On the Collatz Conjecture Problem

Wiroj Homsup

August 7, 2022

Abstract

It is proved that

$$
\lim _{n \rightarrow \infty} a_{n}=1,
$$

where a_{n} is the $n^{\text {th }}$ term in the Collatz sequence:

$$
a_{n+1}=\left(3 a_{n}+1\right) / 2^{\gamma_{n+1}}
$$

where a_{n} is an odd positive integer and $2^{\gamma_{n+1}}$ is the highest power of two dividing $3 a_{n}+1$.

1. Introduction

Define a recursive function introduced by R. E Crandall[1]:

$$
\begin{equation*}
a_{n+1}=\left(3 a_{n}+1\right) / 2^{\gamma_{n+1}} \tag{1}
\end{equation*}
$$

where a_{n} is an odd positive integer and $2^{\gamma_{n+1}}$ is the highest power of two dividing $3 a_{n}+1$. The Collatz conjecture [1] asserts that for every odd positive integer a_{0} and by applying eq.(1), there exists $\mathrm{k} \in \mathrm{N}$ such that $a_{k}=1$.

For example,
Let $a_{0}=3$ then $\mathrm{a}_{1}=5, \mathrm{a}_{2}=1 ; \gamma_{1}=1, \gamma_{2}=4$.

2. Validity of the Collatz conjecture

Start with an odd positive integer $a_{0}, \quad a_{n}$ can be formulated as

$$
\begin{equation*}
a_{n}=\frac{\left(3 a_{0}+1\right) 3^{n-1}}{2^{\left(\gamma_{1}+\gamma^{2}+----+\gamma^{2}\right)}}+\sum_{j=0}^{n-2} \frac{3^{j}}{2^{\left(y_{n-j}+\gamma_{n-j+1}+-----+\gamma_{n}\right)}} \tag{2}
\end{equation*}
$$

For an odd positive integer a_{0}, the Collatz conjecture is true if we can find $\mathrm{k} \in \mathrm{N}$, and $\gamma_{i} \geq 1, \mathrm{i}=1,2,---, \mathrm{k}$ such that $a_{k}=1$.

Consider each term in Eq.(2) for $\mathrm{n} \rightarrow \infty$, there are infinite i such that $\gamma_{i}=2$, i.e. $\gamma_{1}+\gamma_{2}+---+\gamma_{m}=\mathrm{c}, \gamma_{m+1}+\gamma_{m+2}+----+\gamma_{n}=2(\mathrm{n}-\mathrm{m})$ for large $\mathrm{n} \gg m$.
$\lim _{n \rightarrow \infty} \frac{\left(3 a_{0}+1\right) 3^{n-1}}{2^{(\gamma 1+\gamma 2+----+\gamma n)}} \leq \lim _{n \rightarrow \infty} \frac{\left(3 a_{0}+1\right) 3^{n-1}}{2^{\wedge}(m+2(n-m))}=0$

$\frac{3^{2}}{2^{\gamma(n-2)}+\gamma(n-1)+\gamma n}+\cdots \cdots \cdots+---+\frac{3^{n-2}}{2^{\gamma_{2}}+\gamma_{3}+---+\gamma_{n}} \leq \lim _{n \rightarrow \infty} \frac{1}{4} \sum_{j=0}^{n-2}\left(\frac{3}{4}\right)^{j}=1$.

Thus,

$$
\lim _{n \rightarrow \infty} a_{n} \leq 1
$$

but a_{n} must be an odd integer, then $\lim _{n \rightarrow \infty} a_{n}=1$.

3. Conclusion

In order to solve Eq. (2) for n and $\gamma_{i}, \mathrm{i}=1,2,---\mathrm{n}$ to have $a_{n}=1$, we must extend n to infinity and enforce condition for $\gamma_{i}=2$ for large $\mathrm{i} \gg 1$ in order to have $\lim _{n \rightarrow \infty} a_{n}=1$.

References

[1] R . E. Crandall, " On the " $3 x+1$ " Problem, Mathematics of computation, volume 32, number 144, October 1978, page 1281-92.

