
Simple O(1) Query Algorithm for Level Ancestors

Sanjeev Saxena∗

Dept. of Computer Science and Engineering,

Indian Institute of Technology,

Kanpur, INDIA-208 016

July 25, 2022

Abstract

This note describes a very simple O(1) query time algorithm for finding level ancestors. This is basically a

serial (re)-implementation of the parallel algorithm.

Earlier, Menghani and Matani described another simple algorithm; however, their algorithm takes

O(log n) time to answer queries.

Although the basic algorithm has preprocessing time of O(n log n), by having additional levels, the

preprocessing time can be reduced to almost linear or linear.

Keywords: Level Ancestors; Rooted Trees; Algorithms; Graphs; Euler Traversal

1. Introduction

In the level ancestor problem, we are given a rooted tree, which is to be preprocessed to answer queries of

the type:

find the ithancestor of a node v.

Several sequential and parallel algorithms are known for this problem [6, 2, 4, 8, 1, 9].

This note describes a very simple O(1) query time algorithm for finding level ancestors. This is basically

a serial (re)-implementation of the parallel algorithm of Berkman and Vishkin [6]. Ben-Amram [2] also gave

a serial version of the parallel algorithm [6]; however, the proposed description of the “basic” constant-time

algorithm is still simpler and more complete.

Earlier, Menghani and Matani [9] described another simple algorithm. However, their algorithm takes

O(log n) time to answer queries.

Although the basic algorithm has preprocessing time of O(n log n), the preprocessing time can be reduced

∗E-mail: ssax@iitk.ac.in

1



to almost linear by having additional levels. The bound can be made linear by constructing a lookup table

of all possible instances of small size [5].

Many steps of the parallel algorithm [6] have alternate, simple serial implementations. In serial case,

some parameters can also be changed. We modify the size of the Near array (from
√
k to k). And we do not

require two other arrays used in the parallel algorithm [6].

Some preliminary techniques are discussed in Section 2. The basic O(n log n) preprocessing algorithm is

discussed in Section 3. This is used to get O(1) query algorithm in Section 4. The use of two and multi-level

structure is discussed in Section 5. A practical algorithm for “reasonable” values of n (n < 1075) is described

in Section 6.

2. Preliminaries

Given a rooted tree, we first find each node’s level (distance from root). The level of the root is zero, and

if w is the parent of v, then level[v] = 1+level[w]. Levels can be computed in linear time by traversing the

tree.

Next, for each edge between v and its parent w, we create two directed edges (v, w) and (w, v). As

the in-degree of each node is the same as the out-degree, the graph is Eulerian, and an Euler-tour can be

found [10, 3]. Let us put the vertices of the tour in an array. If u and v are two successive vertices, then

level[u] = 1±level[v]; thus, levels of two successive vertices differ by exactly one (in absolute terms).

The ancestor of v at level d is the first vertex at level d in the Euler Tour after (say, after the last)

occurrence of v [6, 2]. Thus, it is sufficient to solve the following Find Smaller (FS) problem [2, 6]:

Process an array A[1 : n] such that, given query FS(i, x), find the smallest j ≥ i such that aj ≤ x.

Berkman, Schieber and Vishkin [7] introduced the Nearest Smallers (NS) problem:

Given an array A[1 : n], for each i, find the smallest j > i such that aj < ai.

The NS problem can be solved in linear time using a stack [7]. Basically, if the current item is larger

than the stack top, then we push it into the stack. Else, keep popping from the stack and make the current

item the nearest smaller of all items popped (as long as the current item is smaller). Finally, we push the

current item. In more detail:

Push n in stack

for i = n− 1 downto 1 do

let t be the stack top

if ai > at then NS[i] = t else push i into the stack.

Items which are in the stack do not have a nearest (right) smaller.

2



3: Preprocessing:Basic Algorithm

Solution for a “representative” set of “FS-queries” is precomputed and stored in tables. In the basic algo-

rithm, depending on the values of i, ai and x, we compute two integers i1 and d, and return (i1, d)thentry,

which will contain the index of the desired item. The table is called [6], FAR-array; actually, it is a two-

dimensional array.

For each i, a different array FARi (of size depending on i) is constructed. The jthentry of the array:

FARi[j] will contain the index of the first location right of ai having a value less than or equal

to ai − j.

Thus, if FARi[j] = h then h is the smallest index (with h > i) such that, ah ≤ ai − j.

Given query FS[i, x] we compute d = ai − x. Then FARi[d] is the first location right of ai having value

less than or equal to ai − d = ai − (ai − x) = x.

If the depth of the tree is d, computing all legal FARi values make take O(nd) time (and space) hence

only some of the FARi values are computed. If i− 1 = s2r, i.e., 2r is the largest power of 2 dividing i− 1,

then we will have 3 ∗ 2r entries in FARi. For each of following numbers:

ai − 1, ai − 2, . . ., ai − 3 ∗ 2r,

we have to find the left most index k, k > i such that ak ≤ ai − j, for j = 1, 2, . . ., 3 ∗ 2r.

