The prime Number Theorem and Prime Gaps

Hyeon Jun Ahn

June 1, 2022

Abstract: Let there exists $m>0$ such that $g_{n}=O\left(\left(\log p_{n}\right)^{m}\right)$, then

$$
\forall k>0, \exists M \in \mathbb{N} \quad \text { s.t. } n \geq M \Rightarrow g_{n}:=p_{n+1}-p_{n}<p_{n}^{k}
$$

where p_{n} is nth prime number, O is big O notation, \log is natural logarithm. This lead to a corollary for Andrica conjecture, Oppermann conjecture.

1. Introduction

By the prime number theorem, primes less than n are asymptotically $\frac{n}{n \log n}$, so the average gap between primes less than n is logn. Hence, nth prime is asymptotically nlogn.

$$
\text { i.e. } \lim _{n \rightarrow \infty} \frac{p_{n}}{n \log n}=1
$$

This is equivalent to

$$
p_{n} \sim n \log n
$$

This means that nlogn approximates p_{n} in the sense that the relative error of this approximation approaches 0 as n increases without bound. So,

$$
p_{n+1}+p_{n} \sim(n+1) \log (n+1)+n \log n
$$

because

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{p_{n+1}+p_{n}}{(n+1) \log (n+1)+n \log n} \\
=\lim _{n \rightarrow \infty}\left(\frac{1}{(n+1) \log (n+1) / p_{n+1}+n \log n / p_{n+1}}+\frac{1}{(n+1) \log (n+1) / p_{n}+n \log n / p_{n}}\right) \\
=\lim _{n \rightarrow \infty}\left(\frac{1}{1+1}+\frac{1}{1+1}\right)=1
\end{gathered}
$$

This result shows it is possible to add $p_{n} \sim n \log n$ and $p_{n+1} \sim(n+1) \log (n+1)$. But

$$
\begin{equation*}
p_{n}-p_{n+1} \nsim(n+1) \log (n+1)-n \log n \tag{1}
\end{equation*}
$$

Rather,
$\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{(n+1) \log (n+1)-n \log n}=\infty$ and $\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{(n+1) \log (n+1)-n \log n}=0$
proof. Note that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=\infty \text { and } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0 \tag{2}
\end{equation*}
$$

E. Westzynthius proved the former in $1931^{1,2}$, Daniel Goldston, János Pintz and Cem Yıldırım proved the latter in 2005^{3}. And note that the formula

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log (n \log n)}{\log p_{n}}=1 \tag{3}
\end{equation*}
$$

holds. Because, for every $3 \leq n \in \mathbb{N}$,

$$
\frac{\log (n \log n)}{\log p_{n}}=\log _{p_{n}}(n \log n)=k(n) \in \mathbb{R}
$$

Then,

$$
p_{n}=(n \log n)^{k(n)} \Rightarrow \frac{p_{n}}{(n \log n)^{k(n)}}=1
$$

Since $p_{n} \sim n \log n$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n \log n}{(n \log n)^{k(n)}}= & \lim _{n \rightarrow \infty} \frac{p_{n}}{(n \log n)^{k(n)}} \frac{n \log n}{p_{n}}=1 \times 1=1 \\
& \therefore \lim _{n \rightarrow \infty} k(n)=1
\end{aligned}
$$

And note that the formula

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log (n \log n)}{(n+1) \log (n+1)-n \log n}=1 \tag{4}
\end{equation*}
$$

holds. Because, by L'ospital's rule,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\log (n \log n)}{(n+1) \log (n+1)-n \log n}=\lim _{n \rightarrow \infty} \frac{\log n+\log (\log n)}{(n+1) \log (n+1)-n \log n} \\
\stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{n \rightarrow \infty} \frac{1 / n+1 / n \log n}{\log (n+1)-\log n}=\lim _{n \rightarrow \infty} \frac{\log n+1}{n \log n(\log (n+1)-\log n)} \\
=\lim _{n \rightarrow \infty} \frac{\log n+1}{\log n \log (1+1 / n)^{n}}=1
\end{gathered}
$$

