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Abstract

Wilhelm Weber’s electrodynamics is an action-at-a-distance theory
which has the property that equal charges inside a critical radius be-
come attractive. Weber’s electrodynamics inside the critical radius can
be interpreted as a classical Hamiltonian system whose kinetic energy is,
however, expressed with respect to a Lorentzian metric. In this article we
study the Schrödinger equation associated with this Hamiltonian system,
and relate it to Weyl’s theory of singular Sturm-Liouville problems.
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1 Introduction

Weber Electrodynamics

Wilhelm Weber’s electrodynamics is a today largely forgotten action-at-a-
distance theory of electrodynamics. An interesting aspect of the theory is that
while opposite charges always attract each other, equal charges are repulsing
each other outside a critical distance rc, but become attracting, too, at dis-
tances smaller than rc. This led to Weber’s planetary atomic model which
Weber published posthumously [Web94a]. A detailed account of this model can
be found in [AWW11,AWW18]. An intriguing aspect of Weber’s model is that it
predicted the stability of the nucleus about 20 years before Rutherford’s atomic
model appeared.

Given a positive charge at the center, the Weber Lagrangian, see [Web48,
Web94b], for a second positive charge influenced by the one in the center is
given in polar coordinates by the formula

LW(r, φ, vr, vφ) =
1

2
(v2
r + r2v2

φ)−1

r

(
1 +

v2
r

2c2

)
where c is the speed of light. The first term is just the usual kinetic energy, but
the second term describes a velocity dependent potential. Historically this led
to a lot of confusion, in particular, Helmholtz doubted, because of the velocity
dependent potential, that energy is preserved. That energy is preserved can
easily be seen by changing brackets

LW(r, φ, vr, vφ) =
1

2

(
1− 1

c2r

)
v2
r +

1

2
r2v2

φ−
1

r

=
1

2

(
grr v

2
r + gφφ v

2
φ

)
− 1

r
.

(1.1)

Now the potential does not depend on the velocity any more. But the kinetic
part is not computed with respect to the flat metric. In fact, the metric gets
singular at a critical radius, the Weber radius

rc = 1/c2

where c is the speed of light. Outside the critical radius the metric is Rieman-
nian, while inside it becomes Lorentzian.

Although the changing of brackets is mathematically trivial, the interpre-
tation of Weber’s Lagrangian as a velocity independent Coulomb potential in
a curved Lorentzian or Riemannian space seems to be first discussed in our
previous paper [FW19]. This interpretation finally opens the door to actually
write down a Schrödinger equation for the Weber nucleus, namely by replacing
the kinetic part by the Laplace-Beltrami operator but now with respect to the
Lorentzian metric. The discussion of the properties of the Schrödinger equation
is the topic of the present paper.

2



Outline and main result

In Section 2 we study the classical motion. In particular, we see that inside the
Weber nucleus there are no periodic orbits, but instead the trajectories start
spiraling into the origin (the collision locus).

In Section 3 the Lorentzian interpretation of Weber’s Lagrangian, given by
formula (1.1), enables us to find the Schrödinger equation for Weber electro-
dynamics by replacing the Lorentzian kinetic energy by its Laplace-Beltrami
operator.

In Section 4 we separate the wave function into the radial and the angular
part. In Section 5 we show that inside the critical radius the radial part satisfies
a singular Sturm-Liouville problem with singularities at both ends, one due to
the charge at the origin where the potential is singular, and one due to the
critical radius where the Lorentz metric is singular.

The classical study of singular Sturm-Liouville problems is due to Hermann
Weyl and his famous discovery [Wey10] of a dichotomy between the two cases of
limit circle and limit point. Weyl’s theory was further developed in Titchmarsh’s
monograph [Tit46]. If both ends are limit point the corresponding Schrödinger
operator is self-adjoint, while in the case of limit circle an additional boundary
condition has to be chosen [Sto32, Chap. X §3 pp 448]. The main result of this
article is

Theorem A. The radial part of Schrödinger’s equation of the Weber nucleus is
limit circle at both ends of (0, rc), namely at the origin r = 0 and at the critical
radius r = rc.

The proof of Theorem A differs greatly in the case of zero angular momentum
` = 0 and non-zero angular momentum ` 6= 0. This is due to the fact that for
vanishing angular momentum the singularity at the origin r = 0 is regular and
therefore the corresponding ode Fuchsian, see e.g. [Tes12, §4.2], while for non-
vanishing angular momentum the singularity at r = 0 is irregular. See [Olv74,
Ch. 5 §4] for the notions of regular and irregular singularities of an ode. In the
irregular case the behavior close to the singularity is described by a diverging
asymptotic series and the solutions start oscillating wildly.

Interpretation

What do we learn from Theorem A and its proof? It is interesting to compare the
quantum solutions with the classical solutions. In fact, there are no periodic or-
bits in the Weber nucleus before regularization. According to Gutzwiller’s trace
formula, cf. [Gut90], there should be a relation between the classical periodic
orbits and the treatment by Schrödinger’s equation. In view of Theorem A the
Schrödinger operator is not self-adjoint, unless one assigns adequate boundary
conditions; see [Sto32, Ch. X §3]. Here one discovers an interesting difference
between the cases of vanishing and non-vanishing angular momentum.

If the angular momentum vanishes, the singularity at the origin is regular.
In this case it is possible to assign natural boundary conditions; see [JR76,

3



classical solutions quantum solutions

collisions non-oscillating
(regularizable) (natural boundary conditions exist)

spiraling oscillating
(not regularizable) (no natural boundary conditions exist)

` = 0

` 6= 0

angular
momentum

Figure 1: Interpretation of results - classical and quantum solution types

Kap. 3 §7]. In fact, a similar phenomenon happened already for the classical
hydrogen atom in case of vanishing angular momentum; see [JR76, Kap. 3 §9].
For the Weber nucleus the classical solutions for vanishing angular momentum
are collisions. Collisions can be regularized so that one obtains periodic orbits.

For non-vanishing angular momentum the singularity at the origin is not
regular. Close to the origin the eigenfunctions of the Schrödinger equation,
for any choice of boundary condition, start oscillating wildly. In this case it
is not clear how to put natural boundary conditions. On the classical side a
similar phenomenon happens. Namely, for non-vanishing angular momentum
the classical solutions start spiraling into the origin. In this case it is not clear
how to regularize them.

It would be interesting to find a semi-classical interpretation, see [Gut90],
of this phenomenon which makes the Weber nucleus an intriguing dynamical
system worth of further explorations.

