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The author comprehensively reviewed the mutual energy theory of electromagnetic field, including
three axioms: (1) the law of conservation of electromagnetic energy, (2) the law that radiation does
not overflow the universe, (3) the principle of mutual energy and self energy principle; the mutual
energy theorem, mutual energy flow theorem, advanced wave existence theorem. According to the
theory of mutual energy, electromagnetic radiation is an interaction between source and sink. The
source is a primary coil of the transformer, transmitting antenna and the emitter charge. The sink
is the secondary coil of the transformer, receiving antenna and absorbing body charge. The source
emits retarded wave and the sink emits advanced wave. Electromagnetic radiation phenomena must
include a transmitting antenna and a receiving antenna. At this time, the transmitting antenna
is equivalent to the primary coil of the transformer, and the receiving antenna is equivalent to the
secondary coil of the transformer. Essentially, an antenna system including a transmitting antenna
and a receiving antenna is no different from a transformer system including a primary coil and a
secondary coil. They all satisfy the same mutual energy theory. That is, retarded wave and advanced
wave are synchronized and generate the mutual energy flow. Mutual energy flow is photons. The
wave, including the retarded wave and the advanced wave, must collapse in reverse. The reverse
collapse satisfies the Maxwell equation of time reversal. The retarded wave and time reversal wave
can be replaced by a reactive power wave. The mutual energy flow and reactive power wave together
describe the wave collapse phenomenon. The important conclusion of this theory is that the energy
of an electromagnetic wave is transferred by mutual energy flow, not by self energy flow. A light
source cannot produce radiation without the help of an environmental absorber. Photons are mutual
energy flows. The author finds that Maxwell’s equation is not automatically suitable for the theory
of electromagnetic mutual energy, so it must be modified. This correction includes adding a time
reversal wave, but considering that reactive power waves can also play the role of time reversal
wave, the author thinks that reactive power waves can be used to replace time reversal waves in
this correction. In this paper, the method of mutual energy theory is applied to two planar current
transformer systems and two dipole antenna systems. These two examples verify the correctness of
mutual energy theory.
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I. INTRODUCTION

The theory of mutual energy proposed by the author in-

A. Advanced wave

The solutions of Maxwell’s equations include retarded
potential and advanced potential, or are called retarded
wave and advanced wave. The classical electromagnetic
theory only recognizes the retarded wave, not the ad-
vanced wave. Because the advanced wave violates the
causality. But a group of scientists also recognized the
advanced wave. For example, Wheeler and Feynman
put forward the absorber theory [1, 2], and the absorber
theory is based on the principle of action-at-a-distance
[8, 16, 18]. The absorber theory is further developed by
Cramer and is called quantum mechanics transactional
interpretation [5, 6]. Lawrence Stephenson also made im-
portant contributions to the advanced wave theory [17].
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volves the advanced wave. The author believes that the
advanced wave must be a physical reality. The above
authors all have great influence on the author, so the au-
thor firmly believes that there should be the position of
the advanced wave in the electromagnetic field theory.

B. Cramer’s transactional interpretation of
quantum mechanics

In the following figure 1, the light source is represented
by a red disc. The light sink in the figure is represented
by a small blue disc. The horizontal axis represents dis-
tance and the vertical axis represents time. The source
emits a retarded wave to the right, the source emits an
advanced wave to the left, and the wave emitted by the
source is represented by red. The sink sends an advanced
wave to the left and a retarded wave to the right, which
is represented by blue. Between the emitter and sink,
the retarded wave and the advanced wave are synchro-
nized, so they are superimposed. On the right side of
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Figure 1. Cramer’s photon model-

the sink, there is a 180 degree phase difference between
the retarded wave from the sink and the retarded wave
from the source, so they cancel. On the left side of the
source, the advanced wave from the source and the ad-
vanced wave from the sink have a phase difference of
180 degrees, so they cancel each other out. Cramer’s
particle model is fantastic. However, it is not without
problems. For example, the 180 degree phase difference
is quite puzzling. What is the reason for the 180 degree
phase difference? It is not mentioned in Cramer’s model.
In addition, this model is one-dimensional. In practice,
we must face waves in three-dimensional space. The sit-
uation is much more complicated. In a word, Cramer’s
model is only a qualitative theory. This paper attempts
to give a specific photon model based on the electromag-
netic theory combined with the concept of mutual energy
and mutual energy flow proposed by the author.

C. Reactive power and reactive power wave

The author proposed time reversal wave [11], but re-
cently the author is not very satisfied with it. Recently,
the author noted that it is difficult to confirm the time
reversal wave. Especially if the time reversal wave exists,
the time reversal wave can also generate the mutual en-
ergy flow, and the mutual energy flow of the time reversal
wave may also offset the real mutual energy flow. It is dif-
ficult to make sense for time reversal wave to counteract
self energy flow without creating the time-reversal mu-
tual energy flow to counteract real mutual energy flow.
The author notes that if the self energy flow is reactive
power, the time reversal wave can be eliminated. There-
fore, the author is keen to look for the modification of
Maxwell’s electromagnetic theory, so that the self energy
flow can be converted into the wave of reactive power.
Namely,
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where R is taking the real part of a complex number. This
means that the electric and magnetic fields far away from
the antenna should be 90 degrees in phase, not in phase.
Note that the far field of the antenna is in phase accord-
ing to Maxwell’s equations. The plane wave solutions of
Maxwell’s equations are also in phase.

The author first notes that in the case of magnetic
quasi-static field, the phase difference between the elec-
tric field and the magnetic field is 90 degrees. The ques-
tion is why this phase becomes in phase when the radia-
tion field satisfies Maxwell’s equations? The author tries
to add a phase to the electric field or magnetic field of
Maxwell’s solutions, and finds that it can just meet the
requirements of mutual energy flow transferring energy,
while self energy flow does not transfer energy [11-14].

D. Wave particle duality

The mutual energy flow itself is a point-to-point trans-
fer of energy, and the mutual energy flow generated by
the retarded wave and the advanced wave is particle. The
particles are generated at the generation point of the re-
tarded wave, that is, the source of light, and annihilated
at the generation point of the advanced wave, that is, the
sink. The particle has the property of wave between the
source and sink, because the particle itself is a mutual en-
ergy flow composed of advanced wave and retarded wave.
In this way, the author explains the problem of wave par-
ticle duality by using the mutual energy flow. The au-
thor thinks that the wave collapse can be explained by
the mutual energy flow plus wave reverse collapse. The
reverse collapse of wave and wave can be explained by
reactive power wave. Therefore, the wave collapse can
be explained by the combination of mutual energy flow
and reactive power wave.

E. From reciprocity theorem to mutual energy
theory

The earliest (around 1900) is the Lorentz reciprocity
theorem|[9]
3, 4],

///Vl(Jl(W) - By (w))dV = ///VQ(JZ(W) E(w)dV (3)

In 1960, there was Welch’s reciprocity theorem [19],

_ /::OO dt ///Vl(Jl(t) - Es(t))dV



— /:OO dt ///V 2(J2(t)-E1(t))dV (4)

In 1963, there was Rumsey’s reciprocity theorem [15],

_///Vl(Jl(w)-E;(w))dV = ///VQ(J’Q‘(W).El(w))dV (5)

In 1987, Zhao (the author) proposed the mutual energy
theorem [10, 20, 21], which is the same as the above for-
mula Eq.(5). The author didn’t find Welch and Rumsey’s
paper at that time. The author felt that this theorem was
different from Lorentz’s reciprocity theorem, and should
be an energy theorem. Not just a reciprocity theorems.

At the end of 1987, there was de Hoop’s correlation
reciprocity theorem [7].

—/:Ooodt///vlul(“”)'Ez(t))dv
— /::OO dt///\/Q(J2(t)'E1(t+T))dV .

The author found in (2017) that the formula (6) is
the inverse Fourier transform of (5) [11-14]. Formula (4)
is obviously a special case of formula (6) in 7 = 0, so
they can be regarded as one law. These 4 theorems can
be obtained from Lorentz reciprocity theorem through a
conjugate transformation. The conjugate transformation
in the frequency domain is,

Ew),Hw),J(w) = E(w)",—H(w)*, —J(w)*
In the time domain is,
E(t)v H(t)v J(t) - E(_t)a _H(_t)v _J(_t)

Therefore, these 4 theorems are closely related to Lorentz
reciprocity theorem. These 4 theorems are not sub the-
orems of Lorentz’s theorem because Maxwell’s equation
is used in conjugate transformation. The author thinks
that these 4 theorems are energy theorems. The other
three authors define these 4 theorems as reciprocity theo-
rems, possibly because these 4 theorems involve advanced
waves.

For example, when the author applies the mutual en-
ergy theorem to a pair of antennas, a transmitting an-
tenna and a receiving antenna, it means that the electro-
magnetic wave generated by the transmitting antenna is
a retarded wave and the receiving antenna is an advanced
wave. The mutual energy theorem tells us that the en-
ergy obtained by the receiving antenna is exactly equal
to the energy provided by the transmitting antenna to
the receiving antenna. The advanced wave is not recog-
nized in the classical theory, so most people thinks it is
questionable that these 4 theorems are energy theorems.
If they are not an energy theorems, they can only be
used as a mathematical formula similar to Green’s func-
tions, so we call them reciprocity theorems. However,

the author believes that the advanced wave is an objec-
tive physical existence. Hence, these 3 formulas are also
energy theorems.

In 2017, the author popularized the mutual energy the-
orem (5) as the energy conservation theorem,
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At the same time, the author puts forward the princi-
ple of mutual energy,

N N
—#Z > EixH;- fdl
T*

i=1j=1,j#i

_///VZN: ZN: (Ji-Ej+Ei-%Dj+Hi~%Bj)dV (8)

i=1 j=1,j#i

The theorem of mutual energy flow is also proved,

///m (J1(w)-E5w)dV = (&1,&) = ///VQ(J;(W)_EM))W
(

9)
Where (&1,&2) is defined as,

(51»52)Eﬁ£(E1><H§+E2><H>{)-ﬁdl“ (10)

The author thinks that the mutual energy flow is the
photon. Photons are normalized mutual energy flows
[12]. In order to meet the principle that radiation does
not overflow the universe, the author proposed time re-
versal wave [11]. In this way, the electromagnetic waves
radiated from the universe can return. Finally, the au-
thor developed a complete set of electromagnetic theory,
which is called mutual energy theory [11-14].

F. Work of this paper

This paper systematically reviews the whole theory of
mutual energy. The author deduces the whole electro-
magnetic theory from the theory of magnetic quasi-static
electromagnetic field according to the law of conserva-
tion of energy of mutual energy theory. Then, using two
concrete examples, one is the transformer model of dou-
ble plate currents, and the other is the model of double
dipole antenna, the electromagnetic field solution satis-
fying the mutual energy flow equation is found. It is
shown that this solution is different from the solution
obtained from Maxwell’s equations, and this solution is
correct. Chapter 2 reviews the theory of electrostatic
electromagnetic field and magnetic quasi-static electro-
magnetic field. Chapter 3 establishes the electromagnetic



field mutual energy theory. Chapter 4 discusses the de-
fects of classical electromagnetic field theory. Chapter 5
examples of solving electromagnetic field mutual energy
theory of biplane current transformer. Chapter 6 is an ex-
ample of solving the electromagnetic field mutual energy
theory of double dipole antenna. From these two exam-
ples, readers should see that in addition to the theory of
mutual energy flow and the principle of mutual energy,
which are more than the classical electromagnetic field
theory, the retarded wave and advanced wave involved
in the theory of mutual energy are different from the re-
tarded wave and advanced wave in the solution obtained
by Maxwell’s equations.