Now, let $F(n)=\frac{\log p_{n}}{\log (n \log n)} \frac{\log (n \log n)}{(n+1) \log (n+1)-n \log n}$, then, due to (3),(4),

$$
\lim _{n \rightarrow \infty} F(n)=1
$$

$$
\text { i.e. } \exists M \in \mathbb{N} \quad \text { s.t } n \geq M \Rightarrow \frac{1}{2}<F(n)<\frac{3}{2}
$$

$$
\Rightarrow \frac{1}{2} \frac{p_{n+1}-p_{n}}{\log p_{n}}<\frac{p_{n+1}-p_{n}}{\log p_{n}} F(n)<\frac{3}{2} \frac{p_{n+1}-p_{n}}{\log p_{n}}
$$

$$
\begin{aligned}
& \therefore \limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}} F(n)=\infty \text { and } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}} F(n)=0 \\
& \text { Since } \frac{p_{n+1}-p_{n}}{\log p_{n}} F(n)=\frac{p_{n+1}-p_{n}}{(n+1) \log (n+1)-n \log n} \\
& \limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{(n+1) \log (n+1)-n \log n}=\infty \text { and } \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{(n+1) \log (n+1)-n \log n}=0
\end{aligned}
$$

Therefore we need another method to find the approximate expression of $p_{n+1}-p_{n} .(n+1) \log (n+1)-n \log n$ is not appropriate though $p_{n} \sim n \log n$.

Remark: Cramer conjecture is a conjecture regerding the gaps between prime numbers. The conjecture state that

$$
g_{n}:=p_{n+1}-p_{n}=O\left(\left(\log p_{n}\right)^{2}\right)
$$

holds where O is big O notation. And sometimes the following formulation is called Cramer's conjecture

$$
\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\left(\log p_{n}\right)^{2}}=1
$$

which is stronger than former. But Maier's theorem shows that the Cramér random model does not adequately describe the distribution of primes on short intervals, and a refinement of Cramér's model taking into account divisibility by small primes suggests that

$$
\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\left(\log p_{n}\right)^{2}} \geq 2 \exp (-\gamma) \approx 1.1229 \cdots
$$

These conjecture say that the limit sup of $\frac{g_{n}}{\left(\log p_{n}\right)^{2}}$ converges. János Pintz suggested that the limit sup may diverges, ${ }^{4}$ but It is supported that there exists m such that $\frac{g_{n}}{\left(\log p_{n}\right)^{m}}$ converge by the preceding several heuristics. So, Let μ be The smallest m that satisfies the following conditions:

$$
\begin{equation*}
m \in \mathbb{N}, \quad \lim _{n \rightarrow \infty} \frac{g_{n}}{\left(\log p_{n}\right)^{m}}=0 \tag{5}
\end{equation*}
$$

This paper develops on a assumption that there exists μ.

2. Prime gap

Remark 1. For every $k>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n}^{k}}{(n \log n)^{k}}=\lim _{n \rightarrow \infty}\left(\frac{p_{n}}{n \log n}\right)^{k}=1 \tag{6}
\end{equation*}
$$

Lemma 1. For every $k>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(\log (n \log n))^{\mu}}{(n \log n)^{k}}=0 \tag{7}
\end{equation*}
$$

proof. Let $x=n l o g n$, By L'ospital's rule,

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{\mu}}{x^{k}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\mu(\log x)^{\mu-1}}{k x^{k}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \cdots \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\mu!}{k^{\mu} x^{k}}=0
$$

