On the Collatz Conjecture Problem

Wiroj Homsup

August 7, 2022

Abstract

It is proved that

 $\lim_{n\to\infty}a_n = 1,$

where a_n is the n^{th} term in the Collatz sequence:

 $a_{n+1} = (3a_n + 1)/2^{\gamma_{n+1}}$

where a_n is an odd positive integer and $2^{\gamma_{n+1}}$ is the highest power of two dividing $3a_n + 1$.

1. Introduction

Define a recursive function introduced by R. E Crandall[1]:

$$a_{n+1} = (3a_n + 1)/2^{\gamma_{n+1}} \tag{1}$$

where a_n is an odd positive integer and $2^{\gamma_{n+1}}$ is the highest power of two dividing $3a_n + 1$. The Collatz conjecture [1] asserts that for every odd positive integer a_0 and by applying eq.(1), there exists $k \in N$ such that $a_k = 1$.

For example,

Let $a_0 = 3$ then $a_1 = 5$, $a_2 = 1$; $\gamma_1 = 1$, $\gamma_2 = 4$.

2. Validity of the Collatz conjecture

Start with an odd positive integer a_0 , a_n can be formulated as

$$a_n = \frac{(3a_0+1)3^{n-1}}{2^{(\gamma_1+\gamma_2+\dots+\gamma_n)}} + \sum_{j=0}^{n-2} \frac{3^j}{2^{(\gamma_{n-j}+\gamma_{n-j+1}+\dots+\gamma_n)}}$$
(2)

For an odd positive integer a_0 , the Collatz conjecture is true if we can find

 $k \in N$, and $\gamma_i \ge 1$, $i = 1, 2, \dots, k$ such that $a_k = 1$.

Consider each term in Eq.(2) for $n \to \infty$, there are infinite i such that $\gamma_i = 2$, i.e. $\gamma_1 + \gamma_2 + - - - + \gamma_m = c$, $\gamma_{m+1} + \gamma_{m+2} + - - - + \gamma_n = 2$ (n-m) for large $n \gg m$.

$$\lim_{n \to \infty} \frac{(3a_0 + 1)3^{n-1}}{2^{(\gamma_1 + \gamma_2 + \dots + \gamma_n)}} \le \lim_{n \to \infty} \frac{(3a_0 + 1)3^{n-1}}{2^{\wedge}(m+2(n-m))} = 0$$

$$\lim_{n \to \infty} \sum_{j=0}^{n-2} \frac{3^j}{2^{(\gamma_{n-j} + \gamma_{n-j+1} + \dots + \gamma_n)}} = \lim_{n \to \infty} \frac{1}{2^{\gamma_n}} + \frac{3}{2^{\gamma(n-1) + \gamma_n}} + \frac{3^{n-2}}{2^{\gamma_{n-2} + \gamma_{n-1} + \gamma_n}} \le \lim_{n \to \infty} \frac{1}{4} \sum_{j=0}^{n-2} (\frac{3}{4})^j = 1.$$

Thus,

$$\lim_{n\to\infty}a_n \leq 1,$$

but a_n must be an odd integer, then $\lim_{n\to\infty} a_n = 1$.

3. Conclusion

In order to solve Eq. (2) for n and γ_i , i=1,2,---,n to have $a_n = 1$, we must extend n to infinity and enforce condition for $\gamma_i = 2$ for large i $\gg 1$ in order to have $\lim_{n\to\infty} a_n = 1$.

References

[1] R.E. Crandall, "On the "3x+1" Problem, Mathematics of computation, volume 32, number 144, October 1978, page 1281-92.