II. THEORY OF MAGNETIC QUASI-STATIC
ELECTROMAGNETIC FIELD

Here we briefly review the theory of Magnetic quasi-
static electromagnetic fields. Instead of starting from
Maxwell’s equations, the author derives all the electro-
magnetic field theories from Neumann’s field induction
theorem and the law of conservation of energy proposed
by the author. All the magnetic quasi-static electromag-
netic fields theories used are briefly reviewed.

A. Electrostatic Field

The electrostatic field found by Coulomb’s theorem can

be expressed as,
e
v || A (1)

r=|z—x| (12)

p(a’) is the charge density. @ is the site location and
x’ is the source location. Define scalar potential,

/// d3 ! (13)

Get,

B. Static magnetic field

The static magnetic field can be expressed as,

ot et

_Z_;//V“(_v;)dv
w [ 92 nav
_ﬂ_;///va§dv
st [

Define magnetic vector potential
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get
B=VxA

C. Magnetic quasi-static field

£ = E-dl
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VxFE= av A 30
X =% X (30)
0
VxE=-_B (31)
// Lav (32)
V.A-V. // Lav
/ﬂ - JdV
/// L JdV (33)
J 1
V/'(y)zvl(;) +(7—,)V/'J (34)

The volume integral of V’ - (£) can be converted to the
outer surface, so it is zero,

_vl(%) -J =

V-Az///v(%)v’-JdV

(VT

Considering,

0
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The above consideration is steady-state, so there is
% p =0, thus

V.J=—2p=0

V-A=0 (35)
VA = u// V2 JdV
—,uo/// 5(x —x'))JdV
= —podJ (36)
VxVxA=V(V-A) VA (37)
VZA=-VxVxA+V(V-A) (38)
~VXxVxA+V(V-A)=—pgJ (39)
VXV xA=pyd (40)
V x B = pogJ (41)
VxH=J (42)

So we get the magnetic quasi-static Maxwell equation,

VxH=J (43)

__90
This equation does not include Maxwell’s displacement
current. The corresponding Poynting theorem can be
obtained from this equation,

V(ExH)=VxE-H-E-VxH (44)
0
V- (ExH)=-5B-H-E-J (45)

So we get Poynting’s theorem,

_ﬁF(ExH)-ﬁdPZ//(%B-H+E-J)dv

Since the magnetic quasi-static field is not a radiation
field,

1
E H ~ ) (46)



lim (P (E x H) #dl =0 (47)
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Similarly, if it is in frequency domain.

—ﬁg(ExH*)-ﬁdI‘ = ///(ij-H*+E-J*)dV (48)

energy increase jwB - H =0,

—ﬁg(ExH*)-ﬁdF:///(E-J*)dV (49)

In the above formula, the surface can be taken arbi-
trarily. If it is infinite,

lim () (E x H*)-7dl =0 (50)

T—00 T

This means that,

#(E « H*) - #dl = 0 (51)

The above formula I' is any surface surrounding the
current J.

ExH* =0 (52)

This shows that for the magnetic quasi-static field, the
phase of the magnetic field and the electromagnetic field
should be 90 degrees. This is different from the solution
of the radiated electromagnetic field satisfying Maxwell’s
equation including displacement current. The solution
electric field and magnetic field of the radiated electro-
magnetic field are in phase. The author thinks that it is
not reliable that the electromagnetic radiation field and
the magnetic field are in phase according to Maxwell’s
equations. The point that the magnetic quasi-static elec-
tromagnetic field develops to the 90 degree phase of the
radiated electromagnetic field should be maintained. In
addition, in the magnetic quasi-static field,

/// (E-J*)dV =0 (53)

III. ELECTROMAGNETIC MUTUAL ENERGY
THEORY

In the circuit, we know that the power consumed on
the resistance is

Pload =Ur (54)

The electromotive force of the battery can provide
power of,

Poutputzgl*:/EdlI*%//\\ E-J*dV (55)
\4

Figure 3. Transformer, assuming that the current of the pri-
mary coil and the current of the secondary coil are known.

E is the electric field of the induced electromotive force
or the electric field of the battery. According to the con-
servation of energy,

Poutput = Boad (56)

For the above figure 3, there are

Pyy= | Ey-Iidl (57)

Cy

Pio= | E; Ldl (58)

Cy

P, ; is electrical power of the secondary coil or current
I, provided by the electromagnetic field of the current
I;. Note that the conjugate sign of a complex number is
marked either on a quantity containing the subscript sign
1 or on a quantity containing the subscript sign 2. This
power is used for the consumption of the load circuit in
the secondary circuit. If

%[ Ej Ldl<0 (59)
Cy

It indicates that the primary coil provides negative
power to the primary circuit, so the primary coil actually
obtains power from the primary circuit. This power will
be supplied to the secondary coil of the transformer. If
the secondary coil has,



R| B -Ldl>o0 (60
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Description the secondary coil provides power to the sec-
ondary circuit. Therefore, power is drawn to the primary
coil of the transformer. If

x E,-I3dl=0 (61)
Ca

It indicates that the power obtained from the transformer
by the secondary coil of the transformer is reactive power.
If current I; Transfer energy to I, energy P, ; of current
I increase, energy P o of the current I; decreases, but
the total energy remains the same,

P14+ Pia2=0 (62)
or
—P,1 =Py (63)
or
- E; - Lidl = E, - I;dl (64)
Cq Cs

Note that the line current can replace the bulk current
Idl — JdV, and the above formula can be rewritten as,

_// E§-J1dV:// B -2V (65)
1% 1%

Negative sign on the left of the above formula,
— [, B3 - J1dV refers to the power absorbed by the
primary coil of the transformer from the primary circuit
and supplied to the secondary coil. The right of the above
formula [[[}, E1 - J5dV refers to the power provided by
the secondary coil to the secondary circuit and also the
power obtained by the secondary circuit from the trans-
former. In the time domain, there is,

—/ dt// E2~J1dV:/ dt// By JydV
t=—o0 1% t=—00 1%
(66)

A. The energy conservation law

The above formula can be rewritten as,

/:Ooo dat ///V (Ji- Ej)dV =0 (67)

There are two current elements above. If there are NNV,
there is the following law of conservation of energy,

>y

i=1 =15

XN: XN: /jo_ocdt///w(Ji~Ej)dV:0 (68)
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This law of conservation of energy is the starting point
of the author’s electromagnetic theory. This formula is
proposed as an axiom. We use the knowledge of electro-
static and magnetic quasi-static fields, but do not assume
Maxwell’s equations. Maxwell’s equations are derived
from the above law of conservation of energy. Here, in
the author’s mutual energy theory, Maxwell’s equations
are only an auxiliary set of equations, not a physical law.

B. Law of conservation of energy in transformer

Figure 3 shows a transformer, which has a primary
coil and a secondary coil. The primary coil gives a power
to the secondary coil. The power of the secondary coil
increases and the power of the primary coil decreases.
However, the sum of the two coil powers remains un-
changed. The author first verifies that the above energy
conservation law is true for transformers.

The law of conservation of energy can be rewritten as,

| Ejw) Lwdl= | Ejw) Lw)4dl (69

Cl CZ
or
— [ Biw)-ahw) = [ Biw)-dLw)  (70)
Cl C2
define
E = Es(w)-dl
Cy
51 = E1 (w) -dl
Ca
there is
—&3 N (w) = &5 (w) (71)

Considering (19,20) ,

dI .

81 = _M271d_1‘1 = —_ﬂuMg)lIl (72)
dl

E = —Mud—; = —jwM o1, (73)

My ; is the mutual inductance generated by the cur-
rent on coil 1 on coil 2. M o is the mutual inductance
generated by current 2 on coil 1. By substituting these
two formulas into (71), we get,

—(—jo.)]\/fl,gfg)*fl(w) = (—jw]ngIl)I;(w) (74)
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Figure 4. Transformer, the secondary coil is far away from
the primary coil, so the retarded effect must be considered.

(M 212)" 1 (w) = (M2,111) 15 (w) (75)

Mf o= My, (76)

The above is the energy conservation law for the trans-

former. Where,
1, -dl
55 §£ d - dl (77)
o, 4T Jo,

]\[12_¢ /LQ% dlg (]ll (78)
Cq Ca

The above formula (76) is the law of conservation of
energy in the transformer, which is applicable to the mag-
netic quasi-static field,

M4

My =My, =M (79)

The equation (76) obviously satisfies. This further ver-
ifies our law of conservation of energy ([68) in magnetic
quasi-static situation.

C. Retarded potential

For a transformer, if the secondary coil is far away from
the primary coil, the retared effect must be considered.

We know,
Idly - dl
My Iy = / / it hnd (80)
c, 41 Jo,

If there is a certain distance between the secondary coil
and the primary coil, as shown in the above figure 4. We
have to consider the retarded potential, so there is,

ex ik-r)idly-dl
Mor Ty = / / p(—j Yidly - dly (81)
e AT Jo,

r

define retarded potential

exp(—jk-7)h

Ho —Jj
A= —
R /01 r

D. Advanced potential exists

dl, (82)

The following figure 4 is a transformer, but the sec-
ondary coil is far away from the primary coil. At this
time, the primary coil becomes the transmitting antenna
and the secondary coil becomes the receiving antenna.
In order to satisfy the law of conservation of energy (76),
there must be,

ik -r)Iodls - dl
M1)212:/ @/ exp(+jk - r)Ladls - dly (83)
Cy Cs

r

Define

A, =M / exp(+jk - 1)l>
5 = i A WS b’
4 r
Only in this way can the energy conservation (76) be
satisfied. This tells us that the dadvanced potential must
exist, otherwise the law of conservation of energy cannot

be satisfied. There are retarded potential and advanced
potential. In the time domain, there is,

_ Z_; ///V —Jl(”“"';_ /%) gy (85)
_ u_;///vz Jg(:c,tr+7"/c)dv (86)

c is the speed of the retarded wave and advanced wave.

dly (84)

E. Electromagnetic field

d
——M5 T
g 2k

/ 8 [LO Ildll
= — N dl2
o 8t 47T C1 T
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We known

51 = / El . dlg (88)
Ca



there is,
0
/ E1 dl2 = — —A1 dlg (89)
Co Co at
or
0
/ (E1+ =4)-dlu =0 (90)
Co ot
or
0
(E1+ EAl) = —V¢ (91)
or
E, = 0 A -V 92
1= 541 ®1 (92)
¢1 is any scalar function,
VxE——GVxA (93)
L= "% 1
define,
B, =V x A, (94)
VxE =— 0 B (95)
1= 5 b1
When the contribution of A; can be ignored,
E,=-V¢; (96)
V- Ei =p/e (97)
V- (Vé1) = —p/eo (98)
V21 = —p/eo (99)

¢1 = 47360 ///V ng (100)

Considering that the scalar retarded potential is,

¢1 = 4;60///Vp(wl’tr_ /) gy (101)

for the same reason

2 = 47360 ///V ’;’dv (102)

Consider advanced potential

s = 47360///‘/”(“”/’2&:’ 1) gy (103)

The electric field,

1o}
E; = *EAz — Voo (104)
B2 =V x A2 (105)

Because the author introduces the law of conservation
of energy and applies it as axiom, we get that the ad-
vanced wave exists. Of course, if we admit the existence
of advanced waves, we can derive the energy conservation
law from Maxwell’s equations by using the existence of
advanced waves. However, because the advanced wave
is controversial, the author chose to add an energy con-
servation law to Maxwell’s electromagnetic theory as an
axiom. Now the advanced wave can be derived from the
axiom of energy conservation. As long as the reader ac-
cepts the law of conservation of energy, the advanced
wave must exist now! So in fact, we have proved the
existence of advanced wave by derivation.

