
Wave Function Collapse Visualisation
1st Vishal Pandey

Information Technology
St. Thomas’ College of Engineering and Technology (MAKAUT)

Kolkata, India
bishalpandey2001@gmail.com

2nd Ishanvi Pandey
Physics and Mathematics

International Center of Theoretical Sciences
Lucknow, India

ishanvipandey.09@gmail.com

Abstract—Wave Function Collapse initializes output bitmap
in a completely unobserved state, where each pixel value is in
superposition of colors of the input bitmap (so if the input was
black white then the unobserved states are shown in different
shades of grey). The coefficients in these super positions are
real numbers, not complex numbers, so it doesn’t do the actual
quantum mechanics, but it was inspired by QM. In this we have
been match each tile to tile value by pixel to pixel by naming
as it as ”socket”. We know that in code when we match the tile
it would be in a random order so we had rotate then into a
specific order to match each socket to socket which indicates the
overlapping of tiles as the superposition of several Eigen states. It
was first introduced in 2016 by Maxim Gumin that can generate
procedural patterns from a sample image or from a collection of
tiles. So we are just visualising it in mathematical way.

Index Terms—quantum mechanics, computational physics,
mathematics, algorithms

I. INTRODUCTION

In quantum mechanics, wave function collapse occurs when
a wave function—initially in a superposition of several eigen-
states—reduces to a single eigenstate due to interaction with
the external world. This interaction is called an observation,
and is the essence of a measurement in quantum mechanics,
which connects the wave function with classical observable
such as position and momentum. Collapse is one of the two
processes by which quantum systems evolve in time; the
other is the continuous evolution governed by the Schrödinger
equation.

II. THEORY

Wave function collapse generation is a randomly
programmed generation algorithm, which is classic for
map generation in game scenes. First a fall I need to
explain two famous theories in QM which can make you
understandable into it.
Double Slit Experiment: In quantum mechanics, there is a
very famous experiment called ”Double Slit Interference”.
The process of the experiment can be seen in this video. The
first of the world’s top ten classical physics experiments - the
electron double slit interference experiment . The result of the
experiment should be regarded as no When observed, photons
show the properties of waves. When observed, photons show
the properties of particles. (This is a famous experiment in
which human beings have officially encountered supernatural
phenomena in scientific experiments.)

Schrödinger’s cat: The famous Austrian physicist (Nue Mao
Kuang Ren) Schrödinger proposed a thought experiment, the
content of the experiment can be seen here What does ”
Schrödinger’s cat ” mean? The conclusion of the experiment
is that when the cat in the box is observed, the state of the cat
is either dead or alive, and can only choose one between the
two, and if there is no observation, then the state of the cat
is neither dead nor alive (this state Not realistic, but quantum
mechanics does define it that way).
After the introduction of the above two famous experiments,
some people must have raised questions, so what do they
have to do with ”wave function collapse”? state (photon:
wave, particle; cat: dead, alive, not dead or alive.) And when
the matter is observed, its state is determined. This ”state is
determined” process, we call it ”Collapse of wave function”.
(That’s why the terminology is like this, using a name that
looks very high to describe a phenomenon or property, even
if the five words ”collapse of wave function” are replaced by
”XXXXX”, it will not affect understanding).
Basic concepts to visualise the wave collapse function is :
slot and entropy.
Slot: The possibility of “slot” on each pattern is determined
by the entropy, and each pattern becomes an initial possibility
on the map.
Entropy: This refers to the information entropy. The greater
the value, the more likely the pattern is. The demonstration
program unites the displayed “entropy” value for convenience
(range 0-1).
Unit Entropy Model Pattern: Specific patterns include:
image resources, rotation angle, weight value (probability),
and four edge information.
Edge Information: Each edge has a connect id, which is used
to judge whether the two edges can be connected to each other.

