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Abstract: 

This paper provides a study on composite numbers and explains how they are generated. This is done 

by grouping all natural numbers in 6 different groups and following the mathematical reasoning that 

explains the generation of all composite numbers for each one of these groups. A set of 5 equations 

that generate all existing composite and none of the prime numbers is then obtained. This paper also 

provides two sets of equations to obtain prime numbers by iteration and a method derived from it to find 

twin prime numbers. 

Introduction: 

For all natural numbers N, where N = {1, 2, 3, 4, 5…} each number will either be a prime or a composite 

number, with the exception of number 1. A prime number p is a natural number that cannot be obtained 

by multiplying other natural numbers. In other words, it is only divisible by itself and 1. A composite 

number c is a natural number that can be obtained by multiplying other natural numbers. All composite 

numbers can be obtained at least by multiplying 2 other numbers (or two times the same number) being 

those numbers other than itself and 1. Some composite numbers can be obtained, additionally to this, 

by multiplying more than 2 numbers. 

The first records of prime numbers date from the Rhind mathematical papyrus, around 1550 BC and 

already in ancient Greece prime numbers were studied in detail, with the finding of Mersenne prime 

numbers (prime numbers M that follow Mn = 2n-1) and the Sieve of Eratosthenes (a method where the 

multiples of each prime are eliminated from the next natural numbers). Some of the learning from that 

time are still used today or are the foundation to develop similar methods (i.e. Sieve of Sieve of Pritchard, 

Sieve of Atkin, Sieve of Sundaram…)[1,2]. 

The most basic way to check if a number is a prime number is by trial division, where the square root of 

said number is tested to be or not a composite of another set of numbers. The use of computers and 

algorithms helped to speed the process, but it introduced the possibility of errors as in the case of the 

Miller Rabin primality test. Other methods, with no errors in their results had to pay a price on speed of 

calculation, for example the AKS primality test. 

There are multiple uses for prime numbers and natural situations where they can be found. Cicadas 

time their life cycles by them, modern screens use them to define colour intensities of pixels, and 

manufacturers use them to get rid of harmonics in their products. The most important use of prime 

numbers nowadays lies in computing and cybersecurity, in fields such as bank transactions, 

cryptocurrency or computer safety. Is in this field where the obtention or particularly large prime numbers 

becomes important, existing important prizes for teams delivering primes numbers of millions of cyphers, 

as in the EFF Cooperative Computer Awards. 

With the goal of finding new prime numbers fast, in despite leaving many along the way undiscovered, 

the use of specific families of prime numbers is an often used technique. For example, the above 

mentioned Mersenne numbers. Other methods that are restricted to specific number forms include 

Pépin's test for Fermat numbers (1877), [3] Proth's theorem (c. 1878),[4] the Lucas–Lehmer primality 

test (originated 1856), and the generalized Lucas primality test.[2,5] The search for ever larger primes 

has generated interest outside mathematical circles, through the Great Internet Mersenne Prime Search 



and the EFF Cooperative Computing Awards to name two examples. Bernstein (2004) summarized 14 

of methods to prove that an integer is prime, three additional methods to prove that an integer is prime 

if certain conjectures are true, and four methods to prove that an integer is composite. [6] 

It is not the aim of this paper to go deeper into faster or more refined ways to obtain large prime numbers, 

but to try to understand, by means of mathematical reasoning, the factors that generate prime and 

composite numbers and to be able to offer a method able to find them all and an explanation to the 

apparent randomness of their appearances. Prime gaps (the differences between consecutive primes) 

are still seen as to some degree arbitrarily occurrences [7], and other questions remain unsolved. 

On the last years, more patterns on the apparent randomness of prime numbers have been found. [8] 

Dan Goldston, János Pintz, and Cem Yıldırım proved that there are infinitely many primes for which the 

gap to the next prime is as small as we want compared to the average gap between consecutive primes. 

