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Abstract : 
   In an infinite set, probabilities are defined on the structure of the set rather 
than on individual elements. We should take into account the property of a σ

-algebra where probabilities are defined. A σ-algebra is closed under ‘only 
countable’ unions, and the axioms of probability assume σ-additivity. If this is 
overlooked, something bizarre could be happened as the proposed three solutions 
of Bertrand's problem. 
   Bertrand's problem is not a paradox, but well defined(posed).
   The suggested three solutions have the common problem of  dividing the 
sample space into an uncountably infinite number of sets and treating them 
equally. If a set is divided into equal(treated) and uncountable infinity, all the 
divided sets have probability 0, so calculating conditional probabilities with these 
sets or comparing them with each other becomes meaningless.
   In a sample space composed of an uncountably infinite number of elements 
such as [0,1], after calculating the number of cases using the sets(J-sequence 
m-collection cover) generated by equally dividing the sample space into finite 
numbers, the probability of an event can be calculated with its limit value(as m 
becomes infinite). The answer of Bertrand's problem is 1/3.



1. Defining Probability of an Infinite Set 

   Infinite sets have characteristics that allow one-to-one correspondence with 
their proper subset. For example, the set of natural numbers can correspond 1-1 
to the set of even numbers in such a way that  corresponds to 2. In the set 
of natural numbers, probabilities can not be defined if each natural number has 
the same probability. 
   If the probability of one natural number is P, for every natural number, the 
probability should be defined as P. In this case, if P=0, the probability of the 
set of natural numbers as sample space becomes 0, and if it is greater than 0, 
the probability of the sample space becomes infinite, which goes against the 
axiom of probability that the probability of the sample space should be 1.

  Then, how is the probability defined in an infinite set? In an infinite set, 
probabilities are defined on the structure(e.g. topology) of the set rather than on 
individual elements.
  When there is a structure in a set and σ-algebra is defined from the structure, 
a basis for defining probabilities is established. 
  The definition of σ-algebra is as follows. 

1.1. Definition of σ-algebra ([4]Rudin 1987)

  Let X be some set, and let P(X) represent its power set.
  Then a subset  ∑ ⊆ P(X) is called a σ-algebra if it satisfies the following 
three properties:
1.11. X is in Σ, and X is considered to be the universal set in the following 
context.
1.12. Σ is closed under complementation: If A is in Σ, then so is its 
complement, X＼A.
1.13. Σ is closed under countable unions: If A1, A2, A3, ... are in Σ, then so 
is A = A1 ∪ A2 ∪ A3 ∪ … .

1.2.  It should be noted here that σ-algebra is closed under ‘only countable’ 
unions and the axiom of probability assume σ-additivity.



Strange things will be happened, if σ-algebra is closed under uncountable unions 
of sets in which the probability is defined.  For exemple, if we could define a 

probability of 
∈
 (where S is an uncountable set,  and  are pairwise 

disjoint) and the probability of each  is greater than 0, then, the probability 

of 
∈
 should be infinite.

2. The Problem of Sampling of Infinite Sets

   As discussed above, the structure of σ-algebra and the property of σ

-additivity are necessary to define a probability of an infinite set. If this is 
overlooked when sampling to calculate the probability, something bizarre could 
be happened. The problem called Bertrand's paradox is an example of this 
phenomenon.

2.1. Bertrand's paradox

  It was proposed by Bertrand, Joseph in his book ‘Calcul des probabilités 
(1889)’ 

  Bertrand’s Problem: Consider a circle with an equilateral triangle inscribed in 
it. What is the probability that a chord selected at random will be longer than 
the side of the triangle? ([2]Drory 2015)

2.11. The suggested three solutions ([6]Clark 2012)

(solution 1) The chords from a vertex of the triangle to the circumference are 
longer if they lie within the angle at the vertex. Since that is true of one-third 
of the chords, the probability is one-third.

(solution 2) The chords parallel to one side of such a triangle are longer if 
they intersect the inner half of the radius perpendicular to them, so that their 
midpoint falls within the triangle. So the probability is one-half.



(solution 3) A chord is also longer if its midpoint falls within a circle inscribed 
within the triangle. The inner circle will have a radius one-half and therefore 
an area one-quarter that of the outer one. So the probability is one-quarter.
([6]Clark 2012:22)

 ([6]Clark 2012:23)

 2.2. Problems of the three proposed solutions

 2.21. Solution 1
  
  A chord is a line segment connecting two points on the circumference. 
Therefore, {a}×{b}∊S×S represents one chord, where a∈ S, b∈S, S is a 
circle.

