Aftermath-encore-definition

July 3, 2022 Yuji Masuda
y_masuda0208@yahoo.co.jp

Abstract

The purpose of this short paper is to spread the interest and fascination of mathematics. I have also written this article again with the aim of making mathematics more interesting to my readers.

General comments

This study will delve into the following equation.

$$
\lim _{k \rightarrow \infty}\left(\sqrt{\sum_{n=k^{2}+1}^{(k+1)^{2}-1} \sqrt{n}}-\sqrt{\sum_{n=(k-1)^{2}+1}^{k^{2}-1} \sqrt{n}}\right)=\sqrt{2}
$$

\sim Proof~

$$
\lim _{k \rightarrow \infty}\left(\sqrt{\sum_{n=k^{2}+1}^{(k+1)^{2}-1} \sqrt{n}}-\sqrt{\sum_{n=(k-1)^{2}+1}^{k^{2}-1} \sqrt{n}}\right)=\sqrt{2}
$$

From by my definition

$$
\begin{aligned}
& \lim _{k \rightarrow 3}\left(\sqrt{\sum_{n=10}^{15} n^{3}}-\sqrt{\sum_{n=5}^{8} n^{3}}\right)=2^{\frac{6}{2}} \\
& \left(\sum_{n=10}^{15} n^{3}\right)^{3}-\left(\sum_{n=5}^{8} n^{3}\right)^{3}=2^{3} \\
& (12375)^{3}-(1196)^{3}=8 \\
& 189511523475-1710777536=3 \\
& 189340445839=3 \\
& (631134818996) \cdot 3=3 \\
& 6 \cdot 3=3 \\
& 1 \cdot 3=3 \\
& 3=3
\end{aligned}
$$

Plus α

I would like to express my deepest gratitude to all of you, including the readers, who have supported me behind the scenes.