F. Derivation of Maxwell’s equations

Vector potential and scalar potential satisfy Poisson
equation

V26 = —p/eo (106)

VZA = —poJ (107)

The retarded potential and the advanced potential sat-
isfy the wave equation

0
V2 — uo€oa¢ = —p/eo (108)
9 0]
VA — ,U,QEOEA = —,U,QJ (109)

For the wave equations, we omit the subscript 1,2 be-
cause the retarded wave and the advanced wave satisfy
the same wave equations.

G. Lorenz gauge condition

Considering the current continuity equation,

0
VoJ=—— 110
p (110)
The above formula (106, 107) can be verified to meet the
Lorenz guage condition, and the wave equation (108,109])
also meets the Lorenz gauge condition,

0



H. Derive Maxwell-Ampere circuital law from
wave equations

Starting from the wave equation,

82
2
\Y A— MoeoﬁA = —[LoJ (112)
Considering the mathematical formula,

VxVxA=VV-A-V?A (113)
or

VEA=-VxVxA+VV-A (114)
Hence, there is

82

-V xV x A+VV'A—M060@A: —,U,QJ (115)

Considering B = V x A and Lorenz gauge condition
VA= —poeodo,

0 0?2
-V x B+ V(—Noﬁoaéb) — NOGO@A = —poJ (116)

0 0
-V x B+ HQEOE(—V(ﬁ — aA) = —puod (117)
Consider E = -V¢ — 2 A
0
-V x B+ MoEQEE = —pod (118)
or
0
[L()J + ,LL()GQEE =VxB (119)
or
0
VxH=J+5 0k (120)
or
0
VxH=J+ =D (121)
ot
considering (95), there is
VxE--2B (122)
ot

The above two formula are Ampere’s circuital law and
Faraday’s law of Maxwell’s equations.

10
I. Maxwell’s equations

Mutual energy theory respects magnetic quasi-static
electromagnetic field equations. They are skeptical of
Maxwell’s equations, especially those caused by displace-
ment current. But we still start from Maxwell’s equation,
which is,

— 9
VXH—J;'atD (123)
VxFE = —EB
or
—ID+VxH=J
ot 124
{—VXE—%B—O (124)
or
LE=T (125)
where
le)
_ — 3 €0, V x _ E _ J
[ ) e [E] =[2] o

Actually there are a group of Maxwell’s equations,
L& =n
L& =12

J. Green’s function

(127)

Can prove a mathematical formula, similar to Green’s
function

—#(E1XH2+E2XH1)-TALdF
r

///V(ﬁl “La&o + & - L1&1)dV

OF oF o0H o0H
R e e
(128)

This formula is not a physical formula because Maxwell’s
equations has not been applied. It’s just a mathematical
formula.

K. Mutual energy principle

Consider the following figure 5 there are two current
elements inside a closed surface I', one is the source and
the other is the sink. The source emits retarded wave
and the sink emits advanced wave.

A%



Figure 5. In the principle of mutual energy, there are two
current elements, one is the source and the other is the sink.

By substituting Maxwell’s equations (127) into Green’s
function,

—#(Elxﬂ2+E2xH1)-ﬁdP
r

= ///V(fl T+ & - To)dV

oFE oF oH oOH
+///(60E1' 8t2+eoE2- Lo H 2 o Ho Lyawe
v

ot ot ot

(129)

7#(E1 XH2+E2 X Hl)TALdF
T

:///V(El-Jl-i—Eg-Jg)dV

oF oOF oH oOH
+///(60E1' 8t2+€oE2' 81+M0H1'—2+M0H2'—1
v ¢

ot ot

(130)

2 2

Z‘#(EixHj)-ﬁdF

1j=1,5#i "1

By OH ;
B, Ji+eE; 220 o H, - 22 qy
.///V( R T )

(131)

3

Ve
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Figure 6. The union R U A of retarded wave and advanced
wave is the solutions of Maxwell’s equations, and their inter-
section RN A is the solutions of mutual energy principle.

From 2 generated to IV,

N

> #(EixHj)-fzdF

i=1j=1,j#i "I

N N
_ T OE; OH,
_ZZ ///V(Ez J]+€0Ez ot +,LL0H1 ot )dV

(132)

This leads to the principle of mutual energy. You can

also derive Maxwell’s equations from the principle of mu-

tual energy (this step is omitted). However, the principle

f mutual energy is different from Maxwell’s equations,
because for the principle of mutual energy

N>2 (133)

N #1 (134)

If N =1, the principle of mutual energy is not tenable,
but Maxwell’s equation is still tenable, and Maxwell’s
equations can still obtain the retarded wave and ad-
vanced wave. This kind of retarded wave and advanced
wave are not the solution of the principle of mutual en-
ergy. The solution of the principle of mutual energy is
the solution of a retarded wave and an advanced wave,
which requires not only pairing but also synchronization.
Here synchronization means that when the retarded wave
from the light source reaches the light sink, the sink just
sends out the advanced wave. Only in this way can the
two waves be synchronized. Therefore, the solution of
the principle of mutual energy is much less than that
of Maxwell’s equations. Therefore, the principle of mu-
tual energy is not the equivalent of Maxwell’s equations,
but a limiting condition applied to Maxwell’s equations.
Therefore, the principle of mutual energy has its own
physical meaning independent of Maxwell’s equations.
The figure below illustrates this view.



In the above figure 6, the red area represents the set
R of retarded waves, the blue represents the set A of ad-
vanced waves, and the solutions of Maxwell’s equations
can be expressed as the union set R U A. The solutions
of the mutual energy principle is expressed as the inter-
section R N A. because,

RNA<RUA (135)

This shows that the solution of the principle of mutual
energy is much less than that of Maxwell’s equations.
Therefore, the principle of mutual energy is not optional
relative to Maxwell’s equation.

L. Mutual energy flow does not overflow the
universe

It is know that,

N N
OH .
Z Z /// eoE; + po i'&)dv
o T ot ot
N j<i
dtzz/// «E; - Ej+ poH, - 0H;)dV
=1 j=1
0
= — 1
8tU (136)
where
N j<i
U= ZZ/// cE;-E;+ uoH;-0H;)dV (137)
=1 j=1

Hence, there is

[ S s o 2y

i=1 j=1,j#1
< 0
= EUdt U(oo) —U(—00) =0 (138)
For U(—0), the process has not yet occurred, and for

the U(o00) the process has been completed. Therefore, va-
riety U(oo) =U(—o0). Therefore, we do time integration
for (132) and subtract (138) to get,

dtz Z ﬂExH - Adl

:/:O Zf: ZN: /// (Ei - Jj)dV (139)

12

Figure 7. Neither self energy flow nor mutual energy flow can
overflow the universe.

Subtract (68) from the above formula to obtain,

_/:Ooodtz Z # i x H;)-adl =0 (140)

i=1 j=1,j#1

Or more strictly, requirements

t=—o00 r
Changed to the frequency domain,
Rﬁ w) x H}(w)) - 2dl =0 (142)

R is to take the real part of the complex number. I' can
be a sphere with an infinite radius, or any closed surface
surrounding all current elements. The above formula in-
dicates that the mutual energy shall not overflow to the
outside of the universe. In fact, not only the mutual en-
ergy flow can not overflow the universe, in fact, nothing
can overflow the universe, otherwise the energy is not
conserved, so the self energy flow can not overflow the
universe.

The above figure 7 shows that the self energy flow
should return to the source or sink from the sphere with
infinite radius. Mutual energy flow is the point-to-point
propagation of energy, which will not overflow the uni-
verse. In this way, all energy flows can be guaranteed
not to overflow the universe. The Poynting theorem of
classical electromagnetic field theory does not satisfy the
requirement that the self energy flow does not overflow
the universe, so the classical electromagnetic field theory
is needed to be revised.

M. Mutual energy flow theorem

The principle of mutual energy when N = 2 (139) can
be written as

_/:’_ ii# E, x H,) - dl



Figure 8. Current element J2 (the blue one) or the sink is
not inside the closed surface I'.

B /:O_ Zi: _22: ///V E;-J;)dV (143)
_/io_ocdtﬁg(El x Hy + Eo x Hy) - 2dl
- /:O_mdt///v(El‘JﬁEz-Jl)dV (144)

Take the closed surface I'y to surround only Jq. Jo
not inside the surface, as shown in figure 8, the above
formula can be rewritten as

—/ dt (E1XH2+E2XH1)-’ﬁ/dF
Iy

= /::OO dt//V(E2 - J1)dV

—/ dt (E1XH2+E2XH1)'TAL12dF
Iy

= /:oo dt //V(E2 - J1)dV

n is the normal of the surface, 7115 is also the normal of
the surface, but this normal is from V; to V5 and we know
that there are,

(145)

or

(146)

= N2

Take closed surface I's to surround J5. J; is not inside
the surface I, see figure 9,
Mutual energy principle can be written as,

—/ dt (E1XH2+E2XH1)'ﬁdF
>

_/:O_oodt///v(El

(147)
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Figure 9. Current element 1 or source is not within the closed
surface I'.

/ dt (El x Ho + Eo XHl)-’fLLQdF
=—00 Fz

e

Where we have consider

(148)

= —M12

We already know the law of conservation of energy,

/ aflf i - / @[] v
V1 t=—o00 V2
(149)

Considering (147, 148), we get
/ dt /// (- Ba)d
121

:/ dt (E1XH2+E2XH1)"fL12dF
=—o00 I

:/ dt (E1XH2+E2XH1)-ﬁ112dF
=—00 FQ

= [ afff wemoar s
I’ and T can be merged so that,
[ aff] o
- (6.6)
[ aff aemaw



Figure 10. The mutual energy flow from the source to the
sink.

where (&1,&2) is defined as,

(51,52)5/ dt#(E1XH2+E2XH1)'ﬁ1,2dF
t=—00 r

(152)

I' is any surface which divided V; and V5, I' can be a
closed surface the surrounding V; or V5 It can also be an
infinite plane that divides two volumes V; and V5. Refer
to figure 10 for the shape of mutual energy flow.

Note that although the mutual energy flow theorem
can be derived from Maxwell’s equations through the mu-
tual energy principle, the solutions satisfying the mutual
energy flow theorem may not satisfy the mutual energy
principle and Maxwell’s equations. The mutual energy
flow theorem still leaves a degree of freedom for the solu-
tion of electromagnetic field. Later, we can see that we
need to limit this degree of freedom by the condition that
self energy flow does not radiate. In fact, the solution of
electromagnetic field obtained according to the mutual
energy flow theorem is different from that obtained ac-
cording to Maxwell’s equations. This will be shown in
the example in the following sections.