[9], a phenomenon further stuied by Soundararajan. [10] A phenomenon of interdependency between 

the structure of positive integers and the form of their prime factors was discovered by Karatsube in 

2011. [11] In 2015 Granville developed further the findings of Zhang on twin prime numbers (2 prime 

numbers separated by only one composite number). [12, 13] Prime numbers near to each other tend to 

avoid repeating their last digits, and most importantly, as observed by Lemke and Soundararajan in 

2016, all primes have a remainder of 1 or 5 when divided by 6 (otherwise, they would be divisible by 2 

or 3) and the two remainders are on average equally represented among all primes.  [14]. This 

appearance of number 6 together with the appearance of number 6 in Euler’s theorem (where 6n+1 are 

analyzed) and the findings that almost all prime numbers are of the form 6n+1 or 6n-1 is from where the 

author starts his analysis. 

Detailed analysis of the generation of composite numbers: 

The study presented in this paper starts from the following premise: 

If we could find a set of equations that contain all existing and only composite numbers, then we would 

have proven that the occurrence of composite numbers is not random but obeys a set of rules. 

A way to be able to prove that a set of equations generates all and only composite numbers is to divide 

all natural numbers N in different groups and then find the equation/s that generate all composite 

numbers for each one of these groups. In 2016, Lemke and Soundararajan found that all prime numbers 

are never divisible 6. The author decided to divide all N in 6 groups, A to F, in the following way: 

A contains all natural numbers generated by N = 1+6n where n = {0, 1, 2, 3, 4…} 

B contains all natural numbers generated by N = 2+6n where n = {0, 1, 2, 3, 4…} 

C contains all natural numbers generated by N = 3+6n where n = {0, 1, 2, 3, 4…} 

D contains all natural numbers generated by N = 4+6n where n = {0, 1, 2, 3, 4…} 

E contains all natural numbers generated by N = 5+6n where n = {0, 1, 2, 3, 4…} 

F contains all natural numbers generated by N = 6+6n where n = {0, 1, 2, 3, 4…} 

To help visualize the calculations and reasoning of this paper, the first 48 natural numbers are 

represented in Table 1, where each column is one of the groups described above. Number 1, not being 

considered a prime number, is already marked in red in Table 1: 

 

 



Table 1 Natural numbers sorted in rows, with 6 columns each. Number one not being a prime is marked as red. 

Group A Group B Group C Group D Group E Group F 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

… … … … … … 

 

The first equation that generates only composite numbers, c1: 

The first prime number is 2, and therefore by the composite definition, we know that any multiple of 2 

will be a composite number, because it will be divisible by 2. Composite numbers that are multiples of 2 

(c1) are generated by equation 1: 

Equation 1: 

𝑐1 = 2(𝑛 + 2) 

where n = {0, 1, 2, 3, 4…} 

so if n=0  then c1=4, leaving this way the prime number 2 out of the composite generating equation. 

Groups B , D and F contain only numbers which are 2 or multiples of 2, while groups A, C and E contain 

only odd numbers. This is easily demonstrated by dividing the equation that generates each group by 2 

and checking if the result is a natural number or not. 

Group A: (1+6n)/2 = 0.5+3n will never be a natural number, none of these numbers are divisible by 2. 

Group B: (2+6n)/2 = 1+3n will always be a natural number, all these numbers are divisible by 2. 

Group C: (3+6n)/2 = 1.5+3n will never be a natural number, none of these numbers are divisible by 2. 

Group D: (4+6n)/2 = 2+3n will always be a natural number, all these numbers are divisible by 2. 

Group E: (5+6n)/2 = 2.5+3n will never be a natural number, none of these numbers are divisible by 2. 

Group F: (6+6n)/2 = 3+3n will always be a natural number, all these numbers are divisible by 2. 

From above, only groups B, D and F are divisible by 2 and therefore means that groups B, D and F are 

generated by equation 1 and hence composite numbers, with exception of the number 2. 

Table 2 shows all composites multiple of 2 marked in red for ease of visualization. 

 

 

 



Table 2 All the composite numbers divisible by 2 have been now marked in red too. 

Group A Group B Group C Group D Group E Group F 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

… … … … … … 

 

From above, we can affirm that groups B, D and F contain only and all of the composite numbers that 

are a multiple of 2 with the exception of number 2 itself, which is prime. This forms the group of all even 

natural composite numbers, c1. Equation 1 is the first equation that generates only composite numbers, 

but not all composite numbers. More equations are missing as more groups have not been analyzed. 

