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Abstract. A multidimensional number will not be viewed as a single real scalar value, rather,
as a set of scalar values, each associated with a dimension. This gives rise to variations of
“complex numbers”, and consequently, Euler’s formula. The properties of complex numbers,
such as the product of magnitudes being equal to the magnitude of the products, may also be
applicable in the case of multidimensional numbers, depending on how they are constructed.
Although similar ideas exist, such as a hypercomplex number, the differences will be dis-
cussed.

“I am interested in Mathematics only as a creative art.” is a famous quote of the great
English mathematician G. H. Hardy. Mathematics allows creative representations of
numbers.

A multidimensional or an N -dimensional number, consists of

1. a set of real numbers, each present in one of, or a combination of the N dimen-
sions,

2. and an associated N × N matrix, called the dimensions multiplication table,
which contains the result of all the possible pairs of multiplication of the dimen-
sions.

The idea is similar to hypercomplex numbers [1], a generalization of quaternions and
octonions [2][3]. The difference is that a multidimensional number allows a real num-
ber to be associated with any combination of the N dimensions. For example, in the
case of a 3D number, if the dimensions are represented as {̂i0, î1, î2}, the dimension
of a real number could be î1î2, for example, or î1î1, which may not necessarily be
the same as î1. In Section 8, it will be shown that this flexiblity may allow properties,
such as the product of magnitudes being equal to the magnitude of the products, to
also hold true in the case of multidimensional numbers.

Real numbers are “1D” numbers, represented on a number line, while complex num-
bers are “2D”, viewed on a real-imaginary axis, represented as a vector on a 2D plane.
Multidimensional numbers bridges the gap between real and imaginary numbers,
showing that there is nothing “imaginary” about complex numbers, rather, complex
numbers is a special case of 2D numbers. Furthermore, “complex numbers” can be
extended to higher dimensions, and a 3D example will be discussed.

Multidimensional numbers can be viewed as vectors. There are differences, how-
ever. Multiplication and division of multidimensional numbers can be defined, but
don’t exist in the case of vectors.

1. GENERAL FORMULATION OF AN N-DIMENSIONAL (N-D) NUMBER
The following axioms will be assumed to hold true in N-D numbers:

1. The N dimensions will be represented as î0, î1, î2, ... îN−1. For example, in the
1D case, 3 î0 represents the scalar 3 in the first dimension, and the only dimen-
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sion in the 1D case. In the case of 2D for example, 3 î0 + 3.14 î1, represents 3
in the first dimension î0 and 3.14 in the second dimension î1.

2. Any number with no dimension, such as division in

2 î1

2 î1
= 1 = 1 î0, (1)

by default, exists in the first dimension î0.

3. If the dimension of the denominator is only î0, this can be ignored, and the
dimension of the number is the dimension of the numerator. For example,

2 î1

3 î0
=

2

3
î1. (2)

4. Addition and subtraction operations apply in the conventional sense as real num-
bers, to scalar values in the same dimension.

5. Multiplication and division result in numbers in new dimensions. For example,

2 î0 × 3 î1 = 6 î0î1, (3)

and the result lies in the dimension î0î1. Similarly, the result of the division
operation

2 î0 ÷ 3 î1, (4)

lies in the dimension î0
î1

. The dimensions can be simplified using the dimensions
multiplication table, which will be discussed in Sections 2-3.

6. To accomodate the general case of a multidimensional number, the associative
and commutative properties are not assumed to hold true. For example, î3î4 is
not necessarily the same dimension as î4î3.

7. The distributive property holds true, when multiplying two multidimensional
numbers. For example,(

2 î0 + 5 î1
)(

î0 + 3 î1
)
= 2 î0î0 + 6 î0î1 + 5 î1î0 + 15 î1î1. (5)

A general multidimensional number has been defined, which conforms to the above
axioms. Similar to hypercomplex numbers, the dimensions can be simplified, by defin-
ing a dimensions multiplication table, which will be discussed next. There is complete
flexibility in how this table can be defined, as illustrated by the examples in the fol-
lowing sections.