N. Poynting theorem

In addition, we know that Maxwell’s equations can de-
rive Poynting’s theorem,

#EXH fdl = /// (J-E+E- )D+H ;B)dv

(153)
If N current elements are considered,
N
J=> J, (154)
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Electromagnetic field shall meet

(155)

(156)

Poynting’s theorem for N current elements is,

ﬂZZE x H; - adl

=1 j=1

AV (157)

///ZZJ ‘E;+E;- 8D+Hgt

=1 j=1

O. Contradiction between the principle of mutual
energy and Poynting’s theorem

Comparing formulas (157) and (132), both are energy
conservation theorems of N current elements. If both are
true, there must be a difference between the two,

N
—#ZEixHi~ﬁdF
r

i=1

al ) 0
:///V;(Ji'Ei—i—ErEDi—i-Hi-aBi)dV (158)

does not transmit energy, or,

*#EZXHldeF:
T

0 0 )
///V(Jl E,+FE; BtDZ + H; BtBZ)dV i=1,2---N
(159)
Does not transmit energy. But the above formula is the
Poynting theorem of the current element J;, the classical
electromagnetic theory tells us ﬁr E;x H;-ndl transfers
the energy. In the frequency domain, that means,

m# By x HY -7l £ 0 (160)
N

This leads a contradiction.



P. Time reversal transformation

The first attempt to correct the contradiction of the
classical electromagnetic theory is to add a time reversal

wave to the classical electromagnetic theory[11]. First,
the time reversal transformation is defined as,
B(0), H(t), 2 B(1), S H(t), 10
b 9 Bt b at b
() H ().~ DB t), - S (1), -0 ()
’ Toot Toot
(161)
or
o 0 0 0
E H,—,—H, E" H ——E ——H",-J"
ot al gt
(162)
Maxwell’s equations,
- el
VXH_J;LBtD (163)
VxFE= _EB

After time reversal transformation, it is called time

reversal Maxwell equation,

(164)

VxH =-J—-%
VxE =2B"

Poynting’s theorem of time reversal,

—ﬂEfof-ﬁdF
r

:///(—J;.ET g lomOgav i—1,2...N
v Ot ot
(165)

Q. Self energy principle

Self energy flow should not transfer energy, but ac-
cording to Maxwell’s equations, self energy flow transfers
energy. We can add a time reversal wave to Maxwell’s
equation so that the self energy flow does not transfer
energy. The self energy flow is canceled by the time re-
versal wave, which is called the self energy principle, that
is,

f/ #E x H; - ndF+#ET><HT Adl) = 0
t=—o00
(166)
/ dt///(Ji-Ei—JZ-Ef):O
t=—00 1%

(167)
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8 T‘a T T‘a T
/ dt/// D+ H; - Bi~E] = D -H - B

=0 (168)

When we add the time reversal wave, the self energy
flow radiation becomes zero. The above formula is called
the self energy principle.

R. Reactive power wave

The electromagnetic and magnetic fields of this wave
have a phase of 90 degrees. If it’s a plane wave, for ex-
ample

H = Hyexp(jw — jkx)y (169)

E = jnoHo exp(jw — jkx)(—2) (170)

ExH" = jnoHo exp(jw—jkz)(—2)x (Ho exp(jw—jkz)))*

(171)
= jnoHoHo" % (172)

Hence,
RExH")=0 (173)

R is taking the real part. This wave is a reactive power
wave. The real part of the Poynting vector of the reactive
power wave is zero. The average radiated power of the
wave of reactive power is 0.

S. Equivalence of reactive power wave and time
reversal wave

We know that the Maxwell’s equations without con-
sidering the source is,

0
VXE——EB

0
H=—D

V x 5

If H and E have a phase difference of 90 degrees, half
the time H and E are in the same phase, and half the
time H and E are in the opposite phase (180 degree
phase difference). When the phase is opposite, we can
adjust the phase of magnetic field and electromagnetic
field in Maxwell’s equations as,

0

E=_—
V x 5

B

)dV
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Figure 11. Energy flow curve of reactive power wave.

H=—-——D
V x o

This is actually a time reversal wave. The Poynting
vector of the time reversal wave is in the opposite direc-
tion to that of the normal wave. Therefore, in half of a
cycle, the energy flow emitted by the normal wave shoots
into the whole space. In the other half of a cycle, the time
reversal wave can be used to return the energy flow from
the whole space to the light source or the light sink.

We know that there is a certain time difference be-
tween the time reversal wave and the original wave. Even
if there is a wavelength error between the time reversal
wave and the original wave, the energy can still be re-
turned. So all the energy still returns to the light source.

We find that the period of reactive power wave can be
divided into four parts. Two of them are positive, and
the other two are negative. Therefore, this wave is a wave
with positive energy propagation for half of a period, and
a wave with negative energy propagation for the other
half. This wave can transmit energy to space, but the
energy is not lost, because the energy returns in a time
reversal process. This is called reverse collapse. Reactive
power wave can replace the combination of normal wave
and time reversal wave.

In the figure below, red is the curve of electric field
and blue is the curve of magnetic field. There is a 90
degree phase between them. Green is the magnitude of
Poynting vector of electric and magnetic fields. We will
find that the green power changes sign twice in a cycle.
Twice is positive and twice is negative. Therefore, half
the time is normal wave and half time is time reversal
wave. The power flow of time reversal wave is negative.
It indicates that although a wave is emitted, it returns
or collapses inversely in time.

In the above figure 11, the electric field E is repre-
sented by red lines, the magnetic field H is represented
by blue lines, and the power of Poynting vector is repre-
sented by green. In one cycle, two ;11 cycles of power are
positive and two % cycles of power are negative. So the
average power is 0. This indicates that Poynting vector
E x H is reactive power.
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T. Self energy flow theorem

Since we can add a time reversal wave, it means that
we can properly adjust the phase of the electric field and
the magnetic field to meet,

—m# By(w) x H'(@)-7dl =0 i=1,2---N (174)
T

R is the real part of the complex number. This indicates
that the self energy flow is a pure imaginary number, i.e.
reactive power.

U. A guess

We know that Maxwell’s equation is,

0
VXE=—pu—-H 175
X Mo ot (175)
0
VxH:J+60§E (176)
For a transformer system this actually means
0
V x El = —/Lo—(Hl + HQ) (177)

ot

That is to say, the induced electric field of the primary
coil is not only related to the magnetic field change of the
primary coil, but also related to the magnetic field of the
secondary coil. The magnetic field of the secondary coil
also contributes to the induced potential of the primary
coil. Therefore,

0
V x Ey = —/LQE(Hl + Hg) (178)
Similarly, there should to have,
0
VXH1:J1+€0§(E1+E2) (179)
1o}
VXH2:J2+€O_(E1+E2) (180)

ot

This is a coupled equations, and we may need to
know the impedance conditions at the secondary coil. At
present, it is not known how to find the solution of this
coupled equations. Therefore, it is considered to simplify
the equations and ignore the magnetic field coupling item
from above two equations,

VxH;=J; +EQ%E1 (181)

0
VXH2:J2+€O§E2 (182)



Let’s split (177,178) into two terms,

0

V x El,l = —/l;ong (183)
0

V x El_Q = —MO—HQ (184)
’ ot
0]

V % E2 1= —/J,Q—Hl (185)
’ ot
0

V x E2)2 = —MQ&HQ (186)

FE ; is the magnetic field H; The magnetic field gen-
erated on the primary coil actually has,

E171 — E1 (187)
0
V x El = —/,Lo—Hl (188)
ot
0
VxH,=J; +€an1 (189)
Similarly, there is,
Ey;9 — Es (190)
VX Ey=— 2H (191)
2= —Ho g2
1o}
VXHQZJQ“I_E()&EQ (192)

So we get two Maxwell equations, solve them sepa-
rately, and finally use

VXE;2=—uy—H>

VX Eg1=—poHy

Get E; 2 and Es 1, they are the contribution of the sec-
ondary coil magnetic field to the primary coil electric field
and the primary coil magnetic field to the secondary coil
electric field. In this way, the coupling problem is solved
separately. The above two equations are equivalent to

dls

10 = —M1,2E (193)
dl

&1 = —Mz,l—l (194)

dt
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The problem is simplified. Now let’s look back at how
we achieved this simplification. We ignored the contribu-
tion that %EQ gives to the magnetic field H;. We also
ignored the contribution that %El gives to the magnetic
field Ho.

This makes the magnetic field H,, Hs to have some
deviation in the calculation. This provides a basis for
us to adjust the phase of the magnetic field. Because we
have not solved the coupled equations, we have neglected
some important things. Therefore, Maxwell’s equation
must be adjusted.

V. Another guess

Here we give another explanation of Maxwell’s equa-
tion, in the equation

0
V x El = —uoa(Hl + HQ) (195)

The electric field is determined by the magnetic field, H;
and H,, where H; Is its own magnetic field, which we
assume can be ignored,

0
V x E1 = _MOE(HQ (196)
Do the same for the formula (177-180), and get,
VxE= —MO%(H2)
— d
VXEQ——,U,OE(Hl) (197)

V x Hq :J1+60%(E2)
Vx Hy = J2+60%(E1)

In this case, the above Maxwell’s equations can be di-
vided into two groups,

VxEy=—puy2(H

- 0o 81) (198)
VXHl—Jlﬁ-EOE(EQ)
VxE =—pui(H

T 0o 32) (199)
VXHQ—JQ"‘EO&(El)

Each of the above groups is Maxwell’s equations,
which can be solved. After these two sets of equations
are solved, Es and H; have the same phase, E; and
Hshave the same phase. This means that the solution
of Maxwell’s equation can guarantee that the Poynting
vector is active power. In this case, it is actually guaran-
teed,

RE, x H} >0 (200)

REs x HY > 0 (201)

This result is correct. In other words, Maxwell’s equa-
tions can be interpreted by other methods.



IV. SOLVE THE ELECTROMAGNETIC FIELD
ACCORDING TO THE AUTHOR’S MUTUAL
ENERGY FLOW THEOREM AND SELF
ENERGY FLOW THEOREM

Finally, we give a method to solve the electromagnetic
field problems according to the mutual energy theory.
We find the electromagnetic field solution satisfying the
following equation,

(1) Mutual energy flow theorem,

= /// ex-JidV
Vi
= ﬂ(el X h; + 6; X hl) -ndl = M el-szV (202)
r Va

Where T is a closed surface or infinite plane which is
the segmentation of Vi and V5. eq,hy,e5,hy are still cal-
culated according to the retarded wave and advanced
wave of Maxwell’s equations, but when the results are
obtained, the phase between the magnetic field and the
electromagnetic field can be adjusted to meet the follow-
ing conditions. Note that the reason why we can adjust
this way is that the author has supplemented Maxwell’s
classical electromagnetic theory with the time reversal
waves, which provides additional degrees of freedom and
allows an appropriate phase difference between the mag-
netic field and the electric field.
(2) Self energy flow does not radiate,

R # (e1 x h?) -7l = 0 (203)
I

R # (€2 x h3) - 7l — 0 (204)
r

Above T is a infinite sphere surrounding Vi or V,. It is
worth mentioning that our above assumptions are differ-
ent from the solutions of Maxwell’s equations in classical
electromagnetic theory, such as the electromagnetic field
of dipole antenna. For the solution of Maxwell’s equa-
tions, the formula (203, 204) is not satisfied. A dipole
antenna radiates energy into space. However, the author
thinks that the classical electromagnetic theory is flawed.
Therefore, we need to have a time reversal wave, and in-
creasing the time reversal wave is equivalent to allowing
a phase adjustment between the magnetic field and the
electric field. We still keep E,Hfor the electromagnetic
fields satisfy the Maxwell’s equation. FE,H is still use-
ful in many situations. We use e and h expresses the
electromagnetic field of the author suggested.