Acknowledgements. In February 2020 the Advanced School “Symplectic
Topology meets Celestial and Quantum Mechanics via Weber Electrodynamics”,
organized by the second author at UNICAMP, see [Web20] and Youtube Videos,
brought together researchers from pure mathematics and theoretical physics
teaching one another topics connecting to the amazing action-at-a-distance force
law of Wilhelm Weber. Section 2 on classical motion arose in discussion with
Kai Cieliebak whom we sincerely thank for his generous contribution. The pa-
per profited a lot from discussions with André Assis and Stefan Suhr whom
we sincerely thank. This article has its origin in that school and was largely
written during the stay in March 2020 of the second author at Universität Augs-
burg that he would like to thank for hospitality. The first author acknowledges
financial support by DFG grant FR 2637/2-2. It is a pleasure for the second
author to acknowledge support and generous funding by Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP), processo no 2017/19725-6, for
his research, in the present article the powerful theory of Wilhelm Weber on
Electrodynamics.
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2 The classical motion

Before we embark on the quantum mechanical treatment of the Weber nucleus
we discuss its classical motion, see also [Web71] and [AWW11,AWW18, §6.4].

As we explained in the introduction the relative motion of two equal charges
is described in polar coordinates (r, φ) by the Weber Lagrangian L = LW

in (1.1), that is

L(r, φ, vr, vφ) =
1

2

(
r − rc
r

vr
2 + r2vφ

2

)
− 1

r

where c is the speed of light and the critical radius

rc := 1/c2

is called the Weber radius. Note that the metric describing the kinetic energy
is Riemannian above the critical radius, and Lorentz below. The conjugate
momenta are

pr :=
∂L

∂ṙ
=

(
1− 1

c2r

)
ṙ =

(
r − rc
r

)
ṙ, pφ :=

∂L

∂φ̇
= r2φ̇.

The Euler-Lagrange equation d
dt
∂L
∂φ̇

= ∂L
∂φ , namely ṗφ = 0, yields conservation

of angular momentum
` := r2φ̇ = pφ = const

while d
dt
∂L
∂ṙ = ∂L

∂r , namely d
dt

(
r−rc
r

)
· ṙ +

(
r−rc
r

)
r̈ =, becomes(

1

c2
− 1

)
r̈ =

ṙ2

2c2r2
− `2

r3
− 1

r2
.

Note that the factor 1
c2 − 1 = rc−r

r in front of r̈ is positive below the critical
radius, and negative above. The Euler-Lagrange equations are equivalent to
Hamilton’s equations for the Weber Hamiltonian

H(r, φ, pr, pφ) = pr ṙ + pφφ̇− L =
1

2

(
(r − rc)ṙ2

r
+
`2

r2

)
+

1

r

=
1

2

(
rp2
r

r − rc
+
p2
φ

r2

)
+

1

r
.

(2.2)

To determine the motions, we rewrite the conservation of energy equation

H =
1

2

(
(r − rc)ṙ2

r
+
`2

r2

)
+

1

r
= h = const

as

ṙ2 =
`2 + 2r − 2hr2

r(rc − r)
. (2.3)
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Case 1: h ≤ 0. Then the enumerator in equation (2.3) is positive, so
there are no solutions with r > rc. For r < rc the solutions move in finite time
between the poles at 0 and rc. To see this, consider first the approach to rc.
For r < rc close to rc we have approximately

ṙ ≈ ± k√
rc − r

with k =
√
`2/rc + 2− 2hrc > 0. Thus the solution with initial condition

r(0) = r0 < rc close to rc is approximately given by

r(t) = rc −
(

(rc − r0)3/2 ∓ 3

2
kt

)2/3

,

which approaches rc in finite (positive or negative) time T . Note that the
solution can be continued continuously (but not C1) beyond time T to bounce
back at rc and move toward the origin r = 0.

Consider next the approach to r = 0. Suppose first that ` 6= 0. Then for
r > 0 close to 0 we have approximately

ṙ ≈ ± k√
r

with k =
√
`2/rc > 0. Thus the solution with initial condition r(0) = r0 > 0

close to 0 is approximately given by

r(t) =

(
r

3/2
0 ± 3

2
kt

)2/3

,

which approaches 0 in finite (positive or negative) time T . Note that the solution
can be continued continuously (but not C1) beyond time T to bounce back at
0 and move toward the critical radius rc. If ` = 0, then for r > 0 close to 0 we
have approximately

ṙ ≈ ±
√

2/rc = ±
√

2c,

so the solution approaches 0 in finite time with approximately constant speed√
2c (the Weber constant).

Case 2: h > 0. Then equation (2.3) can be written as

ṙ2 =
2h(r − r+)(r − r−)

r(r − rc)
, with r± =

1±
√

1 + 2h`2

2h
. (2.4)

Since r+ > 0 and r− ≤ 0, we need to distinguish the three subcases r+ < rc,
r+ = rc and r+ > rc. Note that r+ < rc is equivalent to h > hc for the critical
energy

hc = Veff(rc) =
`2

2r2
c

+
1

rc
, (2.5)
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where Veff(r) = `2/2r2 + 1/r is the effective potential.

Case 2a: r+ < rc (or equivalently h > hc). Then the right hand
side in equation (2.4) is negative for r ∈ (r+, rc), so solutions cannot enter this
region. Solutions in the region (0, r+) move in finite time between 0 and r+.
To see this, consider first the approach to r+. For r < r+ close to r+ we have
approximately

ṙ ≈ ± k√
r+ − r

with k =
√

2h(r+ − r−)/r+(rc − r+) > 0. Thus the solution with initial condi-
tion r(0) = r0 < r+ close to r+ is approximately given by

r(t) = r+ −
(

(r+ − r0)1/2 ∓ 1

2
kt

)2

,

which approaches r+ in finite (positive or negative) time T . Note that the
solution can be continued smoothly beyond time T to bounce back at r+ and
move toward the origin r = 0.

Consider next the approach to r = 0. Suppose first that ` 6= 0, and thus
r− < 0. Then for r > 0 close to 0 we have approximately

ṙ ≈ ± k√
r

with k =
√
−2hr+r−/rc > 0, so the solution approaches 0 in finite time as in

Case 1 above. If ` = 0, then for r > 0 close to 0 we have approximately

ṙ ≈ ±
√

2hr+/rc = ±
√

2c,

so the solution approaches 0 in finite time with approximately constant speed√
2c.

Solutions in the region (rc,∞) approach rc in finite (positive or negative)
time (similarly to the approach to rc in Case 1). In the other time direction
they move to ∞ with asymptotic speed

√
2h (since the right hand side in (2.4)

converges to 2h as r →∞).

