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Abstract
It is proved that
lim, ., a, = 1,
where a,, is the nt" term in the Collatz sequence:
ant1 = (Bap + 1)/ 2Mm+

where a,, is an odd positive integer and 2¥»+1 s the highest power of two
dividing 3a, + 1.

1. Introduction
Define a recursive function introduced by R. E Crandall[1] :

Ane1 = (Ban +1)/ 270 1)

where a,, is an odd positive integer and 2¥»+t s the highest power of two
dividing 3a, + 1. The Collatz conjecture [1] asserts that for every odd positive
integer a, and by applying eq.(1) , there exists k € N such that a; = 1.

For example,

Let a,=3then a;=5,a,=1;y; =1,y, =4.

2. Validity of the Collatz conjecture
Start with an odd positive integer a, , a, can be formulated as
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For an odd positive integer a, , the Collatz conjecture is true if we can find
k e Nyand y; >1,i=1,2,----, k suchthat a; =1.

Consider each term in EQ.(2) for n— oo, there are infinite i such that

Vi=2,18 Y1tV + —— =+ Vm =CVmi1tVmiz + ——— —+ ¥ =2(n-m)
for largen > m .
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Thus,

lim,,a, < 1,
but a,, must be an odd integer, then lim,,. a, = 1.

3. Conclusion
In order to solve Eq. (2) fornand y; , i=1,2,---,nto have a,, =1, we must
extend n to infinity and enforce condition for y; =2 for large i > 1 in order to
have lim,_,, a, = 1.
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