What does the entropy means here?
Entropy is a thermodynamic parameter that represents the
state of matter. Its physical meaning indicates the degree
of disorder of matter. The greater the entropy, the more
disordered the matter. , the smaller the entropy, the more
stable the material is. For example, when water is heated to
become fog, the entropy value increases (entropy increase) in
this process, and the water cools into ice, the entropy value
decreases in this process (entropy decrease), and this concept
is introduced into quantum In mechanics, it can be expressed

that when a substance collapses from a superposition state
to a certain state, the entropy decreases, and vice versa, the
entropy increases.
Taking Schrödinger’s cat experiment as an example, it can
be understood that when the cat is not observed, the cat is in
a state of immortality. In the superposition state of life, the
probability of the cat dying is 50%, and the probability of
being alive is also 50%, and the entropy value is the largest.
When the box is opened to observe the cat, the state of the
cat will never collapse into a dead or alive state. After the
collapse, the entropy value is the smallest.
Since entropy is a metric value, there is a formula for
finding entropy. For the probability of an event occurring, the
standard formula for finding entropy (also called information
entropy) is:

H(X) = −
∑
x∈X

(p(x) log(p(x))) (1)

where p(x) represents the probability of event x occur-
ring.H(X) is the entropy value.

III. CALCULATION

Before collapsing, the wave function may be any square-
integrable function, and is therefore associated with the proba-
bility density of a quantum mechanical–system. This function
is expressible as a linear combination of the eigenstates of
any observable. Observables represent classical dynamical
variables, and when one is measured by a classical observer,
the wave function is projected onto a random eigenstate of
that observable. The observer simultaneously measures the
classical value of that observable to be the eigenvalue of the
final state.

A. Overview

In daily life, take going to the movies as an example (this
example will be often quoted below), assuming that a movie
theater sells movie tickets without a seat number, the seats
are arranged by a seat guide, and the total number of seats is
set (That is, the number of seats in the theater) is n. From
the point of view of the seat guide, if the guest does not ask
for it, then anyone can sit in the seat he wants to sit, that is,
the probability that everyone can sit in any seat Both are 1/n,
and now we have to add some rules, for example, if you go
with your friends, you need to ask the guide that you must
sit next to each other, then the guide will choose one for you
After taking the seat, your friends will be arranged next to
you. From the perspective of seats, once you take a seat, the
probability of your current seat candidate collapses to only
you, and the probability that the next seat candidate is your
friend is greatly improved. So a phenomenon like this from
chaos to certainty is called wave function collapse in a term.
So the core principle of the algorithm is to dynamically
make the range of candidates for each seat become smaller
and smaller, until finally all the All seats can select
suitable objects. (For example, each seat has an audience
(corresponding to the collapsed object)). How to dynamically

reduce the range of candidate objects? It is through constraint
rules, propagation and backtracking.
Constraint Rules: In the initial situation (the universe is
chaotic?) (theoretically, the entropy value is the largest at
this time), the set of optional objects for each seat is the
same. If there are no rules, the random selection of future
results will also be messy, and the rules will be constrained.
The existence of , is similar to the above-mentioned ”request
to the guide, my friend will sit next to me”, various rules,
so that when a seat is determined (collapsed), it will affect
according to the rules. A collection of optional objects for
other seats.
Propagation: When the candidate for a seat is determined
(collapsed), the optional object collection of other seats can
be processed through rules plus propagation. (For example,
according to the above Scenario, give the guide a rule that
”my right hand side can only sit on girls”, then once I take a
seat, the optional set of seats on my right hand side will be
processed to only contain girls).
In 2D world, an object has 4 faces (front, back, left, and
right), while in 3D world, an object has 6 faces (front, back,
left, right, up, down). Each face corresponds to one neighbor,
so the algorithm of wave function collapse propagates If you
think about the idea, you can propagate according to the
neighbors of the collapsed position. Put the rules into it, and
process the optional set of each neighbor.
Backtracking: Sometimes, when our algorithm is in the
process of propagation, something goes wrong (for example:
The rule I mentioned to the guide is ”My right hand can
only sit on my friend”, and the rule my friend mentioned to
the guide is ”I don’t want to sit in the first row”, so there
may be such a situation, once guide The staff arranged my
seat in the first row, and as soon as I took a seat, after the
algorithm was propagated, the optional set of seats on my
right was processed as only my friend could sit, and because
of my friend’s rule of ”not sitting in the first row”, finally
As a result, no one can sit on the seat on my right, and no
one on my right violates the rule of ”my right hand can
only sit on my friend”... This will easily lead to conflicts
and waste of resources), we hope to be able to eliminate the
wrong solution, and then go back. Choose again. This is the
meaning of backtracking.