Case 2b: r+ > rc (or equivalently h < hc). Then the right hand
side in equation is negative for (2.4) r ∈ (rc, r+), so solutions cannot enter this
region. Solutions in the region (0, rc) move in finite time between 0 and rc as
in Case 1 above. Solutions in the region (r+,∞) approach r+ in finite (positive
or negative) time (where they bounce back smoothly similarly to the approach
to r+ in Case 2a), while in the other time direction they again move to ∞ with
asymptotic speed

√
2h.

Case 2c: r+ = rc (or equivalently h = hc). Then the right hand side
of (2.4) simplifies to 2h(r− r−)/r, so solutions approach 0 in finite (positive or
negative) time, while in the other time direction they move to ∞ with asymp-
totic speed

√
2h. In particular, this is the only case in which solutions pass

through the critical radius.
We summarize this discussion in
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Theorem 2.1. The relative motion of two equal charges in the plane under
their mutual Weber force is as follows, depending on their energy h compared
to the critical energy hc.

1 For h ≤ 0 solutions inside the critical radius rc move in finite time between
0 and rc, and there are no solutions outside the critical radius.

2b For 0 < h < hc solutions inside the critical radius move in finite time
between 0 and rc, while solutions outside the critical radius move to ∞ as
t→ ±∞ without reaching rc.

2a For h > hc solutions inside the critical radius move to 0 in finite time in
both time directions without reaching rc, while solutions outside the critical
radius move to rc in finite time in one time direction and to ∞ in infinite
time in the other time direction.

2c For h = hc solutions move to 0 in finite time in one time direction and
to ∞ in infinite time in the other time direction; in particular, this is the
only case in which solutions pass through the critical radius. �

3 Derivation of the nuclear Weber-Schrödinger
equation

Let rc = 1/c2 be the Weber radius and let

R× := (0,∞) \ {rc}, R2
× := R2 \ {0, x2 + y2 = r2

c}

be the Weber “half line” and “plane”, respectively. In polar coordinates (r, φ) ∈
R××R/2πZ on R2

× the Weber metric and cometric are the diagonal matrizes

(gij) =

(
r−rc
r 0

0 r2

)
,

(
gij
)

=

(
r

r−rc 0

0 1
r2

)
. (3.6)

The entries are the coefficients in the Weber Lagrangian (1.1) and Hamilto-
nian (2.2), respectively. The Weber plane is the Riemannian manifold (R2

×, g).

3.1 Laplace-Beltrami operator on Weber plane

The Laplace-Beltrami operator applied to a function f is in local coordinates of
any domain manifold given by

∆f =
1√
|g|
∂i

(√
|g|gij∂jf

)
where |g| := |det g| and the Einstein sum convention applies.
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Lemma 3.1. The Laplace-Beltrami operator in polar coordinates acts by

∆f =
∂r

(
r

3
2
|r−rc|

1
2

r−rc ∂rf
)

√
r |r − rc|

+
1

r2
∂φφf

=

(
3

2

1

r − rc
− 1

2

r

(r − rc)2

)
∂rf +

r

r − rc
∂rrf +

1

r2
∂φφf

(3.7)

on functions f on the Weber plane (R2
×, g).

Proof. With |g| = r |r − rc| and due to the diagonal form of g we obtain

∆f =
∂r

(√
r |r − rc| r

r−rc ∂rf
)

+ ∂φ

(√
r |r − rc| 1

r2 ∂φf
)

√
r |r − rc|

=
∂r

(√
r |r − rc| r

r−rc

)
· ∂rf +

(√
r |r − rc| r

r−rc

)
∂rrf√

r |r − rc|
+

1

r2
∂φφf.

It remains to calculate the term ∂r(. . . ), namely

∂r

(
r

3
2
|r−rc|

1
2

r−rc

)
√
r |r − rc|

=

3
2 r

1
2

r−rc
|r−rc|

3
2

+ r
3
2 (− 1

2 ) 1

|r−rc|
3
2

r
1
2 |r − rc|

1
2

=
3

2

1

r − rc
− 1

2

r

(r − rc)2

(3.8)

and this proves the lemma.

4 Separation into radial and angular part

On the Weber plane (R2
×, g) with coordinates (r, φ) consider the Laplace-

Beltrami operator ∆ given by (3.7). The Schrödinger equation is the pde

− 1

2
∆ψ +

1

r
ψ = Eψ (4.9)

for complex-valued functions ψ : R2
× → C and reals E. Separation of variables

ψ(r, φ) = R(r)Y (φ)

and abbreviating Ṙ := ∂rR and Y ′ := ∂φY translates Schrödinger’s equation to

− Y

2

∂r

(
r

3
2
|r−rc|

1
2

r−rc ∂rR
)

√
r |r − rc|

− R

2

1

r2
Y ′′ +

1

r
RY = ERY.
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Multiply this equation by r2

RY and reorder to obtain

− r2

2R

∂r

(
r

3
2
|r−rc|

1
2

r−rc ∂rR
)

√
r |r − rc|

+ r − r2E =
1

2

Y ′′

Y
. (4.10)

Note that the left hand side, a function of r only, is in fact constant, because
the right hand side does not depend on r. Analogously the right hand side, a
function of φ only, is equal to a constant, say −`.

Angular equation for Y

The right hand side (RHS) of (4.10) is equal to a constant, say −`, hence

Y ′′(φ) = −2`Y (φ).

The ode has a solution Y (φ) = cei
√

2`φ for c ∈ R. Periodicity Y (φ) = Y (φ+ 2π)

tells that e2πi
√

2` = 1 or equivalently
√

2` = k ∈ N0. Thus

Y (φ) = ceikφ, c ∈ R, k =
√

2` ∈ N0. (4.11)

5 Inside critical radius

5.1 Radial equation for R – zero angular momentum ` = 0

The left hand side (LHS) of (4.10) is equal to a constant −` = −k
2

2 where

k ∈ N0. Multiplication by −Rr2 leads to the ode

∂r

(
r

3
2
|r−rc|

1
2

r−rc ∂rR
)

2
√
r |r − rc|

− 1

r
R− `

r2
R = −ER

for functions R : R× → C of the variable r and a constant E ∈ R. From now on
we focus on the region inside the critical radius, because there our two protons
have the property – spectacular when contrasted with the mainstream Coulomb
law – to attract each other thanks to the Weber force law. Because r − rc < 0
is negative, abbreviating Ṙ := ∂rR the ode becomes

ER =
∂r

(
r

3
2√

rc−r
∂rR

)
2
√
r(rc − r)

+
1

r
R +

`

r2
R

=
1

2

r

rc − r
R̈+

(
3

4

1

rc − r
+

1

4

r

(rc − r)2

)
Ṙ+

1

r
R +

`

r2
R

(5.12)

where ` = k2/2 for any given k ∈ N0, see (4.11). Alternatively, this ode for the
unkown function R : (0, rc)→ C takes on the Sturm-Liouville normal form(

pṘ
)·

+ qR = wER (5.13)
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where ċ means d
dr and where in case ` = 0 the functions w, q, p are given by

w = 2
√
r(rc − r), q = 2

√
rc − r
r

=
w

r
, p =

r
3
2

√
rc − r

=
2r

q
=

2r2

w
.