Second equation that generates only composite numbers, c2: 

The second prime number is 3, and therefore by the composite definition, we know that any multiple of 

3 will be a composite number, because it will be divisible by 3. Composite numbers multiple of 3 (c2) 

are generated by equation 2: 

Equation 2: 

𝑐2 = 3(𝑛 + 2) 

where n = {0, 1, 2, 3, 4…} 

so if n=0  then c2=6, leaving the prime number 3 out of this composite generating equation. 

Groups C and F contain only numbers which are 3 or multiples of 3, while groups A, B, C and E contain 

only numbers that are not multiple of 3. This is easily demonstrated by dividing the equation that 

generates each group by 3 and checking if the result is a natural number or not. 

Group A: (1+6n)/3 = 1/3+2n will never be a natural number, none of these numbers are divisible by 3. 

Group B: (2+6n)/3 = 2/3+2n will never be a natural number, none of these numbers are divisible by 3. 

Group C:(3+6n)/3 = 1+2n will always be a natural number, all these numbers are divisible by 3. 

Group D: (4+6n)/3 = 4/3+2n will never be a natural number, none of these numbers are divisible by 3. 

Group E: (5+6n)/3 = 5/3+2n will never be a natural number, none of these numbers are divisible by 3. 

Group F: (6+6n)/3 = 2+2n will always be a natural number, all these numbers are divisible by 3. 

From above, only groups C and F are divisible by 3. They are generated by equation 2, with the 

exception of the number 3. 

Table 3 shows all composites multiple of 2 and 3 marked in red for means of visualization. 



Table 3: All composite numbers multiple of 3 are now marked in red too. 

Group A Group B Group C Group D Group E Group F 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

… … … … … … 

 

From above, we can affirm that groups C and F contain only and all of the composite numbers that are 

a multiple of 3 with the exception of number 3 itself which is prime. This forms the group of all natural 

composite numbers c2, the multiples of 3. Equation 2 is the second equation that generates only 

composite numbers, but not all composite numbers. More equations are missing as more groups have 

not been analyzed. 

With the above, we have demonstrated that, besides numbers 2 and 3, all remaining prime numbers 

must belong to either group A (1+6n) or group E (5+6n). This is in good agreement with previous findings 

where all prime numbers besides 2 and 3 are of the type 6n+1 and 6n-1, because 6n+1 equals a group 

A prime number and 6n-1 a group E prime number. 

Composite numbers will also be present in A and E together with the prime numbers. Now we must 

understand what rules define the nature of the composite numbers in groups A and E. 

Defining how the composite numbers in groups A and E are generated: 

By definition, any composite number can be obtained by multiplying 2 natural numbers (or the same 

natural number twice), being those numbers other than itself and 1.  

Any multiplication of 2 natural numbers where at least one of them is even, will always result in a 

composite number which also is even. For example, being: 

2n an even number 

where n = {1, 2, 3, 4…} 

and 

m = {1, 2, 3, 4…} 

then by equation 3, a multiplication of any m by any 2n, will always be divisible by 2, and therefore, an 

even number. 

Equation 3: 

2𝑛 × 𝑚

2
= 𝑛 ×𝑚 

We have already established when defining c1 composites, that all even composite numbers are only 

found in groups B, D and F. Therefore, any composite numbers in groups A and E is not even. Therefore 

any composite number in groups A and E cannot result from multiplying a number from B, D or F with 



any other given number, because the result would be even, according to equation 3, but we have already 

established that even numbers cannot be found in groups A and E. 

In short: composite numbers in groups A and B are not divisible by any number found in groups B, D 

and F. 

In a similar way, any multiplication of 2 natural numbers where at least one of them is 3 or a multiple of 

3, will always result in composite number which also is multiple of 3. For example, being: 

3n a multiple of 3 

where n = {1, 2, 3, 4…} 

 and 

m = {1, 2, 3, 4…} 

then by equation 4, the multiplication of any 3n by any m will be always divisible by 3, and therefore a 

multiple of 3 itself. 

Equation 4: 

3𝑛 × 𝑚

3
= 𝑛 ×𝑚 

We have already established when defining c2 composites, that all composite numbers multiple of 3 are 

only found in groups C and F. Therefore, any composite number in groups A and E cannot be a multiple 

of 3. Therefore any composite number in groups A and E cannot be a result of multiplying a number 

from C, or F with any other given number, because the result would be a multiple of 3 according to 

equation 4, but we have already established that numbers multiple of 3 cannot be found in groups A and 

E. 