2. DIMENSIONS MULTIPLICATION TABLE IN THE MOST GENERAL
FORM In a 2D number, for example, the possible dimensions arising from pairwise
multiplication of the dimensions from the set {̂i0, î1}, are captured in the matrix[̂

i0î0 î0î1
î1î0 î1î1

]
. (6)
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In a 3D number, for example, given the dimensions {̂i0, î1, î2}, the possible pairwise
products from the set are î0î0 î0î1 î0î2

î1î0 î1î1 î1î2
î2î0 î2î1 î2î2

 . (7)

Similarly, the matrix can be generalized for N dimensions. Simplifications to the di-
mensions multiplication table can be made, as discussed next.

3. A REDUCED DIMENSIONS MULTIPLICATION TABLE A reduced dimen-
sions multiplication table defines how the pairwise multiplications of the dimensions
can be simplified. For example, here’s an example in 2D:[̂

i0î0 î0î1
î1î0 î1î1

]
⇒
[̂
i0 î1
î1 −î0

]
= A, (8)

where the reduced dimensions matrix is labeled A. Starting with a number 5 î0 in
the î0 dimension, multiplying by î1, would result in 5 î0î1. The dimensions can be
simplified using the table. The entry in the table corresponding to the dimension î0î1
is the dimension î1. This would “relocate” this number to the î1 dimension. Therefore,

5 î0î1

∣∣∣
A
= 5 î1, (9)

whereA denotes the table used to simplify the dimensions. The commutative property
holds true in the reduced table, since the off-diagonal entries are symmetric. In general,
however, this need not be the case.

4. THE MAGNITUDE OF A MULTIDIMENSIONAL NUMBER Given a multi-
dimensional number ~r, which has been reduced using the dimensions multiplication
table, with K unique dimensions, the magnitude of ~r is

|~r | =
√
a20 + a21 + a22 + ...+ a2K , (10)

where {a0, a1, ... , aK} are the real scalar values corresponding to those unique di-
mensions.

5. 2D NUMBERS AND ITS RELATION TO COMPLEX NUMBERS The arith-
metic operations of complex numbers can be viewed from a geometric or an algebraic
perspective. From a geometric perspective, the addition and subtraction of complex
numbers can be viewed as vector addition and subtraction. Multiplication and division
can be viewed as a scaling and a rotation operation [4].

Alternately, the arithmetic operations of complex numbers can be viewed algebraically.
The dimensions î0 and î1 in 2D numbers, represent the real and the imaginary val-
ues, respectively. Addition and subtraction are operations on numbers that belong to
the same dimension. The distributive property, together with the dimensions multipli-
cation table in Equation 8,[̂

i0î0 î0î1
î1î0 î1î1

]
⇒
[̂
i0 î1
î1 −î0

]
= A, (11)
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is equivalent to the definition of multiplication, and consequently division, of complex
numbers. In the more familiar form of a complex number, the dimensions multiplica-
tion table in Equation 8 is written as[̂

i0î0 î0î1
î1î0 î1î1

]
⇒
[
1 · 1 1 · i
i · 1 i · i

]
⇒
[
1 i
i −1

]
, (12)

where the symbols 1 and i are used, instead of î0 and î1, to represent the complex
numbers.

i2 = −1, (13)

in the entry of the second row and the second column of the matrix, or by definition

i =
√
−1. (14)

Here’s an example of division of complex numbers,

2 î0 + 4 î1

3 î0 − 2 î1
=

(
2 î0 + 4 î1

3 î0 − 2 î1

)(
3 î0 + 2 î1

3 î0 + 2 î1

)
, (15)

where the numerator and the denominator are multiplied by the complex conjugate.
Using the distributive property to multiply the numerator and the denominator, the
resulting expression is

2 î0 + 4 î1

3 î0 − 2 î1
=

6 î0î0 + 16 î0î1 + 8 î1î1

9 î0î0 − 4 î1î1
, (16)

From the reduced dimensions matrix in Equation 11, the denominator and numerator
can be simplified as

