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Abstract

In this paper I offer an algebraic proof by contradiction of Fermat’s Last

Theorem. Using an alternative to the standard binomial expansion, (a+b)n =

an + b
n∑

i=1

an−i(a + b)i−1, a and b nonzero integers, n a positive integer, I show

that a simple rewrite of the equation stating the theorem,

Ap + (A + b)p = (2A + b− c)p,

A, b and c positive integers, entails the contradiction of two positive integers

that sum to less than zero,

(2f + g)(f + g)(f + g + b)

p−2∑
i=1

(2f + g)p−2−i(3f + 2g + b)i−1

+ (f + b)(f + g)(3f + 2g + b)p−2 + fb(3f + 2g + b)p−2 < 0,

f and g positive integers. This contradiction shows that the rewrite has no

non-trivial positive integer solutions and proves Fermat’s Last Theorem.
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1 Introduction

To prove Fermat’s Last Theorem, it suffices to show that the equation

Ap + Bp = Cp (1)

has no solution for A, B, C and p positive integers, A, B and C pairwise relatively prime,

p ≥ 3 and prime [3, pp. 1, 2].

Wiles [5], and Taylor and Wiles [4], used Galois representations, Frey’s elliptic curves

and the modular forms associated with them, and Wiles’ demonstration of the validity of

the Shimura-Taniyama Conjecture, to prove the theorem [3, pp. 366-374]. Much of the

mathematics involved was developed after World War II. Excellent earlier work, beginning

in the late 18th century [3, pp. 24], resulted in proofs of the theorem for many exponent

powers, but not a general proof, and “led to the creation of the theory of algebraic

numbers” [3, pp. 366]

The proof by contradiction I offer below employs algebra that would have been avail-

able to Fermat in the 17th century. Using an alternative to the standard binomial expan-

sion, (a + b)n = an + b
n∑

i=1

an−i(a + b)i−1, a and b nonzero integers, n a positive integer, I

show that a simple rewrite of equation (1),

Ap + (A + b)p = (2A + b− c)p,

A, b and c positive integers, entails the contradiction of two positive integers that sum to

less than zero,

(2f + g)(f + g)(f + g + b)

p−2∑
i=1

(2f + g)p−2−i(3f + 2g + b)i−1

+ (f + b)(f + g)(3f + 2g + b)p−2 + fb(3f + 2g + b)p−2 < 0,

f and g positive integers. This contradiction shows that the rewrite has no non-trivial

positive integer solutions and proves Fermat’s Last Theorem.
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2 Proof

2.1 Lemma: Alternative Binomial Formula

An alternative to the standard binomial expansion formula [2, p. 9] for a and b nonzero

integers, n a positive integer, is

(a + b)n = an + b

n∑
i=1

an−i(a + b)i−1. (2)

The validity of the alternative binomial formula can be demonstrated using the formula

for the sum of a finite geometric series [1, p. 10], Sn =
d(1 − rn)

1 − r
, with d = 1 and

r =

(
a

a + b

)
, as follows,

an + b

n∑
i=1

an−i(a + b)i−1 = an + b(a + b)n−i

n∑
i=1

an−1(a + b)i−1

(a + b)n−1

= an + b(a + b)n−i

n∑
i=1

(
a

a + b

)n−i

= an + b(a + b)n−i

[
1 −

(
a

a+b

)n
1 −

(
a

a+b

) ]

= an + b(a + b)n−i

[
[(a + b)n − an](a + b)

b(a + b)n

]
= an + (a + b)n − an

= (a + b)n.

2.2 Contradiction

I now show that a simple rewrite of Fermat’s equation (1) entails a contradiction: two

positive integers sum to zero.

Without loss of generality, I rewrite equation (1) as

Cp − Ap −Bp = 0,

Cp − Ap − (A + b)p = 0,

(A + (A + b))p − Ap −Bp = (2A + b)p − Ap − (A + b)p > 0,
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(2A + b− c)p − Ap − (A + b)p = 0, (3)

(A + b) = B, (2A + b− c) = C, b and c positive integers.