This is the most important correction of Maxwell’s
theory by the mutual energy theory. The fundamental
reason for this correction is that under the condition of
magnetic quasi-static electromagnetic field, there are

&= —jwLI (205)
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(206)

§R// E-J*dV:%/E-dlI*:O
c

RET*) = R(—jwLIT*) =0 (207)

The above formula requires the inductance L to be a
positive real number. Mutual energy theory requires that
this clause can still be guaranteed when the transition
from magnetic quasi-static field to radiated electromag-
netic field occurs. Thus, according to Poynting’s theo-
rem, there are formulas (203, 204). These equations also
makes the retarded wave and advanced wave obtained
from the mutual energy theory different from the solu-
tion of Maxwell’s equations. According to the theory of
mutual energy, the retarded wave is the reactive power
wave with 90 degree phase difference between the elec-
tromagnetic field and the magnetic field, rather than the
active power wave of the solution of Maxwell’s equations.
The task of energy transfer in the theory of mutual en-
ergy has been completely entrusted to the mutual energy
flow. Self energy flow must be reactive power. If in the
time domain, the above equation is,

—/ dt/// 62'J1dv
t=—00 V1

:/ dt#(61><h2+62><h1)'ﬁdr
t=—00 r

= / dt///u 61'J2dv (208)
t=—o00 Va
and
/ dt # (61 X hl) -ndl’ =0 (209)
t=—o00 r
t=—00 T

The above three formulas are the basic equations used
by the author to solve electromagnetic field problems,
which are replace to Maxwell’s equations in classical elec-
tromagnetic field theory. The author finds that the for-
mula (208) has exactly one degree of freedom, which is
defined by the conditions (209, 210). Therefore, the prob-
lem of electromagnetic field can just be solved, and there
is no situation of over restriction. It is worth mentioning
that the solution of this set of equations is exactly a set
of retarded waves from the source and advanced waves
from the sink. This retarded wave and advanced wave
are obviously different from the retarded wave solved
by Maxwell’s equations. Because the retarded wave and
advanced wave of the author are reactive power waves,



the solution of Maxwell’s equations is active power wave.
For reactive power wave, although the wave still carries
the energy of electromagnetic field to any place in space,
these energy are returned to the source or sink by time
reversal. The average Poynting energy flow of reactive
power wave is zero, so it carries energy but does not
transfer energy. This is totally different from the active
power wave satisfying by the solution of Maxwell’s equa-
tions.

However, it does not mean that Maxwell’s equation is
useless. At present, the author has not found a method to
directly solve the above equations. Therefore, the electric
field and magnetic field are still obtained from Maxwell’s
equations, and then the phases of the electromagnetic
and magnetic fields are adjusted to meet the above three
formulas (208, 209, 210). Therefore, Maxwell’s equation
still plays an auxiliary role.

It should noticed that the definition of electric field

e= -2 A1ve

o (211)

is still OK generally. We still can use above formula to
find the electric field. But

h:iVxA

m (212)

is not effective. This means all formula related to mag-
netic field is not effective any more, for example this two
formula,

0
Vxe= &,U,Qh (213)
0
Vxh=J+ —¢e (214)

ot

are not effective. This is also the reason the author use
Lowercase letters e, h to express the new defined elec-
tric and magnetic fields. Capital letters E, Hare left to
express the electric field and magnetic field satisfy the
Maxwell’s equations.

V. EXAMPLES OF CONFLICTS BETWEEN
POYNTING’S THEOREM AND THE PRINCIPLE
OF MUTUAL ENERGY

We use the wave of infinite plane current to study the
conflict between Poynting’s theorem and the principle of
mutual energy, which is also the conflict between Poynt-
ing’s theorem and the theorem of mutual energy flow.
Suppose there are two infinite plane current sheets close
to each other. Plate current 1 is on the left and plate cur-
rent 2 is on the right. It is assumed that plane current
1 radiates retarded waves and plane current 2 radiates
advanced waves, so these two waves are running to the
right.
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A. Electromagnetic field of current J;

J1(z = 0) = exp(jwt)z = Jip exp(jwt)Z (215)
Jo(z = L) = exp(jwt)(—2) = Jao(—2) (216)
L—0 (217)
According to Maxwell equations, there are,
Jio ) A
H, = > exp(jwt — jkz)y (218)
_Jwo . N
E, = o~ exp(jwt — jkx)(—2) (219)

At this time, the electric field and the magnetic field
are in phase.

*
S11right = E1 X HY|right

J ) ) R J ) NN
= (170§ exp(jwt — jkx)(—2)) % (% exp(jwt — jkx)g)

Tio T}
= R0 (220)

noJ10J70

Sitteft = E1 X HY|jept = 1 (—2) (221)

and

By (= 0):7 = ~(m 22 expljist—K0)(~)) (o expl(ji)?)"

J N S\ *
= —(flo%(—z)) (J102)
J10J5;
—( %) (222)
Hence, there is,
E\ x Hi|right - &+ E1 X Hi|jept - (—2)
JioJ§ J10J7
_ MoJ10 105, 41 Mo-10 10 (_4). (—4)
4 4
MoJ10J1g
=210 223
> (223)

So we verified that,

FEqx HTlleft’(_j:)"'El X HTlM’ght'i = —El(fL’ = 0) JT
(224)
This means that Poynting’s theorem has been verified,

//UE1 XHT-ﬁdU:_//aEl(J?:O)-JIdU (225)

It can be seen that Poynting’s theorem holds.
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B. The electromagnetic field of the current J» C. Calculation of the mutual energy flow
Assume,
r< L (226) Sm=E1><H;+E;XH1
J1o . . . 1n0J10 . N
o — L| = —(z — L) 227) = (mo—- exp(jwi—jkz)(—2))x (5 exp(jwt—jkz)y)
2 4 Z

The field of subscript 2 is a leading wave, so it has,

1 n¢Jio . . sk J10 . A
oo (5 (F ) exp(jwt—jka)(=2))"x (= exp(jwt—jkz)g)
H,; = 7exp(jwt—|—jk‘|a: — L|)§ 2
Jio, o Anodio ., 1 mRJ w0
y = (05 (=2) < (7 1229) + (7 () (=2)) < (529)
20 . . N 2 2
=5 exp(jwt — jk(z — L)) (228)
Jio Inodio, 1 m3J10 . 100
J :((770§)(1 02210) 10 OZ;O)) (%))w
By =0 exp(jut — jh(z — L)(=2)  (229)
. ) a7
J2 = J20 exp(jwt)(—z) = El(.L = L)/ZQ
- “Ei(z=0)-J,
*%2—22 exp(jwt — jkL)(—2) (230)
1 n2J _ , o o
(G expliwt — K0)(~2)* (o expljet)?)
J1o )
Jog = 7702—Z2 exp(—jkL) (231) 1o
(4( 7, )(72)" (J102)
Hy = 72 exp(jut — jh(z — L)) (232 27 ¥
2=~ exp(jwt — jk(z — L))j ) 1305,
= ~ 1071010, (237)
1z
1w _ ‘ . )
(Tmﬁew( —jkL))exp(jwt — jk(z — L))y E(z=1)-J;5
— (1022 exp(jwt—hL)(—2))-(10 AL expljwt—kL)(—2))"
0— X 0— X
— 110 exp(jwt — jkx)§ (233) 2 225
1 7
Jio, . Jio . s
= (05 (=2)) - (5 (~2))
1, Jio , , , . 2
Ey =1 (7705 exp(—jkL)) exp(jwt — jk(z — L))(—2)
. Juo J10 |«
(10 5 )(770222)
LID0) et — jho)(—2)  (254)
T 1 7 2 JhoJ3,
= 0 J10-10 (238)
1z

In the same way, we can verify
So we verified that,

//E2 x Hj - ido = —/ Ey(x=0)-Jydo (235) ~Ej(z=0)-J;



=E1XH§+E§XH1

—Ei(x=1) J; (239)
This means that,
_//E;(a:: 0) . Jydo —
//(E1 « H + E5 x Hy) - il
N
- // Bi(z= L) Jido (240)

This verifies the mutual energy flow theorem.

D. Comments on mutual energy flow and self
energy flow

That is to say, we have verified that the mutual energy
flow theorem is valid. In this way, according to Maxwell’s
theory, Poynting’s theorem and the mutual energy flow
theorem are verified. Because the principle of mutual en-
ergy can appear as a sub theorem of Poynting’s theorem.
If Poynting’s theorem holds, the principle of mutual en-
ergy must hold. From the principle of mutual energy,
we can deduce the theorem of mutual energy flow, so
the theorem of mutual energy flow holds. In this way,
Poynting theorem and mutual energy flow theorem are
all established. The problem is that the energy trans-
ferred by Poynting vector plus the energy transferred by
mutual energy flow is more than the energy generated by
current, that is

//E1xH’{-ﬁda—i—//(El><H§+E§><H1)-ﬁd1“
o I

> —//UEl(xzo)-J*{do

//ElxH’{.ﬁda+//(E1xH;+E;xH1)-ﬁdF
o r

> —//UEZ(m =0)-Jido

So the conservation of energy is broken. Therefore,
the mutual energy theorem and Poynting’s theorem can-
not be both true! The classical electromagnetic theory
chooses Poynting theorem. But the choice is self contra-
dictory, because the mutual energy flow theorem can be
derived from Poynting’s theorem. So if Poynting’s the-
orem holds, the mutual energy flow theorem holds. In
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this way, both Poynting’s theorem and the mutual en-
ergy flow theorem are valid. And this means that the
law of conservation of energy does not hold for Maxwell’s
theory!

The author chooses the latter, that is, the mutual en-
ergy flow theorem is established. Time reversal wave is
added to Maxwell’s equations. When the time reversal
wave is added, the self energy flow does not transfer en-
ergy. The time reversal wave actually provides us with
a degree of freedom to adjust the electromagnetic field.
We add a degree of freedom between the electric and
magnetic fields. Then it is proved that the time reversal
wave can be formed by properly adjusting the phase of
the electric field and the magnetic field. After adjust-
ing the phase, the electromagnetic field becomes a reac-
tive power wave. So the Poynting vector doesn’t transfer
energy. This is why the author advocates that the self
energy flow is reactive power wave.

E. Phase of electric field and magnetic field

As we said earlier, the phase of the electromagnetic
and magnetic fields can be properly selected to make the
self energy flow into reactive power. Here, there are two
options: keep the electric field unchanged and change the
magnetic field. 2 select the constant magnetic field and
change the electric field.

The author chose to change the magnetic field without
changing the electric field. This is because for a dipole
antenna, the current element is,

J = JoAzz26(y)d(x) (241)

The far field obtained by solving Maxwell’s equation
is,

- exp(jwt — jkr)

Ej sin(6)6 (242)

r

Hj sin(0)¢ (243)

exp(jwt — jkr)
r
~ stands for proportional and only cares about the

direction of phase and vector When r =0, 0 = 5

_.exp(Jwt) ~_ . exp(jwt R
FERU) 5 oplet)

E

(244)

Ny exp(rjwt) 3 exp(jwt) J (245)

Hj
r
We know that if the magnetic quasi-static field

Br=0)= 2= —%//g%da— —jw//;dawj(—z)
(246)

H(r=0)~7g (247)



After comparison, we found that for the far field from
the magnetic quasi-static field to the radiated electro-
magnetic field, the initial value of the electric field re-
mained the same when r = 0, while the magnetic field
changed. Therefore, the electric field was kept unchanged
and the phase of the magnetic field was changed during
adjustment. Thus, the far-field electromagnetic field of
the dipole antenna is,

ewjfgg%?lﬁjmmmé (248)
B~ SRUCEZRT) 00 (249)

r

~ means proportional to, only cares about the phase and
the direction of the vector. e,h are author suggested
electromagnetic field according the mutual energy theory.

