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Abstract

We give a new approach to the question of whether or not all
greater than one, integer arguments of Zeta are irrational. Currently

only ζ(2n) and ζ(3) are known to be irrational. We show that using
the denominators of the terms of ζ(n) − 1 = zn as decimal bases

gives all rational numbers in (0,1) as single decimals, property one.
We also show the partial sums of zn are not given by such single

digits so using the denominators of the partial sum’s terms as number
bases, property two. Next, using integrals contracting upper and lower
bounds for partial sum remainders of zn are generated. Assuming zn is

rational, it is expressible as a single decimal using the denominator of
a term of zn (property one) and eventually these bounds will consist of

infinite decimals (property two) with their first decimal equal to this
single decimal. But as no single decimal can be between two infinite

decimals with the same first digit a contradiction is derived and all zn

are proven irrational.

Introduction

Apery’s ζ(3) is irrational proof [1] and its simplifications [3, 9] are the only
proofs that a specific odd argument for ζ(n) is irrational.

The irrationality of even arguments of zeta are a consequence of Euler’s
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formula [2]:

ζ(2n) =
∞

∑

k=1

1

k2n
= (−1)n−1

22n−1

(2n!)
B2nπ2n. (1)

Euler’s formula is a rational multiple of a power of π. As π is a known
transcendental number all its powers are irrational. It follows that ζ(2n) is
irrational.

Apery also showed ζ(2) is irrational, and Beukers, based on the work
(tangentially) of Apery, simplified both proofs. He replaced Apery’s myste-
rious recursive relationships with multiple integrals. See Poorten [10] for the
history of Apery’s proof; Havil [5] gives an overview of Apery’s ideas and
attempts to demystify them. Huylebrouck’s [6] gives an historical context
for the main technique used by Beukers.

There have been attempts to generalize Apery’s one odd success. Rivoal
showed that there are an infinite number of odd n such that ζ(n) is irrational
[11] and Zudilin showed at least one of the cases 5,7,9, 11 is irrational [15].
These marginal successes suggest a new approach might be worth exploring.

Let

zn = ζ(n) − 1 =

∞
∑

j=2

1

jn
and sn

k =

k
∑

j=2

1

jn
.

We show that every rational number in (0, 1) can be written as a single
decimal using the denominators of a term in zn as a number base: Lemma 1.
We also show that partial sums sn

k can’t be expressed with a single decimal
using the denominator of one of its terms as a number base: Corollary 1.
These two properties combined with lower and upper limits for zn, consisting
of partials sums plus a fraction, yield a proof that all zn are irrational.

Properties of zn

We define a decimal set.

Definition 1. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in
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base jn. The decimal set for jn is

Djn = djn \

j−1
⋃

k=2

dkn .

The set subtraction removes duplicate values.

Definition 2.
k

⋃

j=2

Djn = Ξn
k

Example 1.

Ξ2

4
=

4
⋃

j=2

Dj2 = D4 ∪ D9 ∪ D16

= {.14, .24, .34, .19, . . . , .89, .116, .216, . . . , .(15)16},

where subscripts give the base of the single decimal.

The union of all decimal sets for a given zn covers all rational numbers
in (0, 1).

Lemma 1.
∞
⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in a dbn and hence in some Drn

with r ≤ b. This follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1),
abn−1 < bn and so a/b ∈ dbn .

Next we show sn
k /∈ Ξn

k ; that is: we show that partial sums of zn can’t
be expressed as a single decimal using number bases given by the denomina-
tors of the partial’s terms; the partials escape their terms. The idea of the
following Lemmas and Theorem is that every other term has an even denom-
inator and this forces the reduced fraction giving the partial sum to have a
power of 2 in the denominator with exponent the index of zn (Lemma 2). As
denominators are powers of all numbers, Bertrand’s postulate implies that
a power of a prime will occur in the second half of such numbers (Lemma
3 and 4). The power of this prime will also be the index of zn. As twice
something greater than half of something is greater than the something, it
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will be the case that the reduced fraction for partials will exceed the greatest
denominator in the partial. This means the reduced fraction giving sn

k is not
in Ξn

k .
The central technique used in Lemmas 2 and 3 were taken from Hurst’s

solution [7] of Chapter 1, Problem 30 in Apostol’s Introduction to Analytic

Number Theory [2].