In short: composite numbers in groups A and E are not divisible by any number in groups C and F. Not 

by any number in groups B, D and F, as said earlier. 

If numbers in groups A and E are not divisible by any number found in B, C, D or F as already established, 

we have demonstrated that any composite number found in groups A and E is a result of multiplying 2 

natural numbers also found in groups A and/or E. 

The 3 remaining equations that generate only composites, c3, c4 and c5: 

There are three ways to generate composite numbers using 2 numbers from groups A and/or E. 

1.- By multiplying 2 numbers from group A, generating a composite number c3: 

Equation 5: 

𝑐3 = (1 + 6𝑛) × (1 + 6𝑚) 

where n = {1, 2, 3, 4…} and m = {1, 2, 3, 4…}. This restriction is very important, neither n or m can be 

0, otherwise the number resulting would be 1 for that one and c3 could then be a composite (e.g. n=0 

and m=4), a primer (e.g. n=0 and m=1) or even 1 (if both n and m were 0). For all composite, there must 

be a solution other than itself multiplied by 1, so restricting the equation to not be able to generate 1 in 

any of the two numbers, all primers are ruled while still allowing to generate all composite. 

2.- By multiplying two numbers from group E generating a composite number c4: 

Equation 6: 



𝑐4 = (5 + 6𝑛) × (5 + 6𝑚) 

 

where n = {0, 1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

3.- By multiplying one number from group A and one number from group E, generating a composite 

number c5: 

Equation 7: 

𝑐5 = (1 + 6𝑛) × (5 + 6𝑚) 

where n = {1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…}. n cannot be 0 for the same reason stated above, it 

would generate number 1 on that factor and a prime number could be generated too. 

We have established the 3 equations that can generate all the composite numbers in columns A and E. 

The next step is to see if the 3 of them are present in both groups A and E or not and to prove that all 

primes in groups A and E are not a valid solution of any of these 3 equations. We will start by analyzing 

in detail group A and afterwards group E. 

Finding what composites appear in group A: 

Checking the appearance of composites c3 in group A: 

If a composite number in A of the form c3=1+6k where k = {1, 2, 3, 4…} can be formed by multiplying 

two other numbers from group A (1+6n) and (1+6m), then equation 8 must have at least one valid 

solution, otherwise a composite number in group A would never be obtained by multiplying two other 

numbers from group A: 

Equation 8: 

1 + 6𝑘

(1 + 6𝑛) × (1 + 6𝑚)
= 1 

where n = {1, 2, 3, 4…}, m = {1, 2, 3, 4…} and k = {1, 2, 3, 4…} 

1 + 6𝑘 = 1 + 6(𝑛 +𝑚) + 36𝑛𝑚 

6𝑘 = 6(𝑛 + 𝑚) + 36𝑛𝑚 

𝑘 = 𝑛 + 𝑚 + 6𝑛𝑚 

Because it is possible to obtain valid values of k for equation 8 using valid values for n and m, it will be 

possible to find c3 composite numbers in group A. For example, 91 is a group A number (1+6x15) and 

is a c3 composite originated by multiplying 7 and 13 (two other group A numbers). In this example, k=15 

and n=1 and m=2. 

Checking the appearance of composites c4 in group A: 

If a composite number in A of the form c4=1+6k where k = {1, 2, 3, 4…} can be formed by multiplying 

two numbers from group E (5+6n) and (5+6m), then equation 9 must have at least one valid solution, 

otherwise a composite number in group A would never be obtained by multiplying two other numbers 

from group E: 

Equation 9: 



1 + 6𝑘

(5 + 6𝑛) × (5 + 6𝑚)
= 1 

 

where n = {0, 1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {1, 2, 3, 4…} 

1 + 6𝑘 = 25 + 30(𝑛 +𝑚) + 36𝑛𝑚 

6𝑘 = 24 + 30(𝑛 + 𝑚) + 36𝑛𝑚 

𝑘 = 4 + 5(𝑛 + 𝑚) + 6𝑛𝑚 

Because it is possible to obtain valid values of k for equation 9 using valid values for n and m, it will be 

possible to find c4 composite numbers in group A. For example, 55 is a group A number  (1+6x9) and 

is a composite c4 originated by multiplying 5 and 11 (two numbers from group E) with k=9 and where 

n=0 and m=1. 