  The logic of Solution 1 is as follows.
  Solution 1 divides the sample space equally into the uncountably infinite 
number of the sets.
  Let =S×{α} be the divided set by one point α of the sample space 

X=S×S, where S is a circle, then =
∈
 and  are pairwise disjoint.

  Now for the event B ⊂ S×S that satisfies the condition, then 

  B = X∩B =(
∈
)∩B = 

∈
(∩B).

  Since the conditional probability P(B｜) = 1/3 according to the solution, 



and P(∩B) = P(B｜)*P(), thus,

P(B)=P(
∈

(∩B))=
∈

P(∩B)= 
∈

P(B｜)*P()= 1/3
∈

P() =1/3.  

This is the logic of Solution 1.

  However, since 
∈

(∩B) is an uncountable unions of sets,

  P(
∈

(∩B)) cannot be equal to 
∈

P(∩B). Actually, 
∈

P(∩B) is not 

well defined.

  This is because, as discussed earlier, the probability is not well defined in the 
uncountable unions of sets, where the probability of each set is not zero. 
Therefore, it should be P(∩B)=0, and the above logic has no foundation. (∵If 

each P(∩B) > 0, then  P(
∈

(∩B)) becomes infinite)

  
2.22. Solution 2

  The entire sample space is partitioned based on the distance between the 
center of the circle and the midpoint of the chord connecting two points, and 
the probability is calculated based on the length.

  The sample space X = S×S, where S is a circle of radius 


, is partitioned 

according to distance ‘α’ between the center of the circle and the midpoint of 
the chord connecting {a} and {b}, where {a}×{b}∊X. If  is a partition of 

distance ‘α’, then X = 
 ≤ ≤ 

.

In this case, it is divided into two sets based on α. That is, if = 
 ≤ ≤ 

, 

= 
 ≺ ≤ 

 , then X= 
 ≤ ≤ 

 = ∪ . 

  In this case, the event B ⊂ S×S satisfying the condition becomes B=. 

Since P(B) is the ratio of the radius length assigned to the set B to the total 
radius length, thus P(B) = 1/2. More precisely, where B== 

 ≤ ≤ 

 and, 



P(B) =P( 
 ≤ ≤ 

), applying the indifference principle here,  P() is constant 

regardless of α, so it is proportional to the assigned length. This is the logic of 
Solution 2.

  However, as discussed earlier, 0≤α≤1/4π is an uncountable infinity, so it 

cannot be P( 
 ≤  ≤ 

)= 
≤≤

.

  It should be P()=0, therefore, the logic that the probability is proportional 

to the assigned length has no foundation.

   If you draw a picture, this solution does not really conform to the principle 
of indifference. If the same logic is applied by dividing the radius of a circle 
based on a small line segment instead of a point, the corresponding 
circumference length is small when it is close to the center of the circle for a 
line segment of the same size, but when it is far from the center of the circle, 
the corresponding circumference length is get bigger.

  Looking at the length of the circumference corresponding to the same radius 
length in the figure, it can be seen that A1A2 (farther from the center of the 
circle) is much longer than B1B2 (close to the center of the circle). However, 
Solution 2 treats the probability of selecting a point from B1B2 as equal to the 
probability of selecting one from A1A2. The second solution overlooked this 
problem by thinking in terms of points.
 



2.23. Solution 3

  The entire sample space is divided based on the midpoint of the chord, and 
the probability is calculated with the area of the set of midpoints.

  The sample space X = S×S, where S is a circle of radius 


, is partitioned 

according to ‘α’, the midpoint of the chord connecting {a} and {b}, where 

{a}×{b}∊X. If  is a partition of ‘α’, then =
∈
, where A is the interior 

of S.
  Now, if the interior of the inner circle (radius 1/2π)  is C, and the remainder 

is D, where = 
∈
,  =

∈
,, then  = ∪.