5.1.1 Singular Sturm-Liouville theory

A Sturm-Liouville problem of the form (5.13) on a closed interval [0, rc] is called
regular if the coefficient p : [0, rc] → R is a continuous and non-vanishing
function, the coefficient w : [0, rc] → (0,∞) is continuous and positive, and
q : [0, rc] → R is continuous. If at the boundary of the interval [0, rc] at least
one of the coefficients p, q, or w becomes infinite or p or w approach zero, then
the Sturm-Liouville problem is called singular.
For singular Sturm-Liouville problems Weyl introduced in [Wey10] a dichotomy
into limit circle and limit point. Given an end point 0 or rc, the singular Sturm-
Liouville problem is called limit circle if all solutions of the homogeneous
problem (

pṘ
)·

+ qR = 0 (5.14)

close to the given end point are of class L2. Otherwise, the problem is called
limit point. For more information see e.g. [AHP05, p. 277], [Kra86, XII.3],
or [KRZ77, III §1].

Remark 5.1 (Sturm-Liouville theory). Later, in Section 5.2, when we deal
with the case of non-zero angular momentum (` 6= 0) we will encounter special
cases of Sturm-Liouville equations – Bessel equations. Excellent accounts of the
history of Sturm-Liouville theory, surveys, and even a catalogue can be found
in the collection of papers [AHP05, p. 277]. We recommend these papers for
further references. Without the extensive tables and property lists in [AS64, §9]
one would get nowhere, in finite time, in Section 5.2.

5.1.2 Type ’limit circle’ at the origin

For non-zero angular momentum (` 6= 0) already the classical solutions behave
not nicely inside the critical radius, they spiral into the origin singularity, cf.
Theorem 2.1. So in a first step to prove Theorem A we restrict to the case of
angular momentum ` = 0. As mentioned above we consider the region inside
the critical radius rc := 1

c2 , in symbols r ∈ (0, rc).
In the following we show that for zero angular momentum (` = 0) the sin-

gular Sturm-Liouville problem (5.12) on (0, rc), equivalently (5.13), is of type
limit circle at the boundary singularity x = 0.

Remark 5.2. The property limit circle does not depend on the choice of the
constant E; see e.g. [Kra86, Thm. XII.3.2] or [KRZ77, III Le. 1.1]. Thus we
choose E = 0. By [KRZ77, p. 22] limit circle at a boundary singularity x is
equivalent to not being limit point at x which, by [KRZ77, Rmk. on p. 23], is
equivalent to all solutions being L2 near x.
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Setup (Case E = 0). Equation (5.12) for ` = 0, multiplied by 2(rc−r)
r , gets

R̈+

(
3

2

1

r
+

1

2

1

rc − r

)
Ṙ+ 2

rc − r
r2

R = 0 (5.15)

or, equivalently, after reordering1

R̈+
3

2r
Ṙ+

2rc
r2

R = − 1

2(rc − r)
Ṙ+

2

r
R︸ ︷︷ ︸

=:b

. (5.16)

Step 1 (Homogeneous equation). First let us solve equation (5.16) in case
the RHS b is zero: The Ansatz f(r) := rk leads to k2 + 1

2k + 2rc = 0, hence

k1 = −1

4
−
√

1

16
− 2rc

>
≈ −1

2
, k2 = −1

4
+

√
1

16
− 2rc

<
≈ 0.

So 2ki > −1 for i = 1, 2. Thus two solutions of (5.16) for b = 0 are given by

u(r) := rk1 , v(r) := rk2

and they are L2 near 0 since 2ki > −1. It is useful to calculate the sums

k2 + k1 = −1

2
, k2 − k1 =

√
1

4
− 8rc.

and the Wronskian

W = W (r) := uv̇ − u̇v = (k2 − k1)rk2+k1−1 = (k2 − k1)r−
3
2 .

Observe that the product r
3
2W (r) = k2 − k1 is a constant.

Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, abbreviate
r0 := rc/2, then the solution R to (5.16) with

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (5.17)

1 Multiplication of (5.16) by r
3
2 provides the Sturm-Liouville normal form(

r
3
2 Ṙ
)·

+
2rc

r
1
2

R = −
1

2

r
3
2

rc − r
Ṙ+ 2r

1
2R︸ ︷︷ ︸

=r
3
2 b

.
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is given by the formula (see e.g. [Kra86, Exc. IV.5.3 p. 81])

R(r) : = αu(r) + βv(r) +

∫ r

r0

u(s)v(r)− u(r)v(s)

s3/2W (s)
s3/2 b(s) ds

1
= αrk1 + βrk2 +

∫ r

r0

sk1rk2 − rk1sk2
k2 − k1

(
−1

2

s
3
2

rc − s
Ṙ+ s

1
2 2R

)
ds

2
= αrk1 + βrk2 −

∫ r0

r

s−k2rk2 − rk1s−k1
k2 − k1

2R ds

+
1

2

∫ r0

r

s−k2rk2 − rk1s−k1
k2 − k1

s

rc − s
Ṙ ds

3
= αrk1 + βrk2 −

∫ r0

r

(r/s)k2 − (r/s)k1

k2 − k1
2R(s) ds

+
1

2

(r/r0)k2 − (r/r0)k1

k2 − k1

r0

rc − r0
R(r0)

+
1

2

∫ r0

r

k2(r/s)k2 − k1(r/s)k1

k2 − k1

1

rc − s
R(s) ds

− 1

2

∫ r0

r

(r/s)k2 − (r/s)k1

k2 − k1

rc
(rc − s)2

R(s) ds

(5.18)

for every r ∈ (0, r0]. Step 1 uses definition (5.16) of b, in step 2 we interchange
limits of integration and catch a minus sign, and step 3 is by partial integration.