Checking the appearance of composites c5 in group A: 

If a composite number in A of the form c5=1+6k where k = {1, 2, 3, 4…} can be formed by multiplying 

one number from group A (1+6n) by one number from group E (5+6m), then equation 10 must have at 

least one valid solution, otherwise a composite number in group A would never be obtained by 

multiplying one number from group A by one number from group E: 

Equation 10: 

1 + 6𝑘

(1 + 6𝑛) × (5 + 6𝑚)
= 1 

 

where n = {1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {1, 2, 3, 4…} 

1 + 6𝑘 = 5 + 6𝑚 + 30𝑛 + 36𝑛𝑚 

6𝑘 = 4 + 6𝑚 + 30𝑛 + 36𝑛𝑚 

𝑘 =
4

6
+ 𝑚 + 5𝑛 + 6𝑛𝑚 

Equation 10 cannot result in a valid solution, because when using valid values for n and m, a number 

which is not natural is always obtained. Since k must be a natural number too, c5 composites can never 

found in group A. 

In short: Group A is formed by number 1, prime numbers, composite numbers obtained by equation 8 

(c3) and composite number obtained by equation 9 (c4). This can be easier visualized in Table 4, where 

all numbers in group A are either prime, result of multiplying AnxAm or result of multiplying EnxEm, and 

of course, number 1. 

Table 4 (now extended) shows now the composite numbers for columns A marked in red as well: 

 

 



Table 4: All composite numbers except those in group E are marked in red, also 1. 

Group A Group B Group C Group D Group E Group F 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

49 50 51 52 53 54 

55 56 57 58 59 60 

61 62 63 64 65 66 

67 68 69 70 71 72 

73 74 75 76 77 78 

79 80 81 82 83 84 

85 86 87 88 89 90 

91 92 93 94 95 96 

… … … … … … 
 

Finding what composites appear in group E: 

Checking the appearance of composites c3 in group E: 

If a composite number in E of the form c3=5+6k where k = {0, 1, 2, 3, 4…} can be formed by multiplying 

two numbers from group A (1+6n) and (1+6m), then equation 11 must have at least one valid solution, 

otherwise a composite number in group E would never be obtained by multiplying two numbers from 

group A: 

Equation 11: 

5 + 6𝑘

(1 + 6𝑛) × (1 + 6𝑚)
= 1 

where n = {1, 2, 3, 4…}, m = {1, 2, 3, 4…} and k = {0, 1, 2, 3, 4…} 

5 + 6𝑘 = 1 + 6(𝑛 +𝑚) + 36𝑛𝑚 

6𝑘 = −4 + 6(𝑛 + 𝑚) + 36𝑛𝑚 

𝑘 = −
4

6
+ (𝑛 + 𝑚) + 6𝑛𝑚 

Equation 11 cannot result in a valid solution, because when using natural numbers for n and m, there 

will be always decimals in the solution, hence a no valid k. Therefore c3 composites can never found in 

group E. 

Checking the appearance of composites c4 in group E: 

If a composite number in E of the form c4=5+6k where k = {0, 1, 2, 3, 4…} can be formed by multiplying 

two other numbers from group E (5+6n) and (5+6m), then equation 12 must have at least one valid 



solution otherwise a composite number in group E would never be obtained by multiplying two numbers 

from group E: 

Equation 12: 

5 + 6𝑘

(5 + 6𝑛) × (5 + 6𝑚)
= 1 

where n = {0, 1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {0, 1, 2, 3, 4…} 

5 + 6𝑘 = 25 + 30(𝑛 +𝑚) + 36𝑛𝑚 

6𝑘 = 20 + 30(𝑛 + 𝑚) + 36𝑛𝑚 

𝑘 =
10

3
+ 5(𝑛 + 𝑚) + 6𝑛𝑚 

Equation 12 cannot result in a valid solution, because a valid value for k cannot be obtained using valid 

values of n and m: when using natural numbers or 0 for n and m, a number which is not natural is always 

obtained for k. Since k must be a natural number too, c4 composites can never found in group E. 