  In this case, the event B ⊂ S×S that satisfies the condition becomes B=, 

P(B) is the ratio of the area of C to the area of the whole circle, and since the 
radius of C is 1/2 of the whole circle, the area is 1/4 of the whole circle, thus 

P(B) = 1/4. More precisely, where  B==
∈
, and 

P(B) = P(
∈
), applying the indifference principle here,  P() is constant 

regardless of α, so P(B) is proportional to the area of C. That is the logic of 
the solution.

  However, as discussed earlier, since C consists of an uncountably infinite 

number of points, it cannot be P(
∈
) =

∈
P().

It should be P()=0, therefore, the logic that the probability is proportional to 

the area of C has no foundation.

   If you draw a picture, this solution does not really conform to the principle 
of indifference. If the same logic is applied by dividing the inside of the circle 
S based on a small 'ball' rather than a 'point', for a ball of the same size, when 
this ball is at the center of the circle S, the length of the corresponding 
circumference is the same in any direction but, we see that as the ball moves 



away from the center of the circle S, the length of the corresponding 
circumference varies with the direction, and the corresponding circumference is 
always the same or longer than when the ball is at the center of the circle. 
It treats different probabilities as equal. Since this solution is point-based, it 
overlooks this difference.
 

2.3. The suggested three solutions have the common problem of dividing the 
sample space into uncountably infinite number of sets and treating them equally.
   If a set is divided into equal and uncountable infinity, all the divided sets 
have probability 0, so calculating conditional probabilities with these sets or 
comparing them with each other becomes meaningless.
That is, without considering σ-algebra and σ-additivity, the error of calculating 
the probability in a set with zero probability and adding probabilities of the sets 
by an uncountably infinite number of times.

  In order to solve this problem, we will introduce a new concept called 
'J-sequence' for correct sampling considering the structure of σ-algebra and σ

-additivity, where the probability is defined.
  

3. J-sequence : the number of cases using J-sequence m-collection cover

3.1. The Axioms of Probability
   The followings are generally accepted as the axioms of probability :
   3.11. The probability of an event(E) is non negative, that is, P(E)≥0 
   3.12. Probability of the entire sample space(U) is 1, that is  P(U)=1
   3.13. The assumption of σ-additivity: 

         are disjoint events, then P(
 

∞

) = 
 

∞

P()

  If we consider [0,1]⊂R (real number) as sample space, Lebesgue measurable 
set as an event and the Lebesgue measure as probability, it is consistent with 
the probability axioms.



3.2. Definition: J-sequence
   J-sequence {}  is defined as follows : 
     =0 , =1/2

      =  +1/   (1≤i≤, n≥1)

    If you list J-sequence, that is
       0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16,                  
7/16,  9/16,  11/16,  13/16,  15/16,....  
           
3.3. Definition: J-sequence m-collection
   J-Sequence m-collection  , is defined by

   ={, , , ... , }={0/, 1/, 2/,... ,(-1)/}, 

   where {} is J-sequence.

3.4. Definition: J-sequence m-collection cover
   J-sequence m-collection cover   is defined by

   ={|=(

 

, 



)⊂[0,1], 1≤i≤}

3.5. Definition: J-sequence m-collection cover counting about set A
     J-sequence m-collection cover counting about set A is defined by        
n((A)) (the number of elements of (A)), where   is J-sequence 

m-collection cover and (A)= {｜∈ , (-A)=0} 

     ((-A) is the Lebesgue measure of (-A)=(∩
))

※ From now on, (X) denotes the Lebesgue measure of X.

3.6. Proposition 1 
  For every open interval A= (a,b)⊆[0,1], 

  lim
→∞

n((A))/ = b-a = (A)

   (proof)



      For every open interval A= (a,b) ⊆ [0,1],
       ∃s, t ∈ (natural number) such that

          s/ ≤ a < (s+1)/ , t/≤ b < (t+1)/,

          then, (t-s-1)/ ≤ (b-a) ≤ (t-s+1)/

           

         Since ⊂(a,b)=A for (s+2)≤ i ≤(t-1), then =(

  , 


 )∊(A).

              (where (A)= {｜∈ , (-A)=0})

         If   ≤ s or ≥(t+2), 

            then ∩A=∅, thus (-A)=()=1/, so ∉
            ∴ (t-s-2)≤ n((A))≤ (t-s+1) 

          ⇔  (t-s-2)/≤ n((A))/≤ (t-s+1)/

          →  lim
→∞

(t-s-2)/≤ lim
→∞

n((A))/≤ lim
→∞

(t-s+1)/

          →  (b-a) ≤ lim
→∞

n((A))/ ≤ (b-a) (∵ lim
→∞

(t-s)/=(b-a))

              ∴ lim
→∞

n((A))/ = b-a = (A)

3.7. Lemma 1
  For every B= (a,b) ⊆ [0,1] and for any m∈ (natural number),

   n((B))/  ≤ (B).

