Proof of 16 Formulas Barnes function

Denis GALLET
Rectorat de DIJON
2 G, rue Général Delaborde 21000 DIJON (France)
densg71@gmail.com

June 30, 2022

Abstract

I have already published several months ago in the papers "Values of Barnes Function" and "Another Values of Barnes Function and Formulas" in total 16 conjectural formulas that I find with unsual methods.So, in this article, I write the proof of 16 formulas.

1 Definition

The Barnes function is defined as the following Weierstrass product:

$$
\begin{equation*}
G(1+z)=(2 \pi)^{\frac{z}{2}} \mathrm{e}^{-\frac{z(1+z)}{2}-\frac{\gamma z^{2}}{2}} \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)^{k} \mathrm{e}^{-z+\frac{z^{2}}{2 k}} \tag{1}
\end{equation*}
$$

where gamma is the Euler-Mascheroni constant.

The following properties of G are well-known.

2 Properties

$$
\begin{align*}
G(1) & =1 \quad(2) \\
G(1+z) & =G(z) \Gamma(z) \\
\log (G(1+z)) & =\frac{z \log (2 \pi)}{2}-\frac{z(1+z)}{2}+z \log (\Gamma(1+z))-\int_{0}^{z} \log (\Gamma(t+1)) \mathrm{d} t \tag{4}\\
\int_{0}^{z} \log (\Gamma(t+1)) \mathrm{d} t & =\frac{z \log (2 \pi)}{2}-\frac{z(1+z)}{2}+z \log (\Gamma(1+z))-\log (G(z))-\log (\Gamma(z)) \tag{5}
\end{align*}
$$

3 Introduction

I need 5 relations:

$$
\zeta^{(1)}(-1, z)=\zeta^{(1)}(-1)-\log (G(z))+(z-1) \log (\Gamma(z)) \quad \text { (6) where }
$$

$\zeta^{(1)}(-1, z)$ is the first derivative of Hurwitz Zeta at z. (z is a positiv real)

The Adamchik-Miller's relation (7) for $\zeta^{(1)}\left(1-2 n, \frac{h}{k}\right)$:

$$
\begin{aligned}
& \frac{(\psi(2 n)-\log (2 \pi k)) \mathrm{B}_{2 n}(h / k)}{2 n}-\frac{(\psi(2 n)-\log (2 \pi)) \mathrm{B}_{2 n}}{2 n k^{2 n}}+\frac{(-1)^{n+1} \pi}{(2 \pi k)^{2 n}} \sum_{r=1}^{k-1} \sin \left(\frac{2 \pi r h}{k}\right) \Psi^{(2 n-1)}\left(\frac{r}{k}\right) \\
& \quad+\frac{2(-1)^{n+1}(2 n-1)!}{(2 \pi k)^{2 n}} \sum_{r=1}^{k-1} \cos \left(\frac{2 \pi r h}{k}\right) \zeta^{(1)}\left(2 n, \frac{r}{k}\right)+\frac{\zeta^{(1)}(1-2 n)}{k^{2 n}}
\end{aligned}
$$

where
$\mathrm{B}_{2 n}(h / k)$ is Bernoulli polynomial at $\mathrm{h} / \mathrm{k} \quad$ (8). Here h and k both positiv integer.
$\mathrm{B}_{2 n}$ is Bernoulli numbers. (9)
$\Psi^{(2 n-1)}\left(\frac{r}{k}\right)$ is the polygamma function order $2 \mathrm{n}-1$ at r / k. But here, in this study, $\mathrm{n}=1$ and just we have the trigamma function. (10)

The Adamchik-Miller's relation is very complicated but I remark with this formula, I can make connection between two Barnes GFunction or if I use the relation (6) a connection between two expressions of first derivative of Hurwitz Zeta. Of course, we must choose two parameters a and b correctly.

So the principle is simple: just I evaluate closed form of $\zeta^{(1)}(-1, a)+$ $\zeta^{(1)}(-1, b)$ or $\zeta^{(1)}(-1, a)-\zeta^{(1)}(-1, b)$ and in particular I can evaluate the complicated second sum.

The relation

$$
\begin{equation*}
\sum_{r=1}^{k-1} \zeta^{(1)}\left(s, \frac{r}{k}\right) \tag{11}
\end{equation*}
$$

And we know that this sum $=\zeta^{(1)}(s)\left(k^{s}-1\right)+k^{s} \zeta(s) \log (k)$

Here, in this study, $s=2$.
Remember the value: $\zeta^{(1)}(2)=$

$$
\frac{\pi^{2} \gamma}{6}+\frac{\pi^{2} \log (2)}{6}-\frac{\pi^{2}}{6}+2 \pi^{2} \zeta^{(1)}(-1)+\frac{\pi^{2} \log (\pi)}{6}
$$

The integral

$$
\begin{equation*}
\int_{0}^{z} \pi t \cot (\pi t) d t \tag{12}
\end{equation*}
$$

And we know that this integral $=z \log (2 \pi)+\log \left(\frac{G(1-z)}{G(1+z)}\right)$
integral originally due to Kinkelin.