Due to (6), for every $k>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{p_{n}^{k}} \frac{(n \log n)^{k}}{(\log (n \log n))^{\mu}}=\lim _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{(\log (n \log n))^{\mu}} \frac{(n \log n)^{k}}{p_{n}^{k}}=0 \times 1=0 \tag{8}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{p_{n}^{k}}=(7) \times(8)=0 \tag{9}\\
\Leftrightarrow \lim _{n \rightarrow \infty} \frac{p_{n}^{k}}{p_{n+1}-p_{n}}=\infty
\end{gather*}
$$

By epsilon-delta argument,

$$
\begin{align*}
\forall k>0, \exists N \in \mathbb{N} \text { s.t. } n \geq N & \Rightarrow g_{n}:=p_{n+1}-p_{n}<p_{n}^{k} \\
& \Rightarrow p_{n}<p_{n+1}<p_{n}+p_{n}^{k} \tag{10}
\end{align*}
$$

3. About Andrica conjeutre

Andrica conjecture is a conjecture regarding the gaps between prime numbers. The conjecture states that the inequality

$$
\sqrt{p_{n+1}}-\sqrt{p_{n}}<1
$$

holds for all $n \in \mathbb{N}$. And a strong version of Andrica conjecture is as follows: Excert for $p_{n} \in\{3,7,13,23,31,113\}$, that is $n \in\{2,4,6,9,11,30\}$, one has

$$
\sqrt{p_{n+1}}-\sqrt{p_{n}}<\frac{1}{2} ; \quad \text { equivalently } \quad g_{n}:=p_{n+1}-p_{n}<p_{n}^{1 / 2}+\frac{1}{4}
$$

And This paper proves that

$$
\lim _{n \rightarrow \infty}\left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)=0
$$

proof. Let $\epsilon \in\left(0, \frac{1}{2}\right), k \in\left(0, \frac{1}{2}\right)$, Then

$$
\lim _{n \rightarrow \infty} \frac{p_{n}^{k}}{\left(\sqrt{p_{n}}+\epsilon\right)^{2}-p_{n}}=\lim _{n \rightarrow \infty} \frac{p_{n}^{k}}{2 \epsilon \sqrt{p_{n}}+\epsilon^{2}}=0
$$

Thus,

$$
\begin{aligned}
\exists N_{1} \in \mathbb{N} \quad \text { s.t. } n>N_{1} & \Rightarrow p_{n}^{k}<\left(\sqrt{p_{n}}+\epsilon\right)^{2}-p_{n} \\
& \Rightarrow p_{n}+p_{n}^{k}<\left(\sqrt{p_{n}}+\epsilon\right)^{2}
\end{aligned}
$$

Meanwhile,

$$
\begin{equation*}
\exists N_{2} \in \mathbb{N} \quad \text { s.t. } n>N_{2} \Rightarrow p_{n+1}<p_{n}+p_{n}^{k} \tag{10}
\end{equation*}
$$

Let $N=\max \left(N_{1}, N_{2}\right)$, Then

$$
n>N \Rightarrow p_{n+1}<\left(\sqrt{p_{n}}+\epsilon\right)^{2} \Rightarrow \sqrt{p_{n+1}}-\sqrt{p_{n}}<\epsilon
$$

By epsilon-delta argument,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)=0 \tag{11}
\end{equation*}
$$

Furthermore, let $y>1, x<\frac{y-1}{y}$. Then, since $\forall \epsilon>0, \exists M \in \mathbb{N}$ s.t. $n>M$ $\Rightarrow\left|p_{n}^{1 / y}\right|>|\epsilon|$, by generalized binomial theorem,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{p_{n}^{x}}{\left(p_{n}^{1 / y}+\epsilon\right)^{y}-p_{n}} \\
=\lim _{n \rightarrow \infty} \frac{p_{n}^{x}}{\left(p_{n}+\binom{y}{1} p_{n}^{(y-1) / y} \epsilon+\binom{y}{2} p_{n}^{(y-2) / y} \epsilon^{2}+\cdots\right)-p_{n}} \\
=\lim _{n \rightarrow \infty} \frac{p_{n}^{x}}{\left(\binom{y}{1} p_{n}^{(y-1) / y} \epsilon+\binom{y}{2} p_{n}^{(y-2) / y} \epsilon^{2}+\cdots\right)}=0\left(\because x<\frac{y-1}{y}\right)
\end{gathered}
$$