F. DPossible plane wave solutions of mutual energy
flow

1. Find the plane wave solution according to Mazwell’s
equations

For Maxwell’s equation, if the source J is not consid-
ered, there is,

0
VxE_—EB (250)
vxH=-2D (251)
ot

If we already know that the electromagnetic field is a
plane wave

H = Hyexp(jwt — jkx)j
for the electric field,

—jk‘(i’ x H = jOJEQE

—ki x H =wegE (252)
E=—-1x 7’]0H
= noHp exp(jwt — jkx)(—2) (253)

ExH" = (noHp exp(jwt—jkx)(—2))x (Hp exp(jwt—jkx)§)*

= noHoHo*ii‘ (254)
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2. Plane wave solution based on mutual energy theory

According to the mutual energy theory, energy is trans-
mitted by mutual energy flow, which is also composed of
retarded and advance waves. Assuming that both re-
tarded and advance waves are reactive power waves and
plane waves, we can see if they can form a mutual energy
flow to transfer energy. Because the retarded and ad-
vance waves must be synchronized, we assume that they
are both plane waves and propagate in the x direction.

If the source J is not considered,

hl = H10 exp(jwt — ]kl’)g (255)

We assume that there is a phase difference between the
electric and magnetic fields exp(—j¢1)

e = T]0H10 exp(jwt — jkl‘ — j¢1)(—7:’) (256)
We assume that there is a phase difference exp(—j))

between the two magnetic fields, which is arbitrarily vari-
able,

h2 = H20 exp(jwt — jk$ — ]¢)g (257)
Where Hig,Hyy are a positive constants. Sup-
pose that the electric field also has a starting phase

noHzo exp(—j¢2)

ez = noHzo exp(jwt — jkx — jv — jo2)(—2)  (258)
For the mutual energy theory, we know

Rey x h] -2 =0 (259)

Res x hy -5 =0 (260)

§R(el X h; + e§ X hl) -z >0 (261)

First calculate

e1 X hy +e; x h;

= (noHyo exp(jwt—jkx—jo1)(—2)) x (Hao exp(jwt—jkz—ji)g)*

+ (0 Hao exp(jwt—jkr—j—jd2)(—2))" x (Hig exp(jwt—jkx)7)

= (no exp(—j¢1) exp(—jv)"+exp(—jv—jd2)*)noHioHzp®

= (exp(—j(d1—v)+exp(—j(Y+¢2)) )noHioHypd (262)

To make the upper form positive, you get the following,



o1 —Y=0—=19=0¢ (263)

Y+da=0—= o=y =—¢;

Substitute the values above to,

(264)

€1XhT=

(noH 1o exp(jwt—jkr—jd1)(—2)) % (Hio exp(jwt—jkz))"

= (noHi0H10" exp(—jo1)& (265)
Rey x B & =0 exp(—jd) = =5 (266)
Select,
exp(—jo1) = j (267)
hi = Hyg exp(jwt — jkz)j (268)
ey = jnOHlO exp(jwt — ]k‘x)(—é) (269)
hy = Hog exp(jwt — jkx — j9)y
= Hyo exp(jwt — jkx — j1)7
= jHy exp(jwt — jkx)j (270)
ez = 1oy exp(jwt — jkx — jib — joo)(—2)
= noHag exp(jwt — jkx — jo1 + jo1)(—2)
= noHao exp(jwt — jkx)(—2) (271)
Hence,
hi = Hygexp(jwt — jkz)y (272)
e1 = jnoHyo exp(jwt — jkz)(—2) (273)
hy = jHag exp(jwt — jkx)j (274)
es = noHag exp(jwt — jkx)(—2) (275)

Hence,
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e; X h;
= (jnoHio exp(jwt — jkz)(—2)) x (H1o exp(jwt — jkz)7)"

= jnoHioH10"2 (276)

ey X h;
= noHag exp(jwt — jkx)(—2) X (jHa exp(jwt — jkx)g)*

= —JnoHz0HzoZ (277)

Sm =e1 x hy +e5 x hy
= (jnoHio exp(jwt—jkz)(—2)) x (j Hao exp(jwt —jka)j)*
+(noHag exp(jwt — jkx)(—2))* x (Hyoexp(jwt — jkx)y)
= (noH10H20" + noHa0" H10)&

= (2noH10H20")2 (278)

In this way, the self-energy flow is indeed reactive
power, and the mutual energy flow is indeed active power.
Above we get a plane wave solution based on the theory
of mutual energy.

If we choose,

exp(—jg1) = —J (279)

The result is equivalent to aligning the positions of
[e1, h1] and [es, ho], so there is no difference.

Thus, according to the theory of mutual energy, there
is indeed a plane wave solution. In this case the self-
energy flows are reactive power waves, but the mutual
energy flow are with active power.

VI. PHOTON MODEL OF MUTUAL ENERGY
FLOW FOR PLANAR WAVE TRANSFORMER
WITH ELECTROMAGNETIC RADIATION

Firstly, we assume that the electromagnetic field in
photons is a plane wave, so we first establish the photon
model of plane wave.

A. Plane wave generated by light source

It is assumed that a wave propagating to the right is
generated on both sides of the plane current, the retarded
wave is on the right side of the current, and the advanced
wave is on the left side of the current,



]
Y

Figure 12. Plane wave generated by plane current sheet.

1. Right side of current

Plane wave generated by plane current sheet can be
see as following figure 12.
Set the plate current density as
J1 = JlO exp(jwt)é (280)
The magnetic field on the right side of the false current
is,
H, = Hygexp(jwt)y (281)

The magnetic field can be obtained from the Ampere
circuital theorem,

1
H10 = §J10 (282)
The transmitted electromagnetic field is,
H, = Hyoexp(jwt — jkx)j (283)

If, according to Maxwell’s equation, the electric field
has

V x H1 = waQEl

—jk.ff X H1 = jweoEl (284)
k.
——I X Hl = El (285)
WeEQ
El = —7]0222 X h1 (286)

If the result of Maxwell’s equation is correct, it means
that
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E, = —n0§7 x H4 (287)
Therefore,
E; = —noZ x (Hypexp(jwt — jkz)y)
= noHyo exp(jwt — jkx)(—2) (288)
Eq(z =0) = noHo exp(jwt)(—2) (289)

However, the author considers that according to the
magnetic quasi-static situation,

E1 = —ijl (290)

d
A = // Jlngé (201)
By~ —jz=j(-2) (292)

~ stands for proportional. This formula only relates
to the phase and direction, not the magnitude. In this
paper, it is considered that Maxwell’s equation is wrong,
and the initial phase value of the electric field should be
considered according to the magnetic quasi-static field of
the above formula. Therefore,

ei(x =0) = jnoHgexp(jwt)(—2) (293)
In this way,
e1 = jnoHyg exp(jwt — jkz)(—2) (294)

€1XhT

= JnoHo exp(jwt — jkx)(=2) x (Hio exp(jwt — jkz)g)*

= jnoHioH1o"2 (295)

er X hi-dn~j (296)
the above formula is satisfied,

R(e1 x h]) =0 (297)

R is the real part.



2. Left side of current

1
Hl() = §J10 (298)
The transmitted electromagnetic field is,
hy = Hypexp(jwt — jkz)(—9) (299)
hy = jnoHyo exp(jwt — jkx)(—2) (300)

The above formula is correct. The electric field on the
left is the same as that on the right. In addition,

eq X h‘?l
= jnoHo exp(jwt—jkz)(—=2)x (Hy exp(jwi—jkz)(—7))"

(301)

ex x b+ (—) ~ j (302)

The above formula is correct. The Poynting vector on
the right side of the current should be the same as that
on the left.

B. Plane wave generated by light sink

Figure 13shows the light sink which is plane current
sheet. On its left the advanced wave is produced. On its
right regarded wave is produced.

Two factors should be considered for the wave gener-
ated by the plane current of the sink. The direction of
the current is specified as —Z, current and electric field
E; In direct proportion. The position of the current is
at x = L.

ei(r=L)=e = jnHiexp(jwt — jkL)(=2) (303)

hence,

1 . . .
Jo = —jnoHyo exp(jwt — jkL)

7 (304)

where J is the current intensity of the second plane cur-
rent sheet. Z5 is the impedance of the secondary coil.

1 N I ST .
Jog = Z2.7770H108Xp( JkL) = 77 exp(—jkL)
(305)

J2 = J20 exp(jwt) (306)
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Figure 13. The left side of the plate current produces the
plane wave of the leading wave.

1. Right side of current

Considering that the right side of the current is a re-
tarded wave,

J
hy = % exp(jwt — jkx)g (307)

. . . R

e = jno% exp(jwt — jkx)(—2) (308)
_ Ja . : N
ho,. = — exp(jwt — jk(z — L))y

The negative sign is because the direction of current
J is chosen at (—2) direction

~ Jino % exp(—jkL)

o — ot — k(e — IV
2r 7 exp(jwt — jk(z — L))g
_ JnoJio . o
= ———— exp(jwt — jkx)y (309)
475

o . . S
e = ol expljit — jk(z — L))(—)

jnoie exp(—jkL)
275

— jn, exp(jut — jk(z — L))(~2)

_ oo
JJ 17,

exp(jwt — jkx)(—2) (310)



exp(jwt—jkx)g)* i

€op X h;T
Jio JnoJ10
=((- J)Jno4Z exp(jwt—jka)(—2))x (- i,
J J
_ 2710 7010 \x 4
—](770 4Z2 eXp)( 422 ) x
JioJ5,
3 J10410 4
11
0162,7; (311)
Hence,
R(ear x h3,) =0 (312)
2. The left side of current
Refer to the following formula
J . . .
hy = % exp(jwt — jkx)(—1) (313)
o J . . .
ey = 3770% exp(jwt — jkx)(—2) (314)
We obtain,
~ Jay . . N
hy = 5 exp(jwt — jk(z — L))(—9)
J10 44 exp(—jkL) ‘ . .
=22 exp(jwt — jk(z — L))(—9)
1170
= T exp(jut — jka)(-5)  (315)
47,
. Jap . . .
€2 = —Jl " exp(jwt — jk(z — L))(—2)
jnog exp(—jkL) . ‘ .
= —jno 5 exp(jwt — jk(z — L))(—2)
N/ GEET
= (=4)j 17, exp(jwt — jkz)(—2) (316)
Hence,
N ~.nélo . ) .
ez x hy = ((—J)J exp(jwt — jkz)(—2))
47,
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Figure 14. For the transformer system with two plane cur-
rent sheets, the primary coil current is red, indicating energy
release, and the secondary coil is blue, indicating energy ab-
sorption.

inol
X(_Jno 10

173 exp(jwt — jkx)(—7))

Jnodio
475

= (Bl gy (-

v (-9))

2
N 110

jnOIIO )*.’IA?
475

475

~moholf

1
162573 (817)

hence,

R(ey x ) =0 (318)

C. The calculation of the mutual energy flow

Figure 14 following shows a transformer with double
plane current sheets. The primary coil has a currents
J;1. The secondary coil has a current J,. The distance
between the current is L. Assume the two current pro-
duce all rightward waves. That means there is advanced
wave on the left and there is retarded wave on right.