All FAR-arrays can be easily computed using Nearest Smallers: Assume NS[i] = q. Then, all items

ai+1, . . ., aq−1 are larger than ai. We can make FARi[1] = q. If d = ai − aq, then we can also make

FARi[2] = q,FARi[3] = q, . . . , FARi[d] = q. In case, we need to find FARi[d+ 1], we again find NS[q] and

proceed.

Thus, if Nearest Smallers are known, then each FAR entry can be filled in O(1) time.

Lemma 1 All “FAR” arrays can be computed in O(n log n) time and space.

Proof: If i− 1 = s2r, i.e., 2r is the largest power of 2 dividing i− 1, then we have 3 ∗ 2r entries in FARi.

As n/2i integers are multiple of 2i and n/2i+1 integers are multiple of 2i+1, it follows that n/2i−n/2i+1 =

n/2i+1 integers are multiple of 2i+1 but not of 2i. Or for n/2i+1 integers, the largest power of 2 which can

divide i− 1 is 2i, hence for these i the size of FARi array will be 3 ∗ 2i(n/2i + 1), or size of all FAR-arrays

together will be: ∑
3 ∗ 2i(n/2i + 1) =

∑
(3n/2) = (3n/2) log n

Or computing all FAR-arrays will take O(n log n) time and space.

4. Query Answering: Basic Algorithm

Let us assume that the query is FS[i, x]. Let d = ai−x. And let 2p be the largest power of 2 not larger than

d, i.e., 2p ≤ d < 2p+1. For query FS(i, x) , we have to find the first item after location i smaller than x. We

proceed as follows:

3



1. Let d = ai − x.

2. Let p be s.t., 2p ≤ d < 2p+1, i.e., 2p is the largest power of 2 not larger than d; or p is the number of

zeroes in d.

3. Let i1 be the largest index less than (or equal to) i s.t., 2p divides i1 − 1, i.e.,

i1 =

⌊
i− 1

2p

⌋
× 2p + 1

4. Return FARi1 [ai1 − x].

Correctness of the above method follows from:

Lemma 2 ([6, 2]) The first element to the right of ai with a value less than or equal to x is also the first

element to the right of ai1 with a value less than or equal to x.

Proof: As i − i1 < 2p, and as at and at+1 can differ by at most one, it follows, that for any i1 ≤ j ≤ i,

aj > ai − 2p > ai − d = x.

Thus, we can answer the query by also reporting FS[i1, x]. And FARi1 [ai1 − x] is the first location right

of ai1 with value less than or equal to ai1 − (ai1 − x) = x. As ai1 − x < ai + 2p− x = d+ 2p < 2p+1 < 3 ∗ 2p,

value FARi1 [ai1 − x] has been computed [6, 2].

5. Two Level Structure: Reducing Pre-processing Time and Space

We divide the array (containing levels) into parts of size k. For each part, we find and put the minimum

value of that part into another “global” array. For these n/k minimum values, we construct a new instance

of the FS-problem. However, the two minimum values may now differ by up to k. Thus, we have to modify

the algorithm of the previous sections [6, 2].

Modified FAR Array

We use the original definition of FARi[j] [6]; we will call the FAR array of this section as “modified” FAR

array to differentiate it from that of Section 3. Let e =
⌊
ai

k

⌋
(thus, (e− 1)k < ai ≤ ek). Again, we let 2r be

the largest power of 2 which divides i− 1. FARi[j] will give the first location right of ai with value less than

or equal to (e− j)k, again for 1 ≤ j ≤ 3 ∗ 2r.

Let i1 be as before. And let e1 =
⌊
ai1
−x
k

⌋
. Then FARi1 [e1] will give the first location right of ai1 with

value less than or equal to (e− e1)k = k
(⌊ai1

k

⌋
−
⌊
ai1
−x
k

⌋)
≤ k

(
1 +

⌊
x
k

⌋)
≤ k + x.

For computing the modified FAR-values, we use another array B[1 : n], with bi = bai

k c. And find

the nearest smallers in the B-array (assuming that in case of duplicates, the first entry is smaller). Now,

e =
⌊
ai

k

⌋
= bi. If FARi[j] = t, then at is the first number right of ai in A with value less than or equal to

(e− j)k = (bi − j)k; or equivalently, at/k is is the first number right of bi in B with value less than or equal

to (bi − j). Thus, the modified FAR-values can be computing as in Section 3, using array B instead (of A).

Remark To make sure that all divisions are by a power of 2, we can choose k to be a number between
1
8 log n and 1

4 log n which is a power of 2.

4



From previous analysis, we know that number of entries of FAR will be O(n′ log n) = O(n
k log n) = O(n),

if k = θ(log n).

Hence, we can preprocess the global array in O(n
k log n+ n

k k) = O(n) time, if k = θ(log n).