B. Algorithm of Wave Function Collapse

1) Read the input bitmap and count NxN patterns.
a) (optional) Augment pattern data with rotations and

reflections.
2) Create an array with the dimensions of the output

(called ”wave” in the source). Each element of this
array represents a state of an NxN region in the output.
A state of an NxN region is a superposition of NxN
patterns of the input with boolean coefficients (so a
state of a pixel in the output is a superposition of
input colors with real coefficients). False coefficient
means that the corresponding pattern is forbidden, true

coefficient means that the corresponding pattern is not
yet forbidden.

3) Initialize the wave in the completely unobserved state,
i.e. with all the boolean coefficients being true.

4) Repeat the following steps:
a) Observation:

i) Find a wave element with the minimal nonzero
entropy. If there is no such elements (if all
elements have zero or undefined entropy) then
break the cycle (4) and go to step (5).

ii) Collapse this element into a definite state ac-
cording to its coefficients and the distribution
of NxN patterns in the input.

b) Propagation: propagate information gained on the
previous observation step.

5) By now all the wave elements are either in a completely
observed state (all the coefficients except one being zero)
or in the contradictory state (all the coefficients being
zero). In the first case return the output. In the second
case finish the work without returning anything.

C. How WFC works?

It is new algorithm that can generate procedural patterns
from a sample image. It’s especially exciting for game
designers, letting us draw our ideas instead of hand coding
them. We’ll take a look at the kinds of output WFC can
produce and the meaning of the algorithm’s parameters. Then
we’ll walk through setting up WFC in javascript and the
Unity game engine.

We will focus on the WFC in Javascript.

WFC consists of two parts, an input Model and a constraint
Solver.

1) The Simple Tiled Model uses an xml document which
declares legal adjacencies for different tiles.

2) the Overlap Model breaks an input pattern up into
pattern chunks. It’s similar to a 2D markov chain

NOTE: We’ll be focusing on the Overlap Model, as it’s
easier to create input for.

WFC’s special approach to constraint solving is a process of
elimination. Each grid location holds an array of booleans for
what tiles it can and cannot be. During the observation phase,
one tile is selected and given a single random solution from
the remaining possibilities. This choice is then propagated
throughout the grid, eliminating adjacent possibilities that
don’t match the input model.

The final feature is backtracking. If an observation
propagation result in an unsolvable contradiction, they’re
reverted and a different observation is attempted.

Our motive is simple collapse all the possible states down
into one and remove all the entropy from a single variable of

the system.

D. Code for Wave Collapse Function

Our folders are designed in such a way :
1) tiles: It contains the pictures of different tiles. eg: train

tracks, pipes, etc...
2) cell.js: The javascript file in which we made an class of

Cell to demonstrate if the value is been collapsed then
it put it into an array of options.

3) tile.js: The javascript file in which we made an class
of Tiles to analyze, rotate, compare Edge and reverse
the string (which is being defined as the socket of the
pictures).

4) style.css: The style sheet which designed the page of the
our website and also made the output of our collapse
wave struture in the middle of the page.

5) index.html: The Hypertext markup language page in
which we linked the style sheet and the all script files
which can show the webpage output in the port:5500
localhost of our desktop.