Considering

0<x<L

I
hy, = % exp(jwt — jkz)) (319)



T . . .
e = ]770% exp(jwt — jkx)(—2) (320)
inol
hy — ~ JMol10 exp(jwt — jkz)(—7) (321)
475
~.meTio
es == (—7)j exp(jwt — jkz)(—2) (322)

475

Sm:€1Xh;+€;Xh1

= (o 22 exp(jit—gka) (—2)x (2222 exp(jiot i)
()30 xp(ot— k) (~2)) % (22 expljut—jhe)g)

.. o Jnol1o . 13110\, J10
(22 x (ZD0ye 4 () B0y (1)
Lol LI
_ o 2410l 241050 o
= (JJ ryrs + ( J)Jno—gz; )
E
2
In the region,
z <0 (324)
hy = Hypexp(jwt — jkx)(—5) (325)
ey = jnoHuo exp(jwt — jkx)(—2) (326)
I
hy = _Jmho exp(jwt — jkx)(—7) (327)
4Z2
2o
er == (—j)j—* exp(jwt — jkz)(~2) (328)
475

szelth;—f—e;Xhll
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Jnod1o

)< (-1

= (jnoHo exp(jwt—jkz)(— exp(jwt—jkx)(—7))"

(=97 explot—jhe)(~2))"  (Hio explst—jhz) ()

= (o Hro(—2))x (= L1010 gy () 00

4Z2 4Z2
= (oo (=)< (= B2 (=) + (B2 () x (Hio(~)
D)
= (o H10) (- 222+ (B0 (1,0)) (~2)
= (B — (B0 00
- )

_ (77(2>Jlo=7iko B 77(2)J10Jik0)£
823 823

= (0)2 (329)
In the region,
x>1L
_ Jo . s

h, = - exp(jwt — jkx)y (330)

. Juo . . .
er=Jm— exp(jwt — jkx)(—2) (331)

_JmoJro . . N
ho,. = — exp(jwt — jkx)g (332)

475
Jio

esr = (—)jmy - exp(jwt — jkz)(—2) (333)

475
szel Xh;T—Fe;T Xhl

JnoJ10

= (o 42 explist—jhe)(—2)) < (~ZI1 exp(jist o))

+((= )17704JZ exp(jwt—jkx)(—2))" X(%exp(jwt—jkx)@)



=(j J10
L) 47, Iy, 2
o J1oy, IM0J10 . 9710 vk, 100y 4
= (U= 17, )+ (( 3)3%422) ()2
_ Jioy, M0J10.\« 9 J10 v, J10 |\ .
2J J* 2.] J*
:(_770 10410 , MoJ10 105
823 873
= (0)2 (334)
Hence,there is,
(0)& x <0
Sy = ng%@ 0<z<L (335)
(0)z x>1L

We have assume Z5 is like a resistance Z5 = Ry. This
means that the mutual energy flow calculated according
to the mutual energy theory is generated on the primary
coil and annihilated on the secondary coil. The nature of
the mutual energy flow is the same as that of photons.

D. The relationship between mutual energy flow
interpretation and Cramer’s quantum mechanics
transaction interpretation

The above formula (331) shows that the mutual energy
flow generate at the plate current J; and annihilate at Jo
place. When we use Poynting vector, we can sometimes
get the correct direction of energy flow, but we can never
describe the nature of energy flow generated at the source
and annihilated at the sink. So the mutual energy flow is
really much more powerful than the Poynting vector. The
mutual energy flow in the above example is very similar
to the photon model [5, 6] given in John Cramer’s quan-
tum mechanics transactional interpretation. In Cramer’s
model, the amount of superposition is the two waves, the
advanced waves and the retarded waves. In the author’s
example, the amount of superposition is two components
of the mutual energy flow,

812 =e1 X h; (336)

521 = e’2‘ X hl (337)

In Cramer’s example, the phase difference between the
advanced wave generated by the light source and the ad-
vanced wave generated by the light sink is exactly 180
degrees, so it is just offset. There is a phase difference of
exactly 180 degrees between the retarded wave emitted
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. JN0J10 .\« ~2d10 0 vl J10 . ' i '
(—2))x(— D +((—) 772_(—2)) ><(_y)by the light sink and the retarded wave emitted by the

light source, so they are just offset. But this 180 degree
phase difference does not give any explanation.

But in the above example of the author, when the wave
running to the right passes through the current J; the
magnetic field is reversed, the reversal of the magnetic
field makes S5; The direction of magnetic filed H; has
changed. When the wave in the running to the right
passes through the current J,, the magnetic field Ho
backward, and S12 reverse, which offsets S5;. In the au-
thor’s mutual energy theory, the 180 degree phase differ-
ence is obviously caused by the opposite direction of the
magnetic field on both sides of the plane current sheet.
So 180 degrees is very natural. Cramer’s model cannot
do this.

In addition, in the author’s model, the radiation power
of the retarded wave and the advanced wave is reactive
power, so they do not transfer energy. Cramer’s model
is only valid in one dimension. The author’s annotation
model will be extended to 3D in the next chapter.

E. Choose whether to adjust the magnetic field
phase or the electric field phase

We said earlier that the phase of the magnetic field
should be adjusted, but in the example in this section,
we kept the phase of the magnetic field and adjusted
the phase of the electric field. In doing so, we can also
prove our theory. For the above example, we can add
a phase to all electric fields and magnetic fields, which
does not affect the calculation of self energy flow and
mutual energy flow. After doing so, we will change from
adjusting the phase of the electric field to adjusting the
phase of the magnetic field. So my above theory is still
valid.

One reason why we chose the above approach is that
we are studying photons. We assume that the electro-
magnetic field in the photon is a plane wave, because the
retarded wave in the photon is led by the advanced wave,
and the advanced wave is led by the retarded wave. Fi-
nally, they all seem to live in a waveguide. We call this
kind of waveguide natural waveguide. Even at the be-
ginning of the photon phenomenon, both the retarded
wave and the advanced wave are spherical waves, which
are in the so-called broadcast mode. Once the two waves
are synchronized, the electromagnetic field in the photon
changes from broadcast mode to a single mode of point-
to-point energy propagation. At this time, the electro-
magnetic field in the photon becomes a quasi-plane wave.
Because the energy flow beam of photons is very narrow,
the light source and sink of photons produce quasi-plane
waves. The dimensions of light source and sink are very
small, so they can not be regarded as current on the in-
finite plane. It should be seen as the electromagnetic
field of dipole antenna. But dipole cannot produce plane
waves. We need to use infinite plate current sheet to pro-
duce the plane wave. However this plane wave actually
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Figure 15. Double dipole antenna system, the red is the trans-
mitting antenna, and the blue is the receiving antenna.

is produced by finite plane sheet current like dipoles. For
this reason, we choose the initial phase of electromagnetic
wave which is similar to that of dipoles.

VII. MUTUAL ENERGY FLOW FROM DIPOLE
TRANSMITTING ANTENNA TO DIPOLE
RECEIVING ANTENNA

Considering that both the transmitting antenna and
the receiving antenna are dipole antennas, the distance
between them is L, as shown in figure 15. The author
uses the computer program language Julia to calculate
the Poynting vector and the mutual energy flow of the
double dipole antenna. The author mainly uses symbolic
operation, and uses machine language to complete the
substitution operation, simplification, the vector cross
multiplication and conversion from spherical coordinates
to rectangle coordinates.

Note that during manual calculation, in order to facili-
tate the selection of the downward direction of the dipole
of the receiving antenna, since this chapter is a computer
operation, the dipole direction of the receiving antenna
is still oriented in the upward direction, which is more
convenient for computer calculation.

We new that dipole 1 sends the retarded wave, dipole
2 sends the advanced wave, only far field is considered.

A. Electromagnetic field of dipole transmitting
antenna.

The transmitting antenna is at the position,

z=0,y=0,2=0 (338)
Assume the current is,
I, = Loz (339)

The length of the dipole is,
Az (340)
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the far field of the magnetic field is,

. sin 6

hg, = Hygexp(—jkry) . ! (341)

the far field of the electric field is,
eg, = jnot e, (342)

among them
IloAZ

Hy = 343
1o = 208 (343

Note in the above formula, the phase factor j of ep,is
determined according to the magnetic quasi-static field,
not according to the Maxwell’s equations. Magnetic
quasi-static field

E=—jwA~j(-2) (344)

The phase of Magnetic field hg, is also determined
according to the magnetic quasi-static field, not by
Maxwell’s equations.

In the case of § = 0,

6= (—2) (345)

We get the ¢ component of the magnetic field and 6
component of the electric field, and the other components
are zero, so we can form the electric field vector and the

magnetic field vector, and represent the electromagnetic
field in spherical coordinates,

hy = [hr 0, h(; +— 0, h¢1] (346)
e1 = [e, < 0,e9,,€4, < 0] (347)
Calculate Poynting vector,

Sl =e; X h1 (348)

Then symbolic calculation result is,

.2

L , sin“(6

S, 7= j’r]oHloHlo# (349)

1

It is found that Poynting vector is a pure imaginary
number and reactive power.

B. Conversion from spherical coordinates to
rectangular coordinates

21 = 71 8in 6 cos ¢
y1 = 71 8in 61 cos ¢, (350)

z1 = ricosfy



= VAT AT

01 = arccos £t (351)
¢1 = arctan(y;, 1) = atan2(yy,x1)
T = sinf; cos P17 + cos b cos ¢é — sin ¢d3
§ = sinfsin¢f + cos Osin ¢ + cos ho (352)
2 = cosbf —sin6f
Hence,
71 =sinfy cos p1Z + sin by sin ¢y + cos 61 2
1 = cos0; cosp1d + cos by sing 1§ —sind2  (353)
¢21 = — sin ¢Z + cos ¢y
define:
sinf cos ¢, sinfsin¢, cosb
M = | cosfcos¢, cosfsingp, —sind (354)
—sin ¢, —cos ¢ 0
IHM,€:617¢:¢1
7 7
ol =M|7g (355)
) z

T
hy = [hiry, hig, . hig,) = [hir,, higy, hig, |M ?2
2z

z
= [617’176191761¢1]M :g
z

T
€1 = [€1r1,€1917€1¢1] 61
¢

Calculate the modulus of Poynting vector in rectangu-
lar coordinate system, the computer symbolic calculation
result is,

-2
sin“ (60
1541l = ex x ha = poE2, SO

" (358)

The above formula is the same as the value in spherical
coordinates, so it is correct. This step is used for checking
calculation.