In the componential rewrite, equation (3), if c = A, then −Ap = 0, and if a = A+d, d

a positive integer, then (A+ b−d)p−Ap− (A+ b)p = 0. Therefore, c = A− f , A = c+ f ,

f a positive integer, and equation (3) becomes,

(c + 2f + b)p − (c + f)p − (c + f + b)p = 0, (4)

Application of the alternative binomial formula equation (2), to the second rewrite,

equation (4), yields

(c + f + b)
(
(c + 2f + b)p−1 − (c + f + b)p−1

)
+ f

(
(a + 2f − b)p−1 − (c + f)p−1

)
− c(c + f)p−1 = 0,

(c + f + b)f

p−1∑
i=1

(c + f + b)p−1−i(c + 2f + b)i−1 + f(f + b)

p−1∑
i=1

(c + f)p−1−i(c + 2f + b)i−1

− c(c + f)(c + f)p−2 = 0,

(c + f + b)2f

p−2∑
i=1

(c + f + b)p−2−i(c + 2f + b)i−1

+ (c + f)f(f + b)

p−2∑
i=1

(c + f)p−2−i(c + 2f + b)i−1

(c + f + b)f(c + 2f + b)p−2 + f(f + b)(c + 2f + b)p−2 − c(c + f)(c + f)p−2 = 0.

(5)

In order for equation (5) to sum to zero, however, the negative term must be equal

in value to the sum of all of the other terms. Thus the last line of equation (5), with its

terms regrouped, must sum to less than zero,

2f(f + b)(c + 2f + b)p−2 + cf
(
(c + 2f + b)p−2 − (c + f)p−2

)
− c2(c + f)p−2 < 0.

2f(f + b)(c + 2f + b)p−2 + cf(f + b)

p−2∑
i=1

(c + f)p−2−i(c + 2f + b)i−1 − c2(c + f)p−2 < 0,
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2f(f + b)(c + 2f + b)p−2 − c2(c + f)p−2 < 0.

Therefore,

c2 > 2f(f + b), c > f, c = f + g,

g a positive integer.

The second rewrite thus becomes,

(3f + 2g + b)p − (2f + g)p − (2f + g + b)p = 0. (6)

Application of the alternative binomial formula, equation (2), to the third rewrite,

equation (6), then yields,

(2f + g + b)
(
(3f + b + g)p−1 − (2f + b + g)p−1

)
+ f

(
(3f + b + g)p−1 − (2f + g)p−1

)
(2f + g)p−1 = 0,

(2f + g + b)(f + g)

p−1∑
i=1

(2f + g + b)p−1−i(ef + 2g + b)i−1

+ f(f + g + b)

p−1∑
i=1

(2f + g)p−1−i(3f + 2g + b)i−1 − (f + g)(2f + g)p−1 = 0,

(2f + g + b)2(f + g)

p−2∑
i=1

(2f + g + b)p−2−i(3f + 2g + b)i−1

+ f(2f + g)(f + g + b)

p−2∑
i=1

(2f + g)p−2−i(3f + 2g + b) + (2f + g + b)(f + g)(3f + 2g + b)p−2

+ f(f + g + b)(3f + 2g + b)p−2 − (f + g)(2f + g)(2f + g)p−2 = 0.

Again, it must be that,

(2f + g + b)(f + g)(3f + 2g + b)p−2 + f(f + g + b)(3f + 2g + b)p−2

− (f + g)(2f + g)(2f + g)p−2 < 0.

Application of the alternative binomial formula, however, yields a contradiction,
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(2f + g)(f + g)
(
(3f + 2g + b)p−2 − (2f + g)p−2

)
+ b(f + g)(3f + 2g + b)p−2

+ f(f + g + b)(3c + 2g + b)p−2 < 0,

(2f + g)(f + g)(f + g + b)

p−2∑
i=1

(2f + g)p−2−i(3f + 2g + b)i−1

+ (f + b)(f + g)(3f + 2g + b)p−2 + fb(3f + 2g + b)p−2 < 0,

two positive integers sum to less than zero.

This contradiction invalidates the three componential rewrites, equation (3), (4) and

(6), and their source, equation (1), and proves Fermat’s Last Theorem: equation (1) has

no nontrivial positive integer solution.
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