2 î0 + 4 î1

3 î0 − 2 î1
=
−2 î0 + 16 î1

13 î0
, (17)

Using Axiom 4, î0 in the denominator can be discarded, further simplifying the result
as

2 î0 + 4 î1

3 î0 − 2 î1
= − 2

13
î0 +

16

13
î1. (18)

6. OTHER VARIATIONS OF “COMPLEX NUMBERS” If the dimensions mul-
tiplication table of complex numbers in Equation 11 is modified as[̂

i0î0 î0î1
î1î0 î1î1

]
⇒
[
î0 −î1
−î1 −î0

]
= B, (19)

the ramifications to complex numbers is studied next. From Axiom 3, the series

ex = 1 + x+
x2

2!
+
x3

3!
+ ..., (20)
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is written as

ex = î0 + x î0 +
x2

2!
î0 +

x3

3!
î0 + .... (21)

Substituting

x = eθ î1 (22)

in Equation 21,

eθ î1 = î0 + θ î1î0 +
θ2

2!
î1î1î0 +

θ3

3!
î1î1î1î0 + ... (23)

The order in which the dimension vectors are multiplied, when applying the dimen-
sions multiplication table, is important, as this example illustrates. For example, in the
term

î1î1î0, (24)

if the dimension vectors are multiplied left to right, and from the dimensions multipli-
cation table B in Equation 19, the resulting dimension is

−î0. (25)

However, if the dimension vectors are multiplied right to left, the resulting dimension
is

+î0. (26)

To avoid this problem, the convention followed is that the dimension vectors are mul-
tiplied left to right. It follows that multiplication of numbers within parentheses

(a+ d)(b)(c) (27)

is also from left to right, unless parentheses are placed to override this rule, such as

a(bc), (28)

where bc is multiplied first. The convention is arbitrary, and a multiplication rule of
the dimension vectors from right to left could have been chosen as well.

Simplifying Equation 23 using the dimensions multiplication table B in Equation 19,
and using the convention stated earlier,

eθ î1
∣∣∣
B
= î0

[
1−

∞∑
n=1

θ2n

(2n)!

]
− î1

∞∑
n=1

θ2n−1

(2n− 1)!
. (29)

The subscript B is used to denote that the dimensions multiplication table B has been
used to simplify the dimensions. The above series can be simplified as

eθ î1
∣∣∣
B
= î0 (2− cosh θ)− î1 sinh θ, (30)
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which is a different relation from Euler’s formula,

eθ î1
∣∣∣
A
= î0 cos θ + î1 sin θ, (31)

obtained by applying the dimension multiplication table A in Equation 11, to simplify
the expression in Equation 23. In this example, given any two 2D numbers X and Y ,

X = a î0 + b î1 (32)

Y = c î0 + d î1, (33)

and the dimensions multiplication table in Equation 19,

|XY | = |X||Y | (34)

can be verified to be true, using the definition of the magnitude of a multidimensional
number in Equation 10. In general, however, the above relation may not always hold,
discussed in Sections 7-8.

7. 3D COMPLEX NUMBER In the case of a 2D complex number, the dimension
vectors are 1 and i. Multiplication by i results in a counter-clockwise rotation of the
second operand by 90◦. For example,

i× 1 = i, (35)

where 1 is rotated by 90◦ from the real to the imaginary axis, resulting in the answer
i. Similarly,

i× i = −1, (36)

where i is rotated counter clockwise by 90◦ to the real axis, resulting in −1.

This idea is extended to create a 3D complex number, where multiplication by î1
and î2 rotates the second operand by 90◦, captured in Figure 1. Multiplication of î0î1

Figure 1. Rotation of dimensions in a 3D complex number.

results in the rotation of î0 to î1. Similarly, other rotations are shown in the figure, and
captured in the dimensions multiplication matrix,î0î0 î0î1 î0î2

î1î0 î1î1 î1î2
î2î0 î2î1 î2î2

⇒
î0 î1 î2
î1 −î0 î2
î2 î2 −î0

 . (37)
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This system, however, does not obey the relation |XY | = |X||Y |, where the magni-
tude of the product of two multidimensional numbers, is not the same as the product
of the magnitudes, discussed next.