6) sketch.js: This is the script file which contains the
main project automation in it. In which we defined the
Dimension of the tiles, tilesImages in the array and the
path of the images in a function called preload(). We
made different functions to do different things such as:
removing duplicate tiles, setup of the canvas , redrawing
after the mouse is been pressed, draw function to draw
the tiles waves through a specific dimensions which
being collapsed through socket to socket.

NOTE: This whole project is made by the famous
framework of javascript name p5.js.

Tiles.js

/*Code for tiles.js*/
/*-----------------*/

function reverseString(s) {
let arr = s.split(’’);
arr = arr.reverse();
return arr.join(’’);

}

function compareEdge(a, b) {
return a == reverseString(b);

}

class Tile {
constructor(img, edges, i) {
this.img = img;
this.edges = edges;
this.up = [];
this.right = [];
this.down = [];
this.left = [];

if (i !== undefined) {
this.index = i;

}
}

analyze(tiles) {
for (let i = 0; i < tiles.length; i++) {
let tile = tiles[i];

// Tile 5 can’t match itself
if (tile.index == 5 && this.index == 5)

continue;

// UP
if (compareEdge(tile.edges[2],

this.edges[0])) {
this.up.push(i);

}
// RIGHT
if (compareEdge(tile.edges[3],

this.edges[1])) {
this.right.push(i);

}
// DOWN
if (compareEdge(tile.edges[0],

this.edges[2])) {
this.down.push(i);

}
// LEFT
if (compareEdge(tile.edges[1],

this.edges[3])) {
this.left.push(i);

}
}

}

rotate(num) {
const w = this.img.width;
const h = this.img.height;
const newImg = createGraphics(w, h);
newImg.imageMode(CENTER);
newImg.translate(w / 2, h / 2);
newImg.rotate(HALF_PI * num);
newImg.image(this.img, 0, 0);

const newEdges = [];
const len = this.edges.length;
for (let i = 0; i < len; i++) {
newEdges[i] = this.edges[(i - num +

len) % len];
}
return new Tile(newImg, newEdges,

this.index);
}

}

Cell.js

/*Code for Cell.js*/
/*-----------------*/
class Cell{

constructor(value){
this.collapsed = false;
if(value instanceof Array){

this.options = value;
} else{

this.options = [];

for(let i=0;i<value;i++){
this.options[i] = i;

}
}

}
}

Sketch.js

/*Code for Sketch.js*/
/*------------------*/
let tiles = [];
const tileImages = [];

let grid = [];

const DIM = 25;

function preload() {

const path = ’tiles/circuit-new’;
for (let i = 0; i < 13; i++) {
tileImages[i] =

loadImage(‘${path}/${i}.png‘);
}

}

function removeDuplicatedTiles(tiles) {
const uniqueTilesMap = {};
for (const tile of tiles) {
const key = tile.edges.join(’,’); // ex:

"ABB,BCB,BBA,AAA"
uniqueTilesMap[key] = tile;

}
return Object.values(uniqueTilesMap);

}

function setup() {
createCanvas(500, 500);
background(255, 0, 200);