In the same method as the proof of (11),

$$
\forall y>1, \quad \lim _{n \rightarrow \infty}\left(p_{n+1}^{1 / y}-p_{n}^{1 / y}\right)=0
$$

$3-1$. The arithmetic mean, the geometric mean and harmonic mean of primes

The relation between the arithmetic mean and the geometric mean of nth prime and $(n+1)$ th prime is as follows:

$$
\frac{p_{n+1}+p_{n}}{2} \sim \sqrt{p_{n+1} p_{n}}
$$

proof.

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)^{2}=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(p_{n+1}+p_{n}-2 \sqrt{p_{n+1} p_{n}}\right)=0 \tag{12}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n+1}+p_{n}}{2 \sqrt{p_{n+1} p_{n}}}=\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}+p_{n}-2 \sqrt{p_{n+1} p_{n}}}{2 \sqrt{p_{n+1} p_{n}}}+1\right)=1 \tag{13}
\end{equation*}
$$

Furthermore,

$$
\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}+p_{n}}{2}-\sqrt{p_{n+1} p_{n}}\right)=0
$$

trivially holds by (12). And similarly, the relation between the arithmetic mean and the harmonic mean of nth prime and $(n+1)$ th prime is as follows:

$$
\frac{p_{n+1}+p_{n}}{2} \sim \frac{2 p_{n+1} p_{n}}{p_{n+1}+p_{n}}
$$

proof. By (13)

$$
\lim _{n \rightarrow \infty} \frac{2 p_{n+1} p_{n}}{p_{n+1}+p_{n}} \frac{2}{p_{n+1}+p_{n}}=\lim _{n \rightarrow \infty}\left(\frac{2 \sqrt{p_{n+1} p_{n}}}{p_{n+1}+p_{n}}\right)^{2}=1
$$

Furthermore,

$$
\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}+p_{n}}{2}-\frac{2 p_{n+1} p_{n}}{p_{n+1}+p_{n}}\right)=0
$$

proof.

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}+p_{n}}{2}-\frac{2 p_{n+1} p_{n}}{p_{n+1}+p_{n}}\right) \\
=\lim _{n \rightarrow \infty} \frac{\left(p_{n+1}+p_{n}\right)^{2}-4 p_{n+1} p_{n}}{2\left(p_{n+1}+p_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(p_{n+1}-p_{n}\right)^{2}}{2\left(p_{n+1}+p_{n}\right)} \\
\leq \lim _{n \rightarrow \infty} \frac{\left(p_{n+1}-p_{n}\right)^{2}}{4 p_{n}}=\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}-p_{n}}{2 \sqrt{p_{n}}}\right)^{2}=0(\because(9))
\end{gathered}
$$

By the relation between the geometric mean and the harmonic mean,

$$
\lim _{n \rightarrow \infty}\left(\frac{p_{n+1}+p_{n}}{2}-\frac{2 p_{n+1} p_{n}}{p_{n+1} p_{n}}\right)=0
$$

Hence,

$$
\frac{p_{n+1}+p_{n}}{2} \sim \sqrt{p_{n+1} p_{n}} \sim \frac{2 p_{n+1} p_{n}}{p_{n+1} p_{n}}
$$

Furthermore, the arithmetic mean, the geometric mean, and the harmonic mean of nth prime and $(n+1)$ th prime become asymptotically the same as n increases without bound.