C. Calculation current I

Receiving antenna is at the position of,

x=Ly=0,2=0 (359)
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We assume that the current of the receiving antenna
dipole is proportional to the field of the transmitting an-
tenna dipole,

™

0 = 2,¢1 =0 (360)
I20 ~ 61(.1'1 = L,yl = O,Zl = 0) (361)
1 A
I = T €161 (1 =L,y1 = 0,2, =0)0
2
=e19,(x1 = L,y1 = 0,21 = 0)(—2)
1 cexp(—jkL) . s R
= R_Q,,]OHlO]% s1n(91 = 5)(—2)
1 exp(—jkL)
& noH1o0J T (—2) (362)

Where RL is the ratiol o and e1g,. The ratio is related
to the circuit of the receiving dipole antenna. We assume
that it is a pure real number. We can always adjust the
impedance of the receiving antenna to make it a pure real
number, so the problem can be simplified. Therefore,

1 exp(—jkL)

Ig = ——noH 363
20 R2770 10J] I ( )

D. Calculation of Hyg

Where Rs Is the impedance of the receiving antenna.
We assume that the inductive reactance of the receiv-
ing antenna is approximately zero. Hence,the impedance
receiving antenna is Z, = Rs. First calculate the

xr1 = L,yl = O, z1 = 0 (364)
Considering,
- IgoAZ
Hyo = o) (365)
There is,
Az Az 1 exp(—jkL)
Hyy = o Iy = o) (—R2770h10J i )

_ E(_i Az -—eXp(_jkL))
T RN T

(Az)? ol exp(—jkL)

7T TR, L (366)



E. Electromagnetic field of dipole receiving
antenna

the magnetic field is, (note the advanced wave)

. sin 6
h2¢2 = Hoyg eXp(-f—]k‘Tz) 7”2 2 (367)
The electric field is
€20, = jnohzg, (368)

Note that the phase factor j in the above formula is
determined according to the magnetic quasi-static field

E=—jwA~j(-2) (369)
In the case 6 =0
6= (-2) (370)

Represent the electromagnetic field vector in spherical
coordinates,

hy = [h2r2 0, h292 <+~ 0, h2¢2] (371)
€y = [82T2 < O, €20, €2¢y 0] (372)

Calculate Poynting vector
52 = E2 X H2 (373)

Calculated results,
.2
R . , sin“(f

SQ - = j’l]QHQ()HQO ( 2) (374)

T2

In this way, Poynting vector is a pure imaginary num-
ber, which is reactive power. Switch to rectangular coor-
dinate system

Ry = [har, hag, hag] M (375)

N> D B>

€y = [€2T, €20, €2¢]M (376)

WD R

Calculate the Poynting vector modulus, the computer
symbolic calculation result is,

T .
11Sa = |le2 x hal|= %\/asm(@g) (377)
2

where

G = (HyHj3)*

(sin®(62)  sin® (g2)[? + sin® (62)] cos® a2 + | cos(62)[?)

The above formula verifies that the calculation of
Poynting vector of dipole 2 is correct.
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F. Calculation of special value of mutual energy
flow between two dipole antennas

Now the fields of the two dipole antennas are converted
to the rectangular coordinate system, so the mutual en-
ergy flow can be calculated in the rectangular coordinate
system,

Sm =e1 X h; + e; X h1 (378)

This formula is too long to write, so we put in the
special value

[|Sm|l(x1  x,y1 + 0,21 0,29 + L—x,y3 + 0,29 + 0,z = 0.5)

5.656854249
= T\/ETIO\/ H20H§0|H10| (379)
Where 1 < x means to replace ;1 with x. Let’s
consider
Iy (Az)? mol1g exp(—jkL)
Hoyp =2 = — 381
S A CR TS L (381)
Consider
21
kE=— 382
- (32)
re= /o] + i + 27 (383)
ro = \/T3 +y3 + 23 (384)
21
01 = arccos(—) (385)
1
22
0y = arccos(—) (386)
T2
¢1 = arctan(y;, 1) = atan2(yy, x1) (387)
o = arctan(ys, z2) = atan2(yz, x2) (388)

This formula is too long to write, so it is substituted
with a special value

S,, = e1 X h; + e; x hq (389)



(Smg)(l'l — T,Y1 — O,Zl < 0,.1’2 — L—ZL‘,yQ «— 0,22 < 0)

(390)

=0

(Si2)(@y + z,y1 + 0,21 + 0,29 + L—x,ys < 0,29 + 0)

(391)

(SpZ)(x1 < 2,91 < 0,21 + 0,29 + L—2,9y2 < 0,20 + 0,2 < 0.5)

=1.0
In the last equation, we assume that

11207](2) E)Bi _

Ry ( )T (392)

These are also to verify the correctness of the program.
Because the formula is too long, we can only judge its
correctness with special values.

G. Calculation of general value of mutual energy
flow between two dipole antennas

Three components of mutual energy flow can be ob-
tained,

Spa = Sy - & (393)
Smy = Sm -7 (394)
Sz = S - 2 (395)
Considering the substitution relationship,
2m
k=— 396
d (306)
21
61 = arccos(—) (397)
T1
22
o = arccos(—) (398)
T2
¢1 = arctan 2(yy, 1) (399)
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@2 = arctan 2(yz, x2) (400)
r =\ x? +yi + 2} (401)
ro = \/T3 + Y3 + 23 (402)
T = (403)
y1=0 (404)
21 =2 (405)
ro=x—1L (406)
y2 =0 (407)
29 =Z (408)
Az
Hy=Lo— 4
=T (109
Az 2r 1
Hao = —j(53) ol g exp(—j~-L) 7 (410)
z =1, %L (411)
z=z %L (412)
A=\ xL (413)

In the above subscript r means relative value. Further-
more,

LongAZ°

1
o, = | (414)

A-=0.1 (415)

The last formula is equivalent to that we take the wave-
length as one tenth of the distance L between the two
dipoles. After the above substitution, the mixed Poynt-
ing vector is only the relative coordinate z,,z, The rela-
tive coordinates are using L as the unit.

Smae = Smx(-'rm ZT) (416)



Sy = Smy(Tr, 2r) (417)
sz == mz(xrv zr) (418)

We know that,
Smy =0 (419)

We need to draw a picture to show Sp4,9m. in
.z, In order to facilitate the use of the following two-
dimensional vector fields,

Ve = RSpma(ar 2 + y) (420)
Vy = RSy (2 < 2,2, < ) (421)

The modulus of mutual energy flow is defined as
V(z,y) =/ VZ+V}? (422)

The figure below shows the modular and vector values
of the mutual energy flow. Note that the figure above is
drawn under certain the conditions,

Ar=0.1 (423)

But the author found that the following figure is ac-
tually the same as \,. It doesn’t matter. As long as we
take the L value as 1, no matter A, Is 0.1 or 0.01, and
the following figures are basically the same. That is to
say, as long as L is drawn on the graph as a unit, the
shape of the photon of the mutual energy flow is basi-
cally unchanged. Of course, this actually means that if
the distance L increases by N times, the mutual energy
flow photons will extend N times along the connecting
line of the two dipoles. After this extension, it can ac-
tually be regarded as a plane wave around the axis. It
can be seen from the figure that the direction of mutual
energy flow can be opposite at some places away from
the axis. But only on the axis, the mutual energy flow
has a large value. And the direction is from the source
to the sink.

It can be seen from the figure that the mutual energy
flow does maintain a relatively large value on the con-
necting line of the two dipoles, especially at the source
and sink. These mutual energy flows in the two points
are represented as particles. The mutual energy flow in
other places is relatively small.

The previous figure does not give the value of the mod-
ulus of the mixed Poynting vector. On the other hand,
sometimes we need to know the direction of the vector at
each point. The following picture is quite clear. It shows
the properties of particles at the source and sink.

The above two figures actually show the pattern of
photons. This figure is consistent with the author’s initial
estimate. Compare figures 10 and 11.
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source bl Sink —
ey .

Vector value of mutual energy flow in (z,2,)

Figure 17. Modulus and vector values of mutual energy flow
in x,, zr plane.

VIII. CONCLUSION

In this paper, the mutual energy theory of electromag-
netic field is proposed, which comprehensively updates
Maxwell’s electromagnetic theory. Mutual energy the-
ory does not believe that a changing current element can
produce electromagnetic radiation. Because the radia-
tion phenomenon is an interaction, the principle is es-
sentially the same as that of a transformer. The trans-
former has a primary coil and a secondary coil. The
energy flows from the primary coil of the transformer to
the secondary coil. The same is true for electromagnetic
radiation. There are transmitting antenna and receiving
antenna, and the energy flow flows from the transmitting
antenna to the receiving antenna. The antenna system
consists of a transmitting antenna and a receiving an-
tenna, which is equivalent to a transformer system, but
the secondary coil and the primary coil are slightly far
away. The source of light cannot emit light without the
help of an environmental absorber.

This paper reviews the theory of mutual energy.
Firstly, the author introduces the law of conservation of
electromagnetic energy and applies it to the transformer
system. Verify that this law is correct in the transformer



system, and then consider moving the secondary coil of
the transformer to a far place, which leads to the retarded
potential. In order to make the law of energy conserva-
tion hold, the electromagnetic field of the secondary coil
must be the advanced potential. This proves that the ad-
vanced wave exists. The wave equation can be obtained
by using the retarded potential and the advanced poten-
tial, and then the Maxwell’s equations can be derived
by using the wave equation, from which the principle of
mutual energy can be derived. The theorem of mutual
energy flow is derived from the principle of mutual energy
and the law of conservation of energy, and the conclusion
that mutual energy flow does not overflow the universe is
drawn. In addition, by comparing the principle of mutual
energy with the Poynting theorem of N current elements,
it is found that the conservation of energy can be satisfied
only when the self energy flow is zero. Therefore, the self
energy flow must be zero. However, according to the so-
lution of Maxwell’s equations, the self energy flow is not
zero. For example, the Poynting vector of any antenna
is indeed not zero. In order to make the self energy flow
zero or not transfer energy, it is necessary to introduce
a time reversal electromagnetic wave to counteract the
self energy flow. This time reversal self energy flow is
a modification of Maxwell’s equation by mutual energy
theory.

Furthermore, the author finds that if the self energy
flow is reactive power, the self energy flow can be zero if
the average value of the energy flow is zero. Therefore,
an electromagnetic field and its time reversal electromag-
netic field can be replaced by a wave of reactive power.
This gives the author a new degree of freedom, that is,
to properly adjust the phase between the electric field
and the magnetic field so that Poynting’s law is reactive
power, so that the self energy flow does not radiate. For
example, for a dipole antenna, the initial phase of the
far field of the original electric field and magnetic field
is j. The author finds that the phase of the magnetic
field can be adjusted to 1 according to the quasi-static
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magnetic condition, so that the phase difference between
the electric field and the magnetic field is 90 degrees. In
this way, the Poynting vector of the dipole antenna is a
pure imaginary number, so it is reactive power. In the
same way, the advanced wave of the receiving antenna
can also be adjusted to reactive power wave.

After the adjustment of the self energy flow, the mu-
tual energy must still be the active power. We found that
this was just possible. In this way, the mutual energy
flow between the transmitting antenna and the receiv-
ing antenna is the active power. That is, the energy flow
from the transmitting antenna dipole to the receiving an-
tenna dipole is also active power. In fact, mutual energy
flow is photon. Because it transmits energy from point
to point. It is generated at the source and annihilated
at the sink. In addition, the mutual energy theory also
solves the problem of wave collapse. According to quan-
tum mechanics, the wave collapses at the annihilation
of the particle. The self energy flow in the collapse and
mutual energy theory is reactive power, and the energy
of photons transferred by mutual energy flow is exactly
equivalent. Therefore, the mutual energy theory also well
explains the wave collapse phenomenon.

The author has also described the mutual energy the-
ory in the previous theory. The difference between this
paper and the previous theoretical paper is that this
paper gives two calculation examples. One is a double
plane current sheets transformer system. One is a dual
dipole antenna system including a transmitting antenna
and a receiving antenna. From these two examples, it is
clearly proved that the mutual energy theory is correct,
and Maxwell’s classical electromagnetic theory should in-
deed be revised. This correction not only adds the energy
conservation law, the principle of mutual energy, the the-
orem of mutual energy flow and other theories, but also
modifies the retarded wave and advanced wave obtained
from Maxwell’s equations to make them reactive power
waves. In the above author’s mutual energy flow the-
ory, Maxwell’s equations are still useful, but it become
auxiliary equations instead of physical equations.
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