We can preprocess each local part in O(k log k) = O(k log log n) time using the algorithm of Section 3.

Near Array

To get the “exact” location, we use another array Near [6]. Neari[j], for 1 ≤ j ≤ k will give the first location

right of ai with value less than ai − j (just like the FAR array of Section 3). As we are storing k entries for

each ai, total number of entries will be O
(
n
k k
)

= O(n). If d = ai − x. Then Neari[d] is the first location

right of ai having value less than or equal to ai − d = ai − (ai − x) = x (provided, d ≤ k).

Again, the Near-table can be filled using Nearest smallers value, with O(1) time per entry.

Query

Again we have:

Lemma 3 ([6, 2]) First element to the right of ai with value less than or equal to x is also the first element

to the right of ai1 with value less than or equal to x.

Proof: As i − i1 < 2p, and as at and at+1 can differ by at most k, it follows, that for any i1 ≤ j ≤ i,

aj > ai − k2p > ai − d = x.

Thus, we can answer the query by also reporting FS[i1, x].As 0 < ai1−x < 3k∗2p, we have 0 ≤ ai1

k −
x
k <

3 ∗ 2p, or 0 ≤ bi − x
k < 3 ∗ 2p.

For queries, we first determine the “local” group (using the global algorithm), and then the index in

the corresponding local group (of k-items) using the basic algorithm. This will give an O(n
k (k log k) =

O(n log log n) preprocessing time and O(1) query time algorithm.

Lemma 4 There is an algorithm to solve FS-problem, in which two items differ by at most one with

O(n log log n) preprocessing time and O(1) query time.

Alternatively, we make k a power of 2 between 1
8 log n and 1

4 log n, and build a table for all possible

instances of size k (see eg, [5]), this will give an algorithm with O(n) preprocessing cost. FS-problem, in

local group is now solved using a table lookup. As the details are very similar to that used for the lowest

common ancestor problem [5], they are omitted.

Lemma 5 There is an algorithm to solve FS-problem, in which two items differ by at most one with O(n)

preprocessing time and O(1) query time.

5



6. Towards more Practical Algorithms

If the value of n is not too large, say n < 1075, then we can get an almost linear time algorithm, which will

be linear for all practical purposes (the value of function for n < 1075 is less than 3). Instead of using the

basic algorithm for local groups, we can use the algorithm of Lemma 4 instead.

We, as before, divide the array (containing levels) into parts of size k = θ(log n). For each part, we find

and put the minimum value of that part into another “global” array. For these n/k minimum values, we

construct a new instance of the FS-problem. The global instance is preprocessed for FS-queries in O(n)

time, as in Section 5.

However, after determining the correct part, the corresponding local problem for the part is solved

using the algorithm of Lemma 4. Each local group is individually preprocessed using method of Lemma 4

in O(k log log k) = O(k log(3) n) time. Or total time for preprocessing all groups is O
(

n
k k log(3) n

)
=

O(n log(3) n).

Remark 1: As log(3) n ≤ 3 for n < 1075, the above algorithm may be faster in practice for all reasonable

values of n.

Remark 2: In fact, by using a constant number of levels, the preprocessing time can be made O(n log(r) n),

for any r > 1, and query time becomes O(r).

References

[1] Stephen Alstrup and Jacob Holm, Improved Algorithms for Finding Level Ancestors in Dynamic Trees.

ICALP 2000: 73-84 (2000)

[2] Amir M. Ben-Amram, The Euler Path to Static Level-Ancestors. CoRR abs/0909.1030 (2009)

[3] B.G.Baumgart, A polyhedron representation for computer vision, Proc. 1975 National computer conf.,

AFIPS conference proceedings vol 44, 589-596 (1975).

[4] Michael A. Bender and Martin Farach-Colton, The Level Ancestor Problem Simplified. Theor. Comput.

Sci. 321: 5-12(2004).

[5] M.A.Bender and M.Farach-Colton, The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds)

Theoretical Informatics. LATIN 2000. LNCS 1776 (2000) Springer, Berlin, Heidelberg.

[6] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. of Comp. and Sys. Scie., 48(2):214-230

(1994).

[7] Omer Berkman, Baruch Schieber and Uzi Vishkin: Optimal Doubly Logarithmic Parallel Algorithms

Based on Finding All Nearest Smaller Values. J. Algorithms 14(3): 344-370 (1993)

[8] P. Dietz. Finding level-ancestors in dynamic trees. In 2nd Work. on Algo. and Data Struc., LNCS 1097,

32-40 (1991).

[9] Gaurav Menghani, Dhruv Matani, A Simple Solution to the Level-Ancestor Problem,

arXiv:1903.01387v2 (2021).

[10] Robert Endre Tarjan and Uzi Vishkin, An Efficient Parallel Biconnectivity Algorithm. SIAM J. Comput.

14(4): 862-874 (1985)

6