8. EULER’S FORMULA IN 3D COMPLEX NUMBERS Substituting

x = ea î0 , y = eb î1 , z = ec î2 , (38)

in the equation

ex+y+z = exeyez, (39)

which has been proven in Reference [5], the resulting expression is

ea î0+b î1+c î2 = ea î0eb î1ec î2 . (40)

Substituting ea î0 in the power series in Equation 21, and using the dimensions multi-
plication table in Equation 37,

ea î0 = ea î0. (41)

Similarly,

eb î1 = î0 cos b+ î1 sin b (42)

ec î2 = î0 cos c+ î2 sin c. (43)

From the above equations,

ea î0+b î1+c î2 =
(
ea î0

)(
î0 cos b+ î1 sin b

)(
î0 cos c+ î2 sin c

)
. (44)

Multiplying the terms using the distributive property, and simplifying the dimensions
using the dimensions multiplication table in Equation 37,

ea î0+b î1+c î2 = ea
[̂
i0 cos b cos c

+ î1 sin b cos c+ î2 (sin b sin c+ cos b sin c)
]

(45)

From the above equations, note that∣∣∣ea î0∣∣∣ ∣∣∣eb î1∣∣∣ ∣∣∣ec î2∣∣∣ 6= ∣∣∣ea î0+b î1+c î2∣∣∣ (46)

The dimensions multiplication table in Equation 37, in general, does not meet the
relation

|XY | = |X||Y |, (47)

where X and Y are two 3D numbers. Instead, however, if the dimensions multiplica-
tion table is modified asî0î0 î0î1 î0î2

î1î0 î1î1 î1î2
î2î0 î2î1 î2î2

⇒
î0 î1 î2
î1 −î0 î1î2
î2 î1î2 −î0

 , (48)
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repeating the same exercise,

ea î0+b î1+c î2 = ea
[̂
i0 cos b cos c+ î1 sin b cos c+ î2 cos b sin c

+ î1î2 sin b sin c
]
. (49)

In this case, Equation 47 holds true. This can be verified by substituting Equation 41-
43 and Equation 49 in ∣∣∣ea î0∣∣∣ ∣∣∣eb î1∣∣∣ ∣∣∣ec î2∣∣∣ = ∣∣∣ea î0+b î1+c î2∣∣∣ (50)

= ea, (51)

and verify that the product of the magnitudes in the left-hand side of the above equa-
tion, is equal to the magnitude of the products in the right-hand side. Using the dimen-
sions multiplication table in Equation 48, which includes a combination of dimensions
î1î2, instead of Equation 37, the above equation holds true.

9. ARITHMETIC OPERATIONS Addition and subtraction operations are similar
to vector addition and subtraction, where numbers in the same dimensions can be
added and subtracted. The multiplication operation follows from Axiom 5 and Axiom
7, and the dimensions can be simplified using the dimensions multiplication table.
The division operation is done by a series of multiplication operations, to make the
denominator purely î0.

Here’s a division example, using the dimensions multiplication table in Equation 48,
resulting in the peculiar expression on the right-hand side

î1

2 î1 + î1î2 + 3 î2
= − 2

13
î0 −

7

26
î2 +

3

13
î1 −

9

26
î1î2. (52)

The above result can be verified by evaluating,[
− 2

13
î0 −

7

26
î2 +

3

13
î1 −

9

26
î1î2

] [
2 î1 + î1î2 + 3 î2

]
= î1, (53)

to show that the quotient multiplied by the divisor is the dividend. Division is done by
multiplying the numerator and denominator of

î1

2 î1 + î1î2 + 3 î2
, (54)

by the same number to make the denominator purely î0. This requires first multiplica-
tion by

î1

î1
, (55)

followed by

î2

î2
, (56)
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and then

−2 î2 + î0 + 3 î1

−2 î2 + î0 + 3 î1
, (57)

and

6 î0 + 4 î2

6 î0 + 4 î2
, (58)

resulting in the result in the right-hand side of Equation 52.
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