// Loaded and created the tiles
// The string ’AAA’ and so on are the socket

for the respective tiles.
tiles[0] = new Tile(tileImages[0], [’AAA’,

’AAA’, ’AAA’, ’AAA’]);
tiles[1] = new Tile(tileImages[1], [’BBB’,

’BBB’, ’BBB’, ’BBB’]);
tiles[2] = new Tile(tileImages[2], [’BBB’,

’BCB’, ’BBB’, ’BBB’]);
tiles[3] = new Tile(tileImages[3], [’BBB’,

’BDB’, ’BBB’, ’BDB’]);
tiles[4] = new Tile(tileImages[4], [’ABB’,

’BCB’, ’BBA’, ’AAA’]);
tiles[5] = new Tile(tileImages[5], [’ABB’,

’BBB’, ’BBB’, ’BBA’]);
tiles[6] = new Tile(tileImages[6], [’BBB’,

’BCB’, ’BBB’, ’BCB’]);
tiles[7] = new Tile(tileImages[7], [’BDB’,

’BCB’, ’BDB’, ’BCB’]);
tiles[8] = new Tile(tileImages[8], [’BDB’,

’BBB’, ’BCB’, ’BBB’]);
tiles[9] = new Tile(tileImages[9], [’BCB’,

’BCB’, ’BBB’, ’BCB’]);
tiles[10] = new Tile(tileImages[10], [’BCB’,

’BCB’, ’BCB’, ’BCB’]);

tiles[11] = new Tile(tileImages[11], [’BCB’,
’BCB’, ’BBB’, ’BBB’]);

tiles[12] = new Tile(tileImages[12], [’BBB’,
’BCB’, ’BBB’, ’BCB’]);

for (let i = 0; i < 12; i++) {
tiles[i].index = i;

}

const initialTileCount = tiles.length;
for (let i = 0; i < initialTileCount; i++) {
let tempTiles = [];
for (let j = 0; j < 4; j++) {
tempTiles.push(tiles[i].rotate(j));

}
tempTiles =

removeDuplicatedTiles(tempTiles);
tiles = tiles.concat(tempTiles);

}
console.log(tiles.length);

// Generate the adjacency rules based on
edges

for (let i = 0; i < tiles.length; i++) {
const tile = tiles[i];
tile.analyze(tiles);

}

startOver();
}

function startOver() {
// Create cell for each spot on the grid
for (let i = 0; i < DIM * DIM; i++) {
grid[i] = new Cell(tiles.length);

}
}

function checkValid(arr, valid) {
//console.log(arr, valid);
for (let i = arr.length - 1; i >= 0; i--) {
// VALID: [BLANK, RIGHT]
// ARR: [BLANK, UP, RIGHT, DOWN, LEFT]
// result in removing UP, DOWN, LEFT
let element = arr[i];
if (!valid.includes(element)) {
arr.splice(i, 1);

}
}

}

function mousePressed() {
redraw();

}

function draw() {
background(0);

const w = width / DIM;
const h = height / DIM;
for (let j = 0; j < DIM; j++) {
for (let i = 0; i < DIM; i++) {
let cell = grid[i + j * DIM];
if (cell.collapsed) {
let index = cell.options[0];
image(tiles[index].img, i * w, j * h,

w, h);

} else {
noFill();
stroke(51);
rect(i * w, j * h, w, h);

}
}

}

// Pick cell with least entropy
let gridCopy = grid.slice();
gridCopy = gridCopy.filter((a) =>

!a.collapsed);

if (gridCopy.length == 0) {
return;

}
gridCopy.sort((a, b) => {
return a.options.length - b.options.length;

});

let len = gridCopy[0].options.length;
let stopIndex = 0;
for (let i = 1; i < gridCopy.length; i++) {
if (gridCopy[i].options.length > len) {
stopIndex = i;
break;

}
}

if (stopIndex > 0)
gridCopy.splice(stopIndex);

const cell = random(gridCopy);
cell.collapsed = true;
const pick = random(cell.options);
if (pick === undefined) {
startOver();
return;

}
cell.options = [pick];

const nextGrid = [];
for (let j = 0; j < DIM; j++) {
for (let i = 0; i < DIM; i++) {
let index = i + j * DIM;
if (grid[index].collapsed) {
nextGrid[index] = grid[index];

} else {
let options = new

Array(tiles.length).fill(0).map((x,
i) => i);

// Look up
if (j > 0) {
let up = grid[i + (j - 1) * DIM];
let validOptions = [];
for (let option of up.options) {
let valid = tiles[option].down;
validOptions =

validOptions.concat(valid);
}
checkValid(options, validOptions);