  (proof)

    Where ={|=(

 

, 



)⊂[0,1], 1≤i≤} and

          (B)= {｜∈ , (-B)=0},

    since () = 1/,  and (1≤i≤) are pairwise disjoint,

        n((A))/ = 
∈ 

() =( 
∈ 

) ≤ (B)

                  (∵ 
∈ 

⊂ B )



3.8. Lemma 2

  If A∩B=∅, then  n((A∪B))/ ≥ n((A))/ +n((B))/

  (proof) 
   For any , since A∩B=∅, there cannot be (-A)=0 and (-B)=0 at the 

same time. (where ∈  ). That is,  is never counted twice as n((A)) 

and n((B)).

  On the other hand,  counted in n((A)) or in n((B)) is necessarily 

counted in (A∪B).

   That is,  n((A∪B)) ≥  n((A))+ n((B))

   ∴ n((A∪B))/ ≥ n((A))/ +n((B))/

     

3.9. Theorem 1

  For every open set B ⊆[0,1], lim
→∞

n((B))/ = (B)

  (proof)
  Every open set B ⊆[0,1] is a countable, disjoint union of open intervals. That 

is B = 


∞

 , (=(, )⊆[0,1], and if i≠j, then ∩= ∅)

 
  By Lemma 1, 

           n((B))/ ≤ (B)

           ∴ lim
→∞

n((B))/ ≤ (B)

  On the other hand, since 
 

∞

() = (B) , for ∀ε > 0, ∃  such that 

for all q ≥ N,  (B)-ε ≤ 




().

  Futhermore,  by Lemma 2, 




n(())/
  ≤ n((





))/
,



  by Proposition 1, () = lim
→∞

n(())/


   ∴ 




()=




lim
→∞

n(())/
 (by Proposition 1)

               = lim
→∞





n(())/
 

               ≤ lim
→∞

n((




))/
 (by Lemma 2)

               ≤ lim
→∞

n((B))/  (∵




 ⊂ B)

           ∴ (B)-ε ≤ 




() ≤ lim
→∞

n((B))/ 

  From the above,  (B)-ε ≤ lim
→∞

n((B))/ ≤ (B),

  ε>0 is arbitrary, so lim
→∞

n((B))/ = (B).

3.10. Corollary
   If C=(B∪E)-F (where B is open, (E)=(F)=0, and C, B, F⊆[0,1]),

   then, lim
→∞

n((C))/ =(C).

   
    (proof) For every ,  (-C) =0 if and only if (-B)=0.

3.11. Intuition
   The method of J-sequence and other concepts, is essentially equivalent to 
calculating the supremum of measures of all open sets included in the 
probability set. However, for a measurable set, the Lebesgue measure is the 
same as the infimum of measures of all open sets containing it. Therefore, there 
could be some measurable sets to which the method cannot be applied.



4. J-sequence of 2 dimensional measure

4.1. Definition: J-sequence m-collection of 2 dimension
    J-sequence m-collection cover of 2 dimension ×  is defined by     

×={(,)∈[0,1]×[0,1]| ∈ , ∈} (where   is J-sequence 

m-collection )

4.2. Definition: J-sequence m-collection cover of 2 dimension
     J-sequence m-collection cover of 2 dimension ×  is defined by   

 ×={ ×⊂[0,1]×[0,1] | ∈ , ∈}, where   is J-sequence 

m-collection cover.

4.3. Definition:
    J-sequence m-collection cover counting of 2 dimension about set A.
     J-sequence m-collection cover counting of 2 dimension about set A, is 
defined by n( ×(A)) (the number of elements of  ×(A)), where ×   

is J-sequence m-collection cover of 2 dimension and  ×(A) = {×｜×
∈× , (×-A)=0}.

4.4. Proposition 2
    For every open rectangle  A= (a,b)×(c,d) ⊆ [0,1]×[0,1], 

    lim
→∞

n( ×(A))/ = (b-a)(d-c) = (A). 