Consider the L2 functions on (0, r0], where r0 := rc
2 , given by

h1(r) := α̃rk1 + β̃rk2 , h2(r) := γrk1 + δrk2

where the constants are defined by

α̃ := |α|+ r0R(r0)

2rk10 (k2 − k1)(rc − r0)
, β̃ := |β|+ r0R(r0)

2rk20 (k2 − k1)(rc − r0)

and

γ := 2
r−k10

k2 − k1
+

1

2

k1r
−k1
0

k2 − k1

2

rc
+

1

2

r−k10

k2 − k1

4

rc

and

δ := 2
r−k20

k2 − k1
+

1

2

k1r
−k2
0

k2 − k1

2

rc
+

1

2

r−k20

k2 − k1

4

rc
.

With the L2 functions h1 and h2 on (0, r0] we get from (5.18), using 1
rc−s ≤

2
rc

and Cauchy-Schwarz, the estimate

|R(r)| ≤ h1(r) + h2(r)

∫ r0

r

|R(s)| ds

= h1(r) + h2(r)‖R · 1‖1(r)

≤ h1(r) + h2(r)‖R‖2(r) ·
√
r0

(5.19)
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for every r ∈ (0, r0], note that
√
r0 ≤ 1, and where

‖R‖p(r) :=

(∫ r0

r

|R(s)|p ds
) 1

p

for p ≥ 1 and r ∈ (0, r0]. Taking squares we get that

R(r)2 ≤ h1(r)2 + 2h1(r)h2(r)‖R‖2(r) + h2(r)2‖R‖2(r) 2

≤ 2h1(r)2 + 2h2(r)2‖R‖2(r) 2

for every r ∈ (0, r0]. Therefore

‖R‖2(r) 2︸ ︷︷ ︸
=:U(r)

: =

∫ r0

r

R(s)2 ds

≤ 2

∫ r0

r

h1(s)2 ds+ 2

∫ r0

r

h2(s)2‖R‖2(s) 2 ds

= 2‖h1‖2(r) 2︸ ︷︷ ︸
≤2‖h1‖22=:α

+

∫ r0

r

2h2(s)2︸ ︷︷ ︸
=:β(s)

‖R‖2(s) 2︸ ︷︷ ︸
=U(s)

ds

for every r ∈ (0, r0] where ‖h1‖2 := ‖h1‖L2(0,r0) <∞. So by Gronwall’s lemma

‖R‖2(r) 2︸ ︷︷ ︸
U(r)

≤ 2‖h1‖22︸ ︷︷ ︸
α

exp

(∫ r0

r

2h2(s)2︸ ︷︷ ︸
β(s)

ds

)
≤ 2‖h1‖22 e2‖h2‖22 =: γ

for every r ∈ (0, r0]. Thus ‖R‖22 ≤ γ. This shows that any solution R of (5.16),
independent of the choice of initial conditions (5.17), is L2 near the boundary
singularity 0. By Remark 5.2 this proves part a) in

Proposition 5.3 (Zero angular momentum – limit circle on (0, rc)). The sin-
gular Sturm-Liouville problem given by the 1-dimensional Weber Schrödinger
equation (5.16) on the interval (0, rc) is

a) limit circle at the left origin boundary singularity 0;

b) limit circle at the right critical radius boundary singularity rc.

5.1.3 Type ’limit circle’ at the critical radius

To prove Proposition 5.3 b) it suffices to treat the case E = 0 by Remark 5.2.

Setup (Case E = 0). Reordering (5.15) for singularities 1
r−rc we get the ode

R̈+
1

2(rc − r)
Ṙ+

3

2r
Ṙ = −rc − r

r2
2R︸ ︷︷ ︸

=:b

(5.20)

for functions R on [r0, rc) where r0 := rc
2 .
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Step 1 (Homogeneous equation). First let us solve equation (5.20) in case
the RHS b = 0 is zero: Two solutions of (5.20) for b = 0 are given by2

u(r) ≡ 1, v(r) :=

∫ r

r0

s−3/2
√
rc − s ds (5.21)

and
W (r) := uv̇ − u̇v = v̇ = r−3/2

√
rc − r.

is their Wronskian. Since rc − r0 = rc/2 we get that the function

|v(r)| ≤ (rc − r0)r
−3/2
0

√
rc − r0 = 1

is bounded, hence L2, on the interval [r0, rc).

Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, the solution
R to (5.20) with initial conditions

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (5.22)

is given for r ∈ [r0, rc) by the definition in (5.18). On [r0, rc) we estimate

|R(r)| ≤ |α| · 1 + |β| · 1 +

∣∣∣∣∫ r

r0

v(r)− v(s)

s−3/2
√
rc − s

rc − s
s2

2R(s) ds

∣∣∣∣
≤ c1 + c2

∫ r

r0

|R(s)| ds.

Here inequality one uses that ‖u‖∞ = ‖1‖∞ = 1 and ‖v‖∞ = 1. Inequality two
holds with c1 := |α|+ |β| and with c2 = 1. Set I := [r0, rc) to estimate

2 sup
r∈I

(r − r0) sup
s∈I

|v(r)|+ |v(s)|√
s

√
rc − s ≤ 2

rc
2

2‖v‖∞√
r0

√
rc/2 = 2rc � 1 =: c2.

Since c1, c2 are constants, a special case of Gronwall gives

|R(r)| ≤ c1ec2(r−r0) ≤ c1erc/2.

for r ∈ [r0, rc). Thus any solution R of (5.20) on [r0, rc) is uniformly bounded,
thus L2. By Remark 5.2 this proves part b) of Proposition 5.3.

5.2 Equation for R – non-zero angular momentum ` 6= 0

For non-zero angular momentum already the classical solutions behave not
nicely inside the critical radius, they spiral into the origin singularity, cf. The-
orem 2.1. In this subsection we restrict again to the region inside the critical
radius rc := 1

c2 , in symbols r ∈ (0, rc).

2 Constants are clearly solutions. Equation (5.20) for b = 0 and g := Ṙ takes on the form
ġ = −g/2(rc − r)− 3g/2r. The Ansatz g := f

√
rc − r gives the equation ḟ = −3f/2r whose

solution is f(r) = r−3/2. Integrate g = r−3/2
√
rc − r to get the solution v of (5.20) for b = 0.
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Recall that separating the equal charge Schrödinger equation (4.9), Ansatz
ψ = R(r)Y (φ), leads to equation (5.12) for R, namely

ER =
∂r

(
r

3
2√

rc−r
∂rR

)
2
√
r(rc − r)

+
1

r
R+

`

r2
R

=
1

2

r

rc − r
R̈+

(
3

4

1

rc − r
+

1

4

r

(rc − r)2

)
Ṙ+

1

r
R+

`

r2
R

(5.23)

for r ∈ (0, rc). Here ` = k2/2 for k ∈ N; cf. (4.11). Alternatively, the equation is(
pṘ
)·

+ qR = wER (5.24)

for functions R on (0, rc) and where ċ denotes d
dr and with

w = 2
√
r(rc − r), q =

w

r

(
1 +

`

r

)
, p =

r
3
2

√
rc − r

.