Checking the appearance of composites c5 in group E: 

If a composite number in group E c5=5+6k where k = {0, 1, 2, 3, 4…} can be formed by multiplying one 

number from group A (1+6n) by one number from group E (5+6m), then equation 13 must have at least 

one valid solution, otherwise a composite number in group E would never be obtained by multiplying 

one number from group A by one number from group E:: 

Equation 13: 

 
5 + 6𝑘

(1 + 6𝑛) × (5 + 6𝑚)
= 1 

where n = {1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {0, 1, 2, 3, 4…} 

5 + 6𝑘 = 5 + 6𝑚 + 30𝑛 + 36𝑛𝑚 

6𝑘 = 6𝑚 + 30𝑛 + 36𝑛𝑚 

𝑘 = 𝑚 + 5𝑛 + 6𝑛𝑚 

Equation 13 can obtain valid values of k using valid values for n and m, therefore it will be possible to 

find c5 composite numbers in group E. For example, 65 is a group E number (5+6x10) and is a 

composite c5 originated by multiplying 13 (group A) and 5 (group E) with k=10 and where n=2 and m=0. 

In short: Group E is formed by prime numbers and by composite numbers obtained by equation 13 (c5). 

This can be easier visualized in Table 5, where all numbers in group E are either prime or the result of 

multiplying An*Em. 

 

 

 



Table 5: All composite numbers are marked in red, also 1. 

Group A Group B Group C Group D Group E Group F 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

49 50 51 52 53 54 

55 56 57 58 59 60 

61 62 63 64 65 66 

67 68 69 70 71 72 

73 74 75 76 77 78 

79 80 81 82 83 84 

85 86 87 88 89 90 

91 92 93 94 95 96 

… … … … … … 
 

The set of 5 equations that calculate all composites numbers: 

We have now a set of 5 equations that when put together, generate all existing composite numbers, the 

set will be referred as the Segura set of equations: 

Equation 1 for all composites in groups B, D and F: 

𝑐1 = 2(𝑛 + 2) where n = {0, 1, 2, 3, 4…} 

Equation 2 for all composites in groups C and F: 

𝑐2 = 3(𝑛 + 2) where n = {0, 1, 2, 3, 4…} 

Equation 5 for part of the composites in group A: 

𝑐3 = (1 + 6𝑛) × (1 + 6𝑚) where n = {1, 2, 3, 4…} and m = {1, 2, 3, 4…} 

Equation 6 for part of the composites in group A: 

𝑐4 = (5 + 6𝑛) × (5 + 6𝑚) where n = {0, 1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

Equation 7 for all composites in group E: 

𝑐5 = (1 + 6𝑛) × (5 + 6𝑚) where n = {1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

 

We can, for means of demonstration, check the first 100 natural numbers using this method in Table 6. 

 

 