   
    (proof)
     For any open rectangle
     A= (a,b)×(c,d) ⊆ [0,1]×[0,1],  
     ∃s,t,u,v ∈  (natural number) such that

      s/ ≤ a < (s+1)/ , t/ ≤ b < (t+1)/, 

      u/ ≤ c < (u+1)/ , v/ ≤ d < (v+1)/,

      then, 



              (t-s-1)/ ≤ (b-a) ≤ (t-s+1)/

              (v-u-1)/ ≤ (d-c) ≤ (v-u+1)/ 

      Since  × ⊂(a,b)×(c,d) =A, for (s+2)≤ i ≤(t-1), (u+2)≤ j ≤(v-1), then 

×∊ ×(A) (where  ×(A) = {×｜×∈× , (×-A)=0})

                    
      Futhermore,
      if   ≤ s or ≥(t+2) or j ≤ u or  j≥(v+2),

      then  (×)∩A=∅, thus (×-A)=(×)=1/, 
      so ×∉ ×(A).

 ∴   (t-s-2)(v-u-2)  ≤  n( ×(A)) ≤ (t-s+1)(v-u+1) 

⇔  (t-s-2)(v-u-2)/ ≤ n( ×(A))/ ≤ (t-s+1)(v-u+1)/

→  lim
→∞

(t-s-2)(v-u-2)/ ≤ lim
→∞

n( ×(A))/ ≤ lim
→∞

(t-s+1)(v-u+1)/

→  (b-a)(d-c) ≤ lim
→∞

n( ×(A))/ ≤ (b-a)(d-c)

               (∵ lim
→∞

(t-s)/=(b-a), lim
→∞

(v-u)/=(d-c) )

    ∴  lim
→∞

n( ×(A))/ = (b-a)(d-c) = (A)

   

4.5. Theorem 2
   For every open set B⊆[0,1]×[0,1],

   lim
→∞

n( ×(B))/= (B) 

  (proof)
   Every open set B⊆[0.1]×[0,1] is countable unions of almost disjoint closed 
rectangles(where ‘almost disjoint’ means their interiors are disjoint)

   That is, B = 


∞
 , ( = [, ]×[, ]⊆[0.1]×[0,1]), and 

  if  =(, )×(, ), then  =∪∂  and (∂)=0 



  (where  ∂ =-), and  are pairwise disjoint, 

   so (B) = ( 


∞
 ) = ( 



∞

) =
 

∞

().  

   By the same method of Lemma 1,

     n( ×(B))/ ≤ (B)

   On the other hand, since 
 

∞

() = (B) , for ∀ε > 0, ∃N  such that 

for all q ≥ N,  (B)-ε ≤ 




().

   
   Furthermore, by the same method of Lemma 2,

   




n( ×())/
 ≤ n( ×(





))/
,

       and by Proposition 2, lim
→∞

n( ×())/
 = ()  

∴




()=




lim
→∞

n( ×())/
= lim

→∞





n( ×())/


             ≤ lim
→∞

n( ×(




))/
 ≤ lim

→∞

 ×(B)/

          

   ∴ (B)-ε ≤ 




() ≤ lim
→∞

 ×(B)/

From the above,  (B)-ε ≤ lim
→∞

n((B))/ ≤ (B)

ε>0 is arbitrary, so lim
→∞


 ×(B)/= (B)



5. Solving Bertrand's (Chord) Paradox

5.1. The rigorous definition Bertrand's Problem

    A chord is a line segment connecting two points on the circumference. 
Therefore, {a}×{b}∊S×S represents one chord, where a∈ S, b∈S, S is a 
circle. Of course, every chord represents twice in S×S, such as {a}×{b} and 
{b}×{a}.

   Let S be a circle of radius 


, and let’s define a function  representing 

the length of a chord as follows :
 
    =  

(where  ∈S×S⊂ × ,    is Euclid distance, 

  if   ,     then  =  )
    
 If 0 and 1 are defined as the same point in [0,1], then
 [0,1]×[0,1] becomes the same topological space as S×S.
 In S×S, the Lebesgue measure can also be defined in the same way as in 
[0,1]×[0,1].
    The length of one side of an equilateral triangle inscribed in a circle of 

radius 
  is 

 .