Note that w
r = 2

√
rc−r
r .

5.2.1 Type ’limit circle’ at the origin (ρ =∞)

In the following we show that for non-zero angular momentum (` 6= 0) the
singular Sturm-Liouville problem (5.23) on (0, rc), equivalently (5.24), is of type
limit circle at the boundary singularity x = 0. By Remark 5.2 it suffices to
consider the case E = 0.

Setup (Case E = 0). Equation (5.23), multiplied by 2(rc−r)
r , becomes

R̈+

(
3

2

1

r
+

1

2

1

rc − r

)
Ṙ+ 2

rc − r
r2

R+ 2
`(rc − r)

r3
R = 0 (5.25)

or, equivalently, after reordering we get the ode

R̈+
3

2r
Ṙ+

2rc
r2

R+
2rc`

r3
R = − 1

2(rc − r)
Ṙ+ 2

(
1

r
+

`

r2

)
R (5.26)

for functions R on (0, rc) and where ` = k2/2 for a given k ∈ N; see (4.11). It
is useful to change variables. Recall that rc := 1/c2. Suppose R satisfies (5.26).
Then in the new variable

ρ : (0, rc)→ (c2,∞), r 7→ 1/r

the function given by f(ρ) := R(r(ρ)) satisfies the ode3

f ′′ +
1

2ρ
f ′ +

2rc
ρ2
f +

2rc`

ρ
f =

1

2ρ2

1

( ρc2 − 1)
f ′ +

2

ρ3
f +

2`

ρ2
f︸ ︷︷ ︸

=:b(ρ)

(5.27)

3 Indeed Ṙ = d
dr
R(r) = d

dr
f(ρ(r)) = f ′(ρ) d

dr
ρ(r) = −ρ2f ′(ρ) and R̈ = ρ4f ′′ + 2ρ3f ′.
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for ρ ∈ (c2,∞) and where ` = k2/2 for a given k ∈ N.

Step 1 (Homogeneous equation). To solve (5.27) for b = 0 suppose f is a
solution. The Ansatz f(ρ) = ραw(ρ) with α ∈ R leads to the ode

w′′ +

(
2α+

1

2

)
w′

ρ
+

(
(α(α− 1) +

α

2︸ ︷︷ ︸
=α(α− 1

2 )

+2rc

)
w

ρ2
+ 2`rc

w

ρ
= 0

for ρ ∈ (c2,∞). For α = − 1
4 the coefficient of w′ vanishes and we get the ode

w′′ +

(
3

16
+ 2rc

)
w

ρ2
+ 2`rc

w

ρ
= 0

for functions w = w(ρ) with ρ ∈ (c2,∞). This ode is of the form

w′′+

(
λ2

4ρ
+

1− ν2

4ρ2

)
w = 0, λ2 = 8`rc =

(
2k

c

)2

, ν2 =
1− 32rc

4
(5.28)

where k ∈ N by (4.11). Solutions are given by w(ρ) = ρ
1
2 Cν(λρ

1
2 ), see [AS64,

9.1.51 p. 362], where for Cν one can choose e.g. Bessel functions Jν or Weber
functions4 Yν , formulas for which are given in [AS64, 9.1.2 and 9.1.10–11]. So

ũ := ρ
1
2 Jν(λρ

1
2 ), ṽ := ρ

1
2 Yν(λρ

1
2 )

are two solutions of (5.28).

Due to our Ansatz f = ρ−
1
4w two solutions of (5.27) for b = 0 are given by

u := ρ
1
4 Jν(λρ

1
2 ), v := ρ

1
4 Yν(λρ

1
2 ), λ = 2k

c , ν = 1
2

√
1− 32

c2

≈
< 1

2 (5.29)

where k ∈ N; see (4.11). The Wronskian of u and v is given by

W (ρ) := W (u, v)|ρ := uv′ − u′v = λ
2 W (Jν , Yν)|

λρ
1
2

=
1

πρ
1
2

Step one is calculation, step two uses that W (Jν , Yν)|s = 2
πs by [AS64, 9.1.16].

Step 2 (Inhomogeneous equation). Let ρ0 := 2c2 ∈ (c2,∞). Given con-
stants α, β ∈ R and from (5.29) the solutions u, v of the homogeneous (b = 0)
version of (5.27), then the solution f to equation (5.27) with initial conditions

f(1) = αu(1) + βv(1), f ′(1) = αu′(1) + βv′(1) (5.30)

4 Heinrich Martin Weber (1842–1913)
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is given for ρ ∈ [2c2,∞) by the formula (see e.g. [Kra86, Exc. IV.5.3 p. 81])

f(ρ) : = αu(ρ) + βv(ρ) +

∫ ρ

ρ0

u(s)v(ρ)− u(ρ)v(s)

W (s)
b(s) ds

= αρ
1
4 Jν(λρ

1
2 ) + βρ

1
4Yν(λρ

1
2 )

+ πρ
1
4Yν(λρ

1
2 )

∫ ρ

ρ0

s
3
4 Jν(λs

1
2 )

(
f ′(s)

2s2( sc2 − 1)
+ 2+2`s

s3 f(s)

)
ds

− πρ 1
4 Jν(λρ

1
2 )

∫ ρ

ρ0

s
3
4Yν(λs

1
2 )

(
f ′(s)

2s2( sc2 − 1)
+ 2+2`s

s3 f(s)

)
ds

= αρ
1
4 Jν(λρ

1
2 ) + βρ

1
4Yν(λρ

1
2 )

+ 2πρ
1
4Yν(λρ

1
2 )

∫ ρ

ρ0

(1 + `s)Jν(λs
1
2 )

s3− 3
4

f(s) ds

− 2πρ
1
4 Jν(λρ

1
2 )

∫ ρ

ρ0

(1 + `s)Yν(λs
1
2 )

s3− 3
4

f(s) ds

+ π
2 ρ

1
4

∫ ρ

ρ0

Yν(λρ
1
2 )Jν(λs

1
2 )− Yν(λs

1
2 )Jν(λρ

1
2 )

s
5
4 ( sc2 − 1)

f ′(s) ds

(5.31)