Table 6: The first 100 natural numbers classified 

Number Family 

1 not a prime number by definition 

2 prime number 

3 prime number 

4 c1 composite number 

5 prime number 

6 c1 and c2 composite number 

7 prime number 

8 c1 composite number 

9 c2 composite number 

10 c1 composite number 

11 prime number 

12 c1 and c2 composite number 

13 prime number 

14 c1 composite number 

15 c2 composite number 

16 c1 composite number 

17 prime number 

18 c1 and c2 composite number 

19 prime number 

20 c1 composite number 

21 c2 composite number 

22 c1 composite number 

23 prime number 

24 c1 and c2 composite number 

25 c3 composite number 

26 c1 composite number 

27 c2 composite number 

28 c1 composite number 

29 prime number 

30 c1 and c2 composite number 

31 prime number 

32 c1 composite number 

33 c2 composite number 

34 c1 composite number 

35 c5 composite number 

36 c1 and c2 composite number 

37 prime number 

38 c1 composite number 

39 c2 composite number 

40 c1 composite number 

41 prime number 

42 c1 and c2 composite number 

43 prime number 

44 c1 composite number 

45 c2 composite number 

46 c1 composite number 

47 prime number 



48 c1 and c2 composite number 

49 prime number 

50 c1 composite number 

51 c2 composite number 

52 c1 composite number 

53 prime number 

54 c1 and c2 composite number 

55 c4 composite number 

56 c1 composite number 

57 c2 composite number 

58 c1 composite number 

59 prime number 

60 c1 and c2 composite number 

61 prime number 

62 c1 composite number 

63 c2 composite number 

64 c1 composite number 

65 c5 composite number 

66 c1 and c2 composite number 

67 prime number 

68 c1 composite number 

69 c2 composite number 

70 c1 composite number 

71 prime number 

72 c1 and c2 composite number 

73 prime number 

74 c1 composite number 

75 c2 composite number 

76 c1 composite number 

77 c5 composite number 

78 c1 and c2 composite number 

79 prime number 

80 c1 composite number 

81 c2 composite number 

82 c1 composite number 

83 prime number 

84 c1 and c2 composite number 

85 c4 composite number 

86 c1 composite number 

87 c2 composite number 

88 c1 composite number 

89 prime number 

90 c1 and c2 composite number 

91 c3 composite number 

92 c1 composite number 

93 c2 composite number 

94 c1 composite number 

95 c5 composite number 

96 c1 and c2 composite number 

97 prime number 



98 c1 composite number 

99 c2 composite number 

100 c1 composite number 

 

Additionally this shows that for any number x, the next composite number c>N will be the smallest 

possible solution cy from any of the 5 equations of the Segura being cy>x. Any numbers between x and 

cy are prime numbers, as long as cy is the next possible valid solution  of the Segura set larger than x. 

Obtaining prime numbers by iteration: 

For any composite number of group A (1+6k) where k = {1, 2, 3, 4…} using equations 5 and 6 we have 

seen that k can either be:  

k=n+m+6nm (from equation 5) 

where n = {1, 2, 3, 4…} and m = {1, 2, 3, 4…} 

or 

k=4+5(n+m)+6nm (from equation 6) 

where n = {0, 1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

 

Therefore, for any N value of k that cannot be obtained using valid solutions of n and m in any of these 

two equations, then 1+6k will be a prime number.  

For example, 7 is a prime number from group A with k=1 that cannot be obtained by valid values of n 

and m in equations 5 and 6. 

On a similar way, for group E, any number (5+6k) where k = {0, 1, 2, 3, 4…} that cannot be generated 

using equation 7: 

k=m+5n+6nm 

where n = {1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

will be a prime number. 

For example, 29 is a prime number from group E with k=4 that cannot be obtained using 0 or natural 

numbers for m and n. 

Therefore, for a given number x, and after confirming that x belongs either to group A or to group E, (by 

means of checking if it can be turned into 1+6k or by 5+6k. Then if it belongs to A or to E, we can iterate 

equation 7 (if is from E) or equations 5 and 6 (if it is from A).  

It is not in the scope of this paper to go deeper into the advantages or disadvantages of this iteration 

method when compared to other ones, this remains as work for another study. 

Twin prime numbers: 

A twin prime is a prime number that is separated just by one composite from another prime number—

for example, either member of the twin prime pair (41, 43). If we divide all natural numbers N following 

the method described in this paper, the only way to obtain prime numbers would be that one of them 



belongs to group E and the other to group A, being the prime number from group E pE 5+6k the smaller 

one of the pair and the primer number form column A pA = 1+6(k+1) the larger one of the pair. 

Following the reasoning above, in order to find 2 twin prime numbers, one would have to iterate: 

k=m+5n+6nm (from equation 7) where k = {0, 1, 2, 3, 4…} until a k is found where there is not a single 

combination of n and m where n = {1, 2, 3, 4…} and where m = {0, 1, 2, 3, 4…} that can originate a valid 

result. Followed by iterating equations 5 and 6, for k+1 instead of k:  

(k+1)=n+m+6nm (from equation 5) 

where n = {1, 2, 3, 4…} and where m = {1, 2, 3, 4…} 

and 

(k+1)=4+5(n+m)+6nm (from equation 6) 

where n = {0, 1, 2, 3, 4…} and where m = {0, 1, 2, 3, 4…} 

If none of the two can obtain the value of k using valid values for n and for m, then these conditions are 

met, and: 5+6k and 1+6(k+1) are twin prime numbers. 

We can look at 41 and 43, two twin prime numbers an as example. 