    Then, the set P that satisfies the assumption of Bertrand's Problem is 
defined as follows :

    P = { ∈S×S |   > 
  }

    Now, Bertrand's Problem becomes a problem to find (P), where (P) is 
the Lebesgue measure of P.

5.2. The Applicability of J-Sequence m-collection cover counting of 2 dimension 

    Since  =    is continuous, 



    and set R={r| r > 


 } is open, 

    then P = (R) is open. 

    Therefore, by Theorem 2, lim
→∞

n( ×(P))/=(P), thus P is a set 

where J-Sequence m-collection cover counting of 2 dimension is applicable.

5.3. Probability calculation of set P

   Calculation of lim
→∞

n( ×(P))/, where n( ×(P)) is J-sequence 

m-collection cover counting of 2 dimension about set P.

 Consider [0,1] as S like picture 1.
 For given  and m, if there is a certain  such that for ∀∈ and ∀∈, 

  > 
 , then × ⊂ P, that is, (×-P)=0 and ×∈ ×(P) .

   Let  be the number of ×, where ×∈  ×(P), 

   then n( ×(P)) = 
 



  

   
 Assume   = 1, 

    If  [/3]+3 ≤  ≤ -[/3]-1 ,

    then for ∀∈ and ∀∈,   > 


, thus × ∈ ×(P).    



   ([] is Gaussian function)

   On the other hand, 

    if  ≤ [/3]-1 or  ≥ -[/3]+3, 

     then for ∀∈ and ∀∈,   < 
 , that is, (×)∩P=∅,

thus × ∉ ×(P).

   Let  = { | [/3]+3 ≤   ≤ -[/3]-1},

        = {  |   ≤ [/3]-1 or   ≥ -[/3]+3},

  Since  ≥ n(),

           -2[/3]-3 ≤ 

  Since  ≤ n(
  ), 

            ≤ -2[/3]+3

      ∴ -2[/3]-3 ≤  ≤ -2[/3]+3

  For other  , rotating the circle makes  and  coincide, so   = 

  ∴  n( ×(P)) = 
 



  = ×


    (-2[/3]-3)× ≤ n( ×(P)) =×
 ≤ (-2[/3]+3)×

⇔  ((-2[/3]-3)×)/≤n( ×(P))/≤((-2[/3]+3)×)/    

→  lim
→∞

 n( ×(P))/ = 1/3   

    ∴ (P) =  lim
→∞

 n( ×(P))/ = 1/3  

5.4. The answer is 1/3.
  
   



6. Conclusion
 
  When calculating probabilities, we have examined that several strange things 
may occur if not taking into account the structure of the infinite set in which σ

-algebra is defined.
   J-sequence shows a sampling method by considering the structure of the set 
in which σ-algebra is defined.
   After the number of cases is calculated using the J-sequence m-collection 
cover, and if there exist its limit value, it becomes the probability of the event 
applying the number of cases.

  For any sequence {}, where ∈[0,1], let  = {, , ,...,}. 

Is there a sequence in which lim
→∞



 n(C∩)/k = (C)  for every measurable 

set C ? 
  This is related to the reason for counting by using the J-sequence m-collection 
cover, not the J-sequence itself. If such a sequence exists, any probability can be 
calculated by counting the number of cases using  as a sampling.

  However, no such a sequence exists. Restricting C to be an open set also 
does not exist. For any sequence, we can produce an open set of sufficiently 
small measure which includes all of the sequence.

  If we cover, for example, each element with an open interval of ε/, then 
the unions of that intervals is an open set which contains all elements of the 
sequence and of which measure is less than ε.
   A sequence that satisfies the above condition for every open interval can be 
found. That is an equidistributed sequence on [0,1]. ([8] Kuipers 2006:8)    

It is that, for an equidistributed sequence {}, lim
→∞



 n(A∩)/k = b-a =(A)  

for every open interval A=(a,b)⊂[0,1].

   Unfortunately, in the world of real numbers where infinity and infinity 
intersect, it can be seen that it is impossible to represent them equally with a 
sequence, that is, impossible to generate a sequence that, for all measurable sets, 
it is included in the set with a frequency proportional to the measure of the set.



   Therefore, in a sample space composed of an uncountably infinite number of 
elements such as [0,1], after calculating the number of cases using sets generated 
by equally dividing the sample space into finite numbers, the probability of an 
event can be calculated with its limit value.
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