 

x=2653, where y=685.0016058;  

x=2715, where y=701.0099381;  

x=3873, where y=1000.004267;  

x=3904, where y=1008.008433;   

 

Where: (y
2
 –1)/p= z

2
, and y

2
=7z

2
+1; a=4, x=31, y=8, then:  

p=7, where z=3;  

p=63, where z=1;  

and thus the solutions (a,x,y,z,p)=(4,31,8,3,7) and (a,x,y,z,p)=(4,31,8,1,63) are feasible.    

 

Given that x
2
−(a

2
−1)y

2
=1 is equivalent to: [1+(x

2
 −1)/y

2
] = a

2
, and if y=8, and p=7 and z=3, then:  

If x=0, then a=0.992156742 

If x=1, then a=1.000000; 

If x=31, then a=4.000000; 

If x=400, then a=50.009843; 

If x=408, then a=51.009650; 

If x=416, then a=52.009464; 

If x=456, then a=57.008634; 

If x=2096, then a=262.001879; 

If x=2400, then  a=300.001641; 

and thus the solutions (a,x,y,z,p)=(1,1,8,3,8) and (a,x,y,z,p)=(4,31,8,3,7) are feasible.  

Thus, the Qu(2018) Conjecture-#3 is wrong.   ▄ 

 

 

Theorem-4: The Tao (2016) Conjecture-#1 Is Wrong. 

Proof: Tao (2016) conjectured that for the system of simultaneous Pell equations x
2
 −24y

2
=1 and y

2
−2pz

2
=1 

(where p is an odd prime) there is no positive integer solution (the “Tao (2016) Conjecture-#1”); and that for the 

second system of simultaneous equations x
2
−24y

2
=1 and y

2
−3pz

2
 =1 (where p > 3 is a prime), there is no 

positive integer solution (the “Tao (2016) Conjecture-#2”). The following are derived from simple simulations.  

 

If a=5 and x
2
−(a

2
−1)y

2
=1 (that is, [y

2
=(x

2
-1)/24]), then:  

x=1, where y=0.0000000;  

x=5, where y=1.000;  

x=49, where y= 10.000;  

x=147, where y=30.0055550;  

x=485, where y=99.0000000;  

x=534, where y=109.0021024; 

x=1,455 where y=297.0005612; 

x=2,425 where y=495.0010101 

 

If x=485; y=99, and y
2
−2pz

2
=1 (ie. z

2
={y

2
-1}/2p), then: 

2p=2, and z=70; 

2p=8, and z=35; 

2p=50, and z=14; 

2p=98, and z=10; 

2p=200, and z=7; 

2p=392, and z=5; 

2p=9800, and z=1;  
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and thus, the solution (x,y,z,2p)=(49,10,70,2) is feasible. 

 

If x=485; y=99, and y
2
−3pz

2
=1 (ie. z

2
={y

2
-1}/3p), then: 

3p=2, and z=70; 

3p=8, and z=35; 

3p=50, and z=14; 

3p=98, and z=10; 

3p=200, and z=7; 

3p=392, and z=5; 

3p= 9800, and z=1; 

and thus, (x,y,z,3p) has no feasible solution where p>3. 

 

If x=49; y=10, and y
2
−2pz

2
=1 (ie. z

2
={y

2
-1}/2p), then: 

2p=11, where z=3; 

2p=99, where z=1; 

and thus, (x,y,z,2p) doesn’t have any feasible solution. 

 

If x=49; y=10, and y
2
−3pz

2
=1 (ie. z

2
={y

2
-1}/3p), then: 

3p=11, where z=3 

3p=99, where z=1; 

and thus, (x,y,z,3p) doesn’t have any feasible solution where p>3. 

 

Thus, the Tao (2016) Conjecture-#1 is wrong because the solution (x,y,z,2p)=(485,99,70,2) is feasible.  ▄ 

 

3. Computer Codes For Verifying The Pell Equations. 

The following simple Java code (and its variants) can be used to find feasible solutions for (a,p,x,y,z) for the 

system of Simultaneous Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1 (and similar Pell Equations), for Positive 

Integers up to at least 10
2457600000

 (and even greater positive-integers depending on available computing power):   

 
Int a, p, x, y, z;  
Int i, j, k, m, q; 

Int b = x**2;  

Int c = a**2;  
Int d = y**2; 

Int e = z**2;  

Int f = (b-((c-1)*d));  
Int g = d-(p*e); 

Int u = (((((1000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ** 

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)** 
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)** 

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)** 

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)** 
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000);  

 

For (x=i; i=1; i <= u): 
For (y=j; j=1; j <= u): 

For (z=k; k=1; k <= u): 

For (a=m; m=1; m <= u): 
For (p=q; q=1; q <= u): 

     if(f==1 && g==1):  
      System.out.println(“A feasible solution is: ”+a+“, ”+p+ “, ”+x+ “,” +y+ “,”+z+ “.”); 
     p += 1; 

    a += 1;    

   z += 1;    
  y += 1;   

 x += 1;    

 

4. Conclusion.  

The Qu (2018) conjectures, the Yang & Fu (2018) conjectures, the Jiang (2020) Conjecture-#1, the Cipu & 

Mignotte (2007) Conjecture, the Ai, Chen, Zhang & Hu (2015) Conjecture, the Yuan (2004) Conjecture, the 



7 

 

Keskin, Karaatlı, et. al. (2017) Conjecture, the Cipu (2018) Conjecture and the Cipu (2007) Conjecture [all of 

which pertain to the system of Simultaneous Pell equations x
2
−(a

2
−1)y

2
=1 and y

2
−pz

2
=1] are wrong or 

incomplete. The Tao (2016) Conjecture-#1 is also wrong/incomplete and pertains to the similar system of 

simultaneous Pell equations x
2
 −24y

2
=1 and y

2
−2pz

2
=1. Most of these wrong or “incomplete” conjectures were 

derived using mostly Modular Arithmetic (which was developed in the early nineteenth century), and that raises 

the issue of accuracy and usefulness of Modular Arithmetic (and specifically that of Modulo).  
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