We wish to show that every solution R of (5.26) is L2 near the origin, say on
(0, r0] ⊂ (0, rc) where r0 := 1

ρ0
= 1

2rc. For r(ρ) = 1
ρ and f(ρ) := R(r(ρ)) we get∫ r0

0

R(r)2 dr =

∫ ∞
ρ0

f(ρ)2

ρ2
dρ =

∫ ∞
ρ0

F (ρ)2 dρ, F (ρ) :=
|f(ρ)|
ρ

. (5.32)

To show finiteness of the integral in (5.32) we need to estimate (5.31) and for
this it is crucial to understand boundedness and, more crucially, decay behavior
of the Bessel functions Jν and their cousins Yν . People not familiar with them
might wish to have a look at their graphs, for instance in the appropriate Wiki,
to see that these resemble cosine and sine functions with some decay factor –
which actually is 1/

√
ρ = 1/ρ

2
4 . It is this exponent of the decay factor which

translates in (5.35) into a power smaller than 1/2 in ρ1/4 which is necessary to
have β(ρ) be integrable on (ρ0,∞). So in the end γ in (5.36) is indeed finite.

Remark 5.4 (Boundedness and decay of Bessel functions). Recall that ν
<
≈ 1

2 ,
see (5.29). Hence assertion (i) holds by [AS64, 9.1.60 p. 362].

(i) |Jν | ≤ 1 on [0,∞). As (c2,∞) is far out, |Jν | is very small by [AS64, 9.2.5].

18

https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung#Bessel-Funktionen


(ii) |Yν | ≤ 1 on (c2,∞) = ( 1
rc
,∞):5 By [AS64, 9.1.2 & 9.1.62] we get that

|Yν(ρ)| =
∣∣∣∣Jν(ρ)

cos(νπ)

sin(νπ)
− J−ν(ρ)

∣∣∣∣
≤ cot(νπ) +

2ν

c2ν Γ(1− ν)

≤ cot(νπ) +
1

cν
=: cY

We used for the Γ function that Γ(1 − ν) ≈ Γ( 1
2 ) > 1. In fact cY > 0 is

very close to zero: Indeed cν ≈
√

3 · 104 and νπ is smaller but very close
to x = π

2 where cosine is zero and sine is one.

(iii) Asymptotic decay Jν(ρ), Yν(ρ) ∼ 1/ρ
2
4 as ρ→∞. By [AS64, 9.2.1] we get

Jν(ρ) ∈
√

2
πρ

(
cos(ρ− νπ

2 −
π
4 ) +O( 1

ρ )
)
. (5.33)

For Yν use sine. By definition there are constants ρ1, C1 > 1 such that

|Jν(ρ)| ≤ C1

ρ
2
4

∣∣∣cos(ρ− νπ
2 −

π
4 ) + 1

ρ

∣∣∣ ≤ C1

ρ
2
4

for every ρ ≥ ρ1 and similarly for Yν (using sine and same constant names).
In the second inequality one might have to enlarge the constants.

We use the bounds (i–ii), the crucial one (iii), and (5.31) to get the estimate

|f(ρ)|
ρ
≤ |α|+ |β|

ρ
3
4

+
4πC1

ρ
3
4

∫ ρ

ρ0

(
|f(s)|
s

9
4

+
`|f(s)|
s

5
4 + 2

4

)
ds

+
π

2ρ
3
4

∣∣∣∣∣
∫ ρ

ρ0

(
Jν(λs

1
2 )

s
5
4 ( sc2 − 1)

f ′(s)

)
ds

∣∣∣∣∣
+

π

2ρ
3
4

∣∣∣∣∣
∫ ρ

ρ0

(
Yν(λs

1
2 )

s
5
4 ( sc2 − 1)

f ′(s)

)
ds

∣∣∣∣∣
(5.34)

for every ρ ∈ [ρ0,∞). Next we carry out partial integration for one of the two
terms in (5.34), say the Jν term, the Yν term being analogous and leading to
exactly the same estimate. Note that s ≥ ρ0 implies s

c2 − 1 ≥ ρ0
c2 − 1 = 2 − 1.

5 Near the origin 0 the function Yν explodes towards −∞.
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Partial integration, the unit bound |Jν | ≤ 1, and the crucial decay (iii) tell that

g(ρ) : =

∣∣∣∣∣
∫ ρ

ρ0

(
Jν(λs

1
2 )

s
5
4 ( sc2 − 1)

f ′(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣Jν(λρ
1
2 )f(ρ)

ρ
5
4 ( ρc2 − 1)

− Jν(λρ
1
2
0 )f(ρ0)

ρ
5
4
0

+

∫ ρ

ρ0

Jν(λs
1
2 )
(

5
4s

1
4 ( sc2 − 1) + s

5
4

)
s

5
2 ( sc2 − 1)2

f(s) ds

−
∫ ρ

ρ0

J ′ν(λs
1
2 ) λ

2
√
s
s

5
4 ( sc2 − 1)

s
5
2 ( sc2 − 1)2

f(s) ds

∣∣∣∣∣
≤

(
|f(ρ0|
c2

+
|f(ρ)|
ρ

5
4

+ C1

∫ ρ

ρ0

|f(s)|
s

5
4 + 2

4

ds + λ
2

∫ ρ

ρ0

|J ′ν(λs
1
2 )|︸ ︷︷ ︸

≤2

· |f(s)|
s

7
4

ds

)
.

Indeed, by the recurrence relation in [AS64, 9.1.27] and since |Jµ| ≤ 1 on [0,∞)
for µ ≥ 0 by [AS64, 9.1.60], we get for s ≥ ρ0 = 2c2 and with λ = 2k/c that

|J ′ν(λs
1
2 )| =

∣∣∣∣−Jν+1(λs
1
2 ) +

ν

λs
1
2

Jν(λs
1
2 )

∣∣∣∣ ≤ 1 +
ν

(2k/c)
√

2c
< 1 +

1

4
.