}
// Look right
if (i < DIM - 1) {
let right = grid[i + 1 + j * DIM];
let validOptions = [];
for (let option of right.options) {
let valid = tiles[option].left;

validOptions =
validOptions.concat(valid);

}
checkValid(options, validOptions);

}
// Look down
if (j < DIM - 1) {
let down = grid[i + (j + 1) * DIM];
let validOptions = [];
for (let option of down.options) {
let valid = tiles[option].up;
validOptions =

validOptions.concat(valid);
}
checkValid(options, validOptions);

}
// Look left
if (i > 0) {
let left = grid[i - 1 + j * DIM];
let validOptions = [];
for (let option of left.options) {
let valid = tiles[option].right;
validOptions =

validOptions.concat(valid);
}
checkValid(options, validOptions);

}

// I could immediately collapse if only
one option left?

nextGrid[index] = new Cell(options);
}

}
}

grid = nextGrid;
}

index.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport"

content="width=device-width,
initial-scale=1.0">

<title>Wave Function Collapse</title>

<link rel="stylesheet" type="text/css"
href="style.css">

<link rel="apple-touch-icon"
sizes="180x180"
href="/favicon-WFC/apple-touch-icon.png">

<link rel="icon" type="image/png"
sizes="32x32"
href="/favicon-WFC/favicon-32x32.png">

<link rel="icon" type="image/png"
sizes="16x16"
href="/favicon-WFC/favicon-16x16.png">

<link rel="manifest"
href="/favicon-WFC/site.webmanifest">

<script src="libraries/p5.min.js"></script>
<script

src="libraries/p5.sound.min.js"></script>
<script

src="https://bit.ly/3uvIicY"></script>
</head>

<body>
<script src="sketch.js"></script>
<script src="cell.js"></script>
<script src="tile.js"></script>

</body>
</html>

style.css

body {
margin: 0;
height: 100%;
display: flex;
justify-content: center;
align-items: center;

}

canvas {
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
width: 50%;
height: 50%;
padding: 20px;
text-align: center;

}

E. Explanation of Socket in Tiles image

Here I will explain the Tiles images for the folder of circuit
which contains the 11 images in it and in each it have some
patterns we need to connect each of them which generates
randomly and been attached mutually.
For each socket we will define a constant number or al-
phabets which will be same in all same patterns(when it
comes through) it means when the socket come through we
can attached them without hesitations by some algorithm of
rotation and validation.
Here we denote majorly the sockets by the alphabets because
it’s easy to justify the connection between the rotated one and
the simple one. It becomes easier than the numeric ones.
NOTE: The images is been added to the image section.

F. Higher Dimensions Wave Collapse Function

WFC algorithm in higher dimensions works completely the
same way as in dimension 2, though performance becomes an
issue. These voxel models were generated with N=2 overlap-
ping tiled model using 5x5x5 and 5x5x2 blocks and additional
heuristics (height, density, curvature, ...).

G. Advantages and Disadvantages

1) Advantages
a) Compared with the map splicing algorithm (War-

craft3 terrain splicing algorithm), the effect

achieved by this algorithm is more flexible and
richer, and can better adapt to various needs.

2) Disadvantages
a) The algorithm is complex and difficult to quantify,

requiring a computer
b) There is no mature production specification for the

time being, and it is difficult to consider all possible
situations in the production of module prototypes.
The production progress is not easy to control .

IV. IMAGE REFERENCE

A. Sockets Image Reference

B. Circuit Tiles

REFERENCES

[1] Daniel Shifmann, “Wave Function Collapse” April 2020.
[2] Jianshu Blog on, “Programmatic Random Generation of Infinite Cities

Based on ”Wave Function Collapse Algorithm”“, June 2019
[3] Wave Collapse Function, Wikipedia
[4] Solub Blog on, “Wave Collapse Function“ algorithm in Processing, July

2019