4. About Oppermann conjecture

Oppermann conjecture is a conjecture regarding the distribution of prime numbers. It is closely related to but stronger than Legendre conjecture, Andrica conjecture, and Brocard conjecture. The conjecture states that for every integer $n \geq 1$,

$$
\pi\left(n^{2}-n\right)<\pi\left(n^{2}\right)<\pi\left(n^{2}+n\right)
$$

Definition 1. Let $\hat{p}(x)$ is the nearest prime less than $x, \hat{P}(x)$ is the nearest prime more than x.

$$
\text { e.g. } \hat{p}(10)=7, \hat{P}(10)=11
$$

Lemma 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function and m is constant, then

$$
p_{n}<p_{n+1}<f\left(p_{n}\right) \Rightarrow \exists p \in \mathbb{P} \quad \text { with } \quad x<p<f(x)
$$

proof (by contradiction). Let $\exists x \in \mathbb{R}$ such that $\nexists p \in \mathbb{P}$ in $(x, f(x))$, then $\hat{P}(x)>$ $f(x)$. And By definition, $\hat{p}(x) \leq x$ and $\hat{P}(x)$ is the next prime of $\hat{p}(x)$. thus,

$$
\hat{p}(x)<\hat{P}(x)<f(\hat{p}(x))
$$

But, because f is an increasing function, $\hat{p}(x) \leq x \Rightarrow f(\hat{p}(x)) \leq f(x)<\hat{P}(x)$. It's contradiction.

Lemma 3. By Lemma 2, (10) is equivalent to

$$
\begin{equation*}
\forall k>0, \exists M_{1} \in \mathbb{R}, \quad \text { s.t. } \exists p \in \mathbb{P} \text { with } x<p<x+x^{k} \quad \text { for } x \geq M_{1} \tag{14}
\end{equation*}
$$

Lemma 4.

$$
\begin{equation*}
\forall k>0, \exists M_{2} \in \mathbb{R}, \quad \text { s.t. } \exists p \in \mathbb{P} \text { with } x-x^{k}<p<x \quad \text { for } x \geq M_{2} \tag{15}
\end{equation*}
$$

proof. In Lemma 3, let $x=m+m^{k}$, then there is a prime in the open interval (m, x). Since $x>m \Rightarrow x^{k}>m^{k},(m, x) \subset\left(x-x^{k}, x\right)$. Hence, there is a prime in the open interval $\left(x-x^{k}, x\right) .\left(c . f . M_{1}<M_{2}\right)$

This psaper proves that for every $k>0$, there exists $M \in \mathbb{R}$ such that

$$
\begin{equation*}
x \geq M \Rightarrow \pi\left(x^{k}-x\right)<\pi(x)<\pi\left(x^{k}+x\right) \tag{16}
\end{equation*}
$$

proof. By (14),(15),
$\forall k>0, \exists M_{2} \in \mathbb{R}$, s.t. $\exists p, q \in \mathbb{P}$ with $x-x^{k}<p<x<q<x+x^{k}$ for $x \geq M_{2}$
Let $x=t^{m}$ where $m=\frac{1}{k}$, then
$\forall m>0, \exists M^{\prime} \in \mathbb{R}$, s.t. $\exists p, q \in \mathbb{P}$ with $t^{m}-t<p<t^{m}<q<t^{m}+t$ for $t \geq M^{\prime}$ (c.f. $x=t^{m} \Rightarrow M^{\prime}=M_{2}^{k}$) This fomula implies that

$$
\forall m>0, \exists M^{\prime} \in \mathbb{R} \quad \text { s.t. } t \geq M^{\prime} \Rightarrow \pi\left(t^{m}-t\right)<\pi\left(t^{m}\right)<\pi\left(t^{m}+t\right)
$$

Furthermore, how many primes exist in $\left(x^{k}, x^{k}+x\right)$? In other word, what is the result of $\lim _{x \rightarrow \infty}\left(\pi\left(x^{k}+x\right)-\pi\left(x^{k}\right)\right)$?