Lemma 2. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (2)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (2) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 3. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.
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Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (3)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 4. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate [4].

Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 4, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 4, we have assurance of the
existence of a p that satisfies Lemma 3. Using Lemmas 2 and 3, we have 2npn

divides the denominator of r/s and as 2npn > kn, the proof is complete.

Corollary 1.

sn
k /∈ Ξn

k

Proof. If r/s = sn
k is reduced the smallest base that can give r/s as a single

fraction is s: .rs = r/s. But s > kn and kn is the largest base in Ξn
k .

Corollary 2. If j ≥ k expressing sn
j using any of the bases {2n, 3n, . . . , kn}

will require an infinite decimal.

Proof. The proof of Theorem 1 showed that the denominator of sn
k had factors

2 and p where p is a prime that occurs only once in {2, 3, . . . , k}; it’s the prime
given by Bertrand’s postulate. As any base b ∈ {2n, 3n, . . . , kn} will not have
both prime factors, sn

k will be a mixed or pure repeating decimal in base b.
For sn

j , j > k, sn
j will have factors 2 and the same or greater prime than

this p used for sn
k , so it will also be a mixed or pure repeating decimal in this

same set of bases.
See Hardy’s Chapter 9 for a tutorial on mixed and pure repeating decimals

in general bases [4].
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Decimals and Series

The partial sums of any series that converges to a rational number a/b will
have partials with fixed digits of the form .(a − 1)(b − 1)r, where r is the
number of repetitions of the digit b − 1.

Example 2. The telescoping series given by

s(tele) =
1

2
−

1

3
+

1

3
−

1

4
+ · · · =

∞
∑

j=2

1

j
−

1

j + 1
=

∞
∑

j=2

1

j(j + 1)
=

1

2
.

This series converges to .5 in base 10. Reasonably close upper and lower
bounds must have different first digits. For example, we can make a sequence
of contracting intervals with the following pattern

.49 < .499 < · · · < .49r < s(tele) < .50r1 < · · · < .501 < .51.

Any base that gives 1/2 as a single digit will have such a pattern: different
first digits in upper and lower bounds.

Example 3. The telescopic series of the previous example will have partial
sums with fixed digits in base 3 of the form .1r. This follows as 1/2 = .13.
In this case any reasonably close lower and upper bounds for the series will
have the same first digit. Consider

.1ε < {.13, .23} < .1ε,

where the epsilons indicate additional digits that form a strictly lower ε and
upper bound ε for the convergence point.

Both single digits in base 3 (shown in the middle) are impossible. The
first, .13 is smaller than the lower bound on the left and the second is greater
than the upper bound on the right.

If a set of bases that covers all pertinent rational numbers led to such
constraining intervals, we could conclude that the convergence point is irra-
tional.

The next examples show how the properties given in Lemma 1 and Corol-
lary 1 can be combined with lower and upper bounds for z2 to eliminate all
elements of Ξ2

3 as potential convergence points.
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Example 4. Suppose we have upper and lower bounds for z2 given by

s2

k +
1

k + 1
< z2 < s2

k +
1

k
. (4)

Then for s2
3 we have 1/4 + 1/9 + 1/4 < z2 < 1/4 + 1/9 + 1/3, for example.

That is 11/18 < z2 < 25/36 or .21304 < z2 < .23014. We can infer that z2 is
not a single digit in base 4. Each of the elements in d4 will violate the lower
or upper bounds.