41 = 5+(6x6) group E, while 43 = 1+(6x7) from group A. In this case, k=6. 

6=m+5n+6nm 

where n = {1, 2, 3, 4…} and here m = {0, 1, 2, 3, 4…} 

A valid solution cannot be obtained. n=1 m=0 gives a value of 5 for k. n=m=1 gives a value for k of 12, 

and of course, increasing n or m would only increase the value of k. So n or m should be no natural 

numbers, something not possible. 41 is our lowest prime number of the twin set and has a k of 6. 

Now we continue by replacing k by 6 in the two remaining equations: 

(6+1)=n+m+6nm (from equation 5) 

where n = {1, 2, 3, 4…} and where m = {1, 2, 3, 4…} 

A valid solution cannot be found. n=m=1 gives a value for k of 7, and of course, increasing n or m would 

only increase it. 

and 

(6+1)=4+5(n+m)+6nm (from equation 6) 

where n = {0, 1, 2, 3, 4…} and where m = {0, 1, 2, 3, 4…} 

A valid solution cannot be found. n=m=0 would be a k of 3. n=1 and m=0 would be for a k of 8. n=0 and 

m=1 would be for a k of 8, and of course increasing them more would only increase k. 

So a k of 6 does not find a valid set of values of m and n for any of the 2 equations. Therefore is a prime 

of the form 1+6(k+1), 43. 41 and 43 are two prime numbers, with k 6 for the former and 7 for the later. 

With enough time and computational power, large twin prime numbers can be found using the same 

method. It is not in the scope of this paper to go deeper into iterations. To check if by using this method 



twin prime numbers can be obtained faster compared with the methods prior to this, remains as work 

for another study. 

Results: 

Equations leading to all composite numbers: 

By dividing all natural numbers in 6 groups, A to F, and following the reasoning behind the generation 

of all composite numbers in each group, we have generated a set a 5 equations. These 5 equations, 

the Segura set of equations, define that a composite number c, must fulfill at least one of the following 

conditions: 

 c1 = 2(n+2) where n = {0, 1, 2, 3, 4…} 

 c2 = 3(n+2) where n = {0, 1, 2, 3, 4…} 

c3 = (1+6n)x(1+6m) where n = {1, 2, 3, 4…} and m = {1, 2, 3, 4…} 

 c4 = (5+6n)x(5+6m) where n = {0, 1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…} 

 c5 = (1+6n)x(5+6m) where n = {1, 2, 3, 4…} and m = {0, 1, 2, 3, 4…}  

Any number not fulfilling at least one of the equations will be a prime number.  

If the search of prime number is desired, one method can be to generate composite numbers using the 

above equations and those not fulfilling any of them will be prime numbers, but it is also possible to look 

for prime numbers by iteration, looking for values of k in group A or in group E that cannot be obtained 

valid solutions of n and m. 

For group A, from equations 5 and 6 we have seen that k can either be:  

k=n+m+6nm (for equation 5) 

where n = {1, 2, 3, 4…}, m = {1, 2, 3, 4…} and k = {1, 2, 3, 4…} 

or 

k=4+5(n+m)+6nm (for equation 6) 

where n = {0, 1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {1, 2, 3, 4…} 

Therefore, for a valid value of k that cannot be obtained in one of the two equations using valid solutions 

for n and m, then 1+6k will be a prime number.  

One can as well obtain a prime number from group E using equation 7 leading to: 

k=m+5n+6nm 

where n = {1, 2, 3, 4…}, m = {0, 1, 2, 3, 4…} and k = {0, 1, 2, 3, 4…} 

For a valid of k that cannot be obtained using valid solutions for n and m, then 5+6k will be a prime. 

Finally, the method to obtain prime numbers by iteration presented in this paper can be used to obtain 

twin prime numbers. First by finding a value of k that generates a prime number in the group E 5+6k. 

Then by checking by iteration in equations 5 and 6 if 1+6(k+1) is also a prime number of group A. 

 



Conclusion: 

In this paper we have showed an elegant and simple way to obtain a set of equations that can generate 

all composite numbers, proving that the appearance of composite numbers is not random. We have 

provided 2 different routes to find prime numbers by iteration and one to find twin prime numbers by 

iteration. 
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