Remark 2.

$$
f_{1} \sim g_{1} \wedge f_{2} \sim g_{2} \rightarrow f_{1}-f_{2} \sim g_{1}-g_{2}
$$

doesn't always hold. (1) is a counterexample. Due to this,

$$
\lim _{x \rightarrow \infty} \frac{\pi\left(x^{m}+x\right)-\pi\left(x^{m}\right)}{\left(x^{m}+x\right) / \log \left(x^{m}+x\right)-x^{m} / \log \left(x^{m}\right)}=1
$$

may not hold. We need other method.
Lemma 5. for function f and g such that $\forall x \in \mathbb{R}, g(x)>f(x)>0$, if $\lim _{x \rightarrow \infty}(g(x)-f(x))=\infty$ and there exists $k \in(0,1)$ such that $g(x)^{k}<g(x)-f(x)$ for sufficiently large x, then

$$
\lim _{x \rightarrow \infty}(\pi(g(x))-\pi(f(x)))=\infty
$$

proof. Because of (15),

$$
\begin{aligned}
\forall j \in(0, k), \exists N \in \mathbb{R} \quad \text { s.t. } x \geq N & \Rightarrow \exists p \in \mathbb{P} \text { with } g(x)-g(x)^{j}<p<g(x) \\
& \Rightarrow \exists p \in \mathbb{P} \text { with } f(x)<p<g(x)
\end{aligned}
$$

Let $a_{1}=g(x), a_{n+1}=a_{n}-a_{n}^{j}$, then there exists a prime in the open interval $\left(a_{n}-a_{n}^{j}, a_{n}\right)=\left(a_{n+1}, a_{n}\right)$ and for every $n \in \mathbb{N}, a_{1} \geq a_{n}$.
Let $f(x)<a_{m}, f(x)>a_{m+1}$, then $\pi(g(x))-\pi(f(x)) \geq m-1$. Therefore, for sufficiently large x,

$$
\begin{aligned}
g(x) & -f(x)<\sum_{n=1}^{m}\left(a_{n}-a_{n+1}\right)=\sum_{n=1}^{m} a_{n}^{j}<\sum_{n=1}^{m} a_{1}^{j}=m a_{1}^{j} \\
& \Rightarrow m>\frac{g(x)-f(x)}{a_{1}^{j}}=\frac{g(x)-f(x)}{g(x)^{j}}>\frac{g(x)^{k}}{g(x)^{j}}
\end{aligned}
$$

Note that

$$
\lim _{x \rightarrow \infty} \frac{g(x)^{k}}{g(x)^{j}}=\infty(\because j \in(0, k))
$$

Hence,

$$
\lim _{x \rightarrow \infty}(\pi(g(x))-\pi(f(x)))=\infty
$$

Since $\forall x \in \mathbb{R},\left(x+x^{m}\right)>x^{m}>0$ and for sufficiently large x, every $m>0$, there exists $k \in(0,1)$ such that $\left(x^{m}+x\right)^{k}<\left(x^{m}+x\right)-x^{m}=x$,

$$
\forall m>0 \quad \lim _{x \rightarrow \infty}\left(\pi\left(x^{m}+x\right)-\pi\left(x^{m}\right)\right)=\infty
$$

References

[1] E. Westzynthius. Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind. Commentationes Helsingfors 5, Nr. 25, 37 S. (1931)., 1931.
[2] Erik Westzynthius. On the distribution of numbers that are not divisible by the first n primes. Commentat. Phys.-Math., 5(25):1-37, 1931.
[3] DA Goldston and J Pintz. Y. yıldırım, c.: Primes in tuples i. Ann. Math., AIM Preprint, 19, 2005.
[4] János Pintz. Very large gaps between consecutive primes. Journal of Number Theory, 63(2):286-301, 1997.

Keyword: Prime; Prime gap; Andrica conjecture; Cramer conjecture; Oppermann conjecture; Arithmetic mean of primes; Geometric mean of primes; Harmonic mean of primes

E-mail: fghwer1051@gmail.com