Example 5. To similarly eliminate all single digits in base 9, we need to
increase k. Although s2

3
and s2

4
are not single decimals in Ξ2

3
per Corol-

lary 2, the lower and upper bounds using (4) have different first digits.
With s2

5 = 1669/3600 we have s2
5 + 1/6 = 0.560422405779 and s2

5 + 1/5 =
0.586685133149; the same first digit. Once again we’ve eliminated potential
convergence points; z2 can’t be a single digit in base 9, in d9.

We could have chosen any base k2. We would need to consider partials s2
j

with j ≥ k to ensure s2
j requires an infinite decimal in base k2 per Corollary

2. Then we might have to increase j again, say j > k′ > k so as to insure
the accuracy of the lower and upper limit forces each to have the same first
digit. These ideas can be generalized into a proof that all zn are irrational.

Proof

Two additional lemmas are needed. The first uses a formula from a calculus
text [13]. Such texts use what is termed the p-series to determine via the
comparison test the convergence or divergence of a series. These p-series are
just positive rational arguments of the zeta function.

As an application of the integral test upper and lower bounds of a series
are found by forming a continuous function with a given series and integrating
it in such a way that a pair of integrals under and over estimate the tail of the
series. The p-series, for us zn can be thus approximated using the function
f(x) = x−n; this function is used in (6) to form (7).

Lemma 5.

sn
k +

1

(n − 1)(k + 1)n−1
< zn < sn

k +
1

(n − 1)kn−1
(5)
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Proof. Applying

sn +

∫

∞

n+1

f(x) dx < s < sn +

∫

∞

n

f(x) dx , (6)

to sn
k and zn, we have

∫

∞

k+1

1

xn
dx = lim

b→∞

[

x−n+1

−n + 1

]b

k+1

=
1

(n − 1)(k + 1)n−1
(7)

and
∫

∞

k

1

xn
dx = lim

b→∞

[

x−n+1

−n + 1

]b

k

=
1

(n − 1)kn−1
, (8)

giving (5).

Definition 3. Let

ε(n, k) =
1

(n − 1)kn−1
and ε(n, k) =

1

(n − 1)(k + 1)n−1
.

Definition 4. Let Ln
k = sn

k +ε(n, k) be the lower bound and Un
k = sn

k +ε(n, k)
be the upper bound as given in (5).

Lemma 6. For any base jn, for large enough k, Ln
k and Un

k will have the

same first digit.

Proof. As
Un

k − sn
k = ε(n, k)

and
lim
k→∞

ε(n, k) = 0,

the first decimal for sn
k and Un

k are the same for sufficiently large k. This
follows as sn

k is a mixed or pure repeating decimal and hence its first decimal
is non-ambiguous.

As the first decimal of Un
k is unambiguous and

Un
k − Ln

k = ε(n, k)− ε(n, k) (9)

with
lim
k→∞

ε(n, k)− ε(n, k) = 0, (10)

the first decimal of Ln
k must be the same as that of Un

k , for large enough
k.
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Theorem 2. zn is irrational.

Proof. Suppose zn is rational, then, using Lemma 1, there exists a first k
such that zn ∈ Ξn

k .
Per Lemma 6, the first digit in the decimal expansion of Ln

j and Un
j

becomes fixed and the same in base kn. As there is no single decimal in base
kn between Ln

j and Un
j , we have a contradiction.

Conclusion

The use of decimals to establish the irrationality of series is not without
precedent. Hardy uses decimals to show the juxtaposition of prime numbers
in base 10, .2357111317 . . . is irrational. He gives two proofs. One proof uses
Bertrand’s postulate in a way similar to our use [4].

Finally, this result surviving public scrutiny, there is the possibility of
its relevance to the premier number theory open problem: the Riemann
hypotheses. I have some hope that the equivalent of number bases (plural)
in the complex number system might allow the same exclusions used here
(irrational not rational) to carry over to a zero versus not a zero. There
are Gaussian integers and Gaussian primes; might there be forms of number
bases that inform us of the location of zeros for the zeta function.
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