Hence for each k ∈ N we obtain the estimate

g(ρ) ≤ |f(ρ0|
c2

+
|f(ρ)|
ρ

5
4

+

∫ ρ

ρ0

(
C1 + 2k

c

) |f(s)|
s

5
4 + 2

4

ds

for every ρ ≥ ρ0 = 2c2 � 2π. Set γ0/2 := |α|+ |β|+ |f(ρ0)| to finally get

|f(ρ)|
ρ
≤ γ0

2ρ
3
4

+
1

2

|f(ρ)|
ρ

+
2πC1(1 + k + k2)

ρ
3
4

∫ ρ

ρ0

|f(s)|
s

5
4 + 2

4

ds

and therefore

F (ρ) :=
|f(ρ)|
ρ
≤ γ0

ρ
3
4

+
12πC1k

2

ρ
3
4

∫ ρ

ρ0

|f(s)|
s

5
4 + 2

4

ds

for every ρ ≥ ρ0. Set ck := (12πC1k
2)2 and square the expression to obtain

F (ρ)2 ≤ 2γ2
0

ρ
3
2

+
2ck

ρ
3
2

(∫ ρ

ρ0

1

s
1
4 + 2

4

· F (s) ds

)2

≤ 2γ2
0

ρ
3
2︸︷︷︸

=:h(ρ)

+ 8ck
ρ

1
4 − ρ0

1
4

ρ
3
2︸ ︷︷ ︸

=:β(ρ)

∫ ρ

ρ0

F (s)2 ds
(5.35)
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for every ρ ≥ ρ0. The second inequality is by Cauchy-Schwarz. Define

‖F‖p(t) :=

(∫ t

ρ0

F (s)p ds

) 1
p

for p ≥ 1 and t ≥ ρ0. Integrate (5.35) to obtain the estimate

‖F‖2(t)2︸ ︷︷ ︸
=:U(t)

:=

∫ t

ρ0

F (ρ)2 dρ ≤ ‖h‖1(t)︸ ︷︷ ︸
≤α

+

∫ t

ρ0

β(ρ) ‖F‖2(ρ)2︸ ︷︷ ︸
U(ρ)

dρ

for every t ≥ ρ0 and where α := ‖h‖L1(ρ0,∞) <∞. So by Gronwall’s lemma

‖F‖2(t) 2︸ ︷︷ ︸
=U(t)

≤ α exp

(∫ t

ρ0

β(s) ds

)
≤ α exp

(∫ ∞
ρ0

β(s) ds

)
:= γ <∞ (5.36)

for any t ≥ ρ0. The constant γ is finite, because the integral
∫∞
ρ0

1
s5/4

ds <∞ is.

Thus γ ≥ ‖F‖2L2(ρ0,∞) = ‖R‖2L2(0,r0) by (5.32). This proves that any solution R

of (5.26) on (0, rc), independent of the choice of initial conditions (cf. (5.30)), is
L2 near the boundary singularity 0. By Remark 5.2 this proves a) in

Proposition 5.5 (Non-zero angular momentum – limit circle on (0, rc)). The
singular Sturm-Liouville problem given by the 1-dimensional Weber Schrödinger
equation (5.26) on the interval (0, rc) is

a) limit circle at the left origin boundary singularity 0;

b) limit circle at the right critical radius boundary singularity rc.

5.2.2 Type ’limit circle’ at the critical radius

To prove Proposition 5.5 b) it suffices to treat the case E = 0 by Remark 5.2.

Setup (Case E = 0). Reorder (5.26) to get the ode

R̈+
1

2(rc − r)
Ṙ+

3

2r
Ṙ = − (rc − r)(r + `)

r3
2R︸ ︷︷ ︸

=:b(r)

(5.37)

for functions R on [r0, rc) where r0 := rc
2 and where ` = k2/2 for a given k ∈ N;

see (4.11). For ` = 0 the ode reduces to (5.20) which we had solved for b = 0.

Step 1 (Homogeneous equation). We already solved equation (5.37) for
b = 0. Recall that solutions are u ≡ 1 and v in (5.21), that |v| ≤ 1, and that
their Wronskian is W (r) = r−3/2

√
rc − r.

Step 2 (Inhomogeneous equation). Given constants α, β ∈ R, the solution
R to (5.20) with initial conditions

R(r0) = αu(r0) + βv(r0), Ṙ(r0) = αu̇(r0) + βv̇(r0) (5.38)
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is given for r ∈ [r0, rc) by the definition in (5.18). On [r0, rc) we estimate

|R(r)| ≤ |α|+ |β|+
∣∣∣∣∫ r

r0

v(r)− v(s)

s−3/2
√
rc − s

(rc − s)(s+ `)

s3
2R(s) ds

∣∣∣∣
≤ c1 + c2

∫ r

r0

|R(s)| ds.

Here inequality one uses that ‖u‖∞ = ‖1‖∞ = 1 and ‖v‖∞ = 1. Inequality two
holds with c1 := |α|+ |β| and c2 := 2rc. To get c2 let I := [r0, rc), note that

2 sup
r∈I

(r − r0) sup
s∈I

|v(r)|+ |v(s)|
s3/2

√
rc − s(s+ `) ≤ 2

rc
2

2‖v‖∞
r

3/2
0

√
rc
2

(rc + `)

≤ 4(1 + `) =: c2.

Since c1, c2 are constants, a special case of Gronwall gives

|R(r)| ≤ c1ec2(r−r0) ≤ c1ec2rc/2 = c1e
2(1+`)/c2 .

for r ∈ [r0, rc). Thus any solution R of (5.20) on [r0, rc) is uniformly bounded,
thus L2. By Remark 5.2 this proves part b) of Proposition 5.5.
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der Königl. Sächs. Gesellschaft der Wissenschaften, 10:1 – 61, 1871.
Reprinted in Wilhelm Weber’s Werke (Springer, Berlin, 1894), Vol. 4,
pp. 247 - 299.

23

http://www.mat.univie.ac.at/~gerald/ftp/book-ode/index.html


[Web94a] Wilhelm Weber. Handschriftlicher Nachlass. In Wilhelm Weber’s
Werke: Vierter Band Galvanismus und Elektrodynamik, volume 4,
pages 478–525. Springer Berlin Heidelberg, Berlin, Heidelberg, 1894.

[Web94b] Wilhelm Weber. Ueber einen einfachen Ausspruch des allgemeinen
Grundgesetzes der elektrischen Wirkung. In Wilhelm Weber’s Werke:
Vierter Band Galvanismus und Elektrodynamik, volume 4, pages 243–
246. Springer Berlin Heidelberg, Berlin, Heidelberg, 1894.

[Web20] Weber, Joa (Organizer). Advanced School ”Symplectic Topology meets
Celestial and Quantum Mechanics via Weber Electrodynamics” 17-
21 February at UNICAMP. Youtube channel: Freedom and Science
www.youtube.com/channel/UCOIeUkMqXstDrJKAsn11UgA, 2020.
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