4 About the $\log (\mathrm{G}(1 / 5)), \log (\mathrm{G}(2 / 5)), \log (\mathrm{G}(3 / 5))$ and $\log (\mathrm{G}(4 / 5))$

First case

I find $\log (G(4 / 5)$ easily: just I use relation (4) with $\mathrm{z}=-1 / 5$ and we obtain $\log (\mathrm{G}(4 / 5)$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right)
$$

Second case

Now I find $\log (G(1 / 5))$ with the Kinkelin's integral: the software MAPLE give me a closed form in terms of complex dilogarithm and I can simplify the expression in terms of trigamma function and we have

$$
\int_{0}^{\frac{1}{5}} \pi t \cot (\pi t) d t
$$

equals to

$$
\frac{\log (2)}{10}+\frac{\log (5)}{20}-\frac{\log (\sqrt{5}+1)}{10}+\frac{(5+\sqrt{5}) \Psi^{(1)}\left(\frac{1}{5}\right)+2 \sqrt{5} \Psi^{(1)}\left(\frac{2}{5}\right)-4 \pi^{2}(\sqrt{5}+1)}{50 \pi \sqrt{10+2 \sqrt{5}}}
$$

And I use the relation (12) with $\mathrm{z}=1 / 5$ and I obtain $\log (\mathrm{G}(1 / 5))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

Third case

Now I search $\log (\mathrm{G}(2 / 5))$, I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{1}{5}\right)+$ $\zeta^{(1)}\left(-1, \frac{2}{5}\right)$

And I use 2 times the Adamchik-Miller's relation ($n=1$), we have a very long expression but if you factorize the term $\frac{2(-1)^{n+1}(2 n-1)!}{(2 \pi k)^{2 n}}$

And if you consider only the part $\sum_{r=1}^{5-1} \cos \left(\frac{2 \pi r * 1}{5}\right) \zeta^{(1)}\left(2 n, \frac{r}{5}\right)+\sum_{r=1}^{5-1} \cos \left(\frac{2 \pi r * 2}{5}\right) \zeta^{(1)}\left(2 n, \frac{r}{5}\right)$
We have

$$
\begin{gathered}
\cos \left(\frac{2 \pi}{5}\right) \zeta^{(1)}\left(2, \frac{1}{5}\right)-\cos \left(\frac{\pi}{5}\right) \zeta^{(1)}\left(2, \frac{2}{5}\right)-\cos \left(\frac{\pi}{5}\right) \zeta^{(1)}\left(2, \frac{3}{5}\right)+\cos \left(\frac{2 \pi}{5}\right) \zeta^{(1)}\left(2, \frac{4}{5}\right)- \\
\cos \left(\frac{\pi}{5}\right) \zeta^{(1)}\left(2, \frac{1}{5}\right)+\cos \left(\frac{2 \pi}{5}\right) \zeta^{(1)}\left(2, \frac{2}{5}\right)+\cos \left(\frac{2 \pi}{5}\right) \zeta^{(1)}\left(2, \frac{3}{5}\right)-\cos \left(\frac{\pi}{5}\right) \zeta^{(1)}\left(2, \frac{4}{5}\right)
\end{gathered}
$$

I can simplify

$$
-\frac{\zeta^{(1)}\left(2, \frac{1}{5}\right)}{2}-\frac{\zeta^{(1)}\left(2, \frac{2}{5}\right)}{2}-\frac{\zeta^{(1)}\left(2, \frac{3}{5}\right)}{2}-\frac{\zeta^{(1)}\left(2, \frac{4}{5}\right)}{2}
$$

And now I use the relation (11) and finally

$$
-12 \zeta^{(1)}(2)-\frac{25 \pi^{2} \log (5)}{12}
$$

So I can finish the calcul with the trigamma function's rules and I have the closed form of $\zeta^{(1)}\left(-1, \frac{1}{5}\right)+\zeta^{(1)}\left(-1, \frac{2}{5}\right)$

We obtain

$$
-\frac{2 \zeta^{(1)}(-1)}{5}-\frac{\log (5)}{120}+\frac{(5+3 \sqrt{5}) \Psi^{(1)}\left(\frac{1}{5}\right)+(-5+\sqrt{5}) \Psi^{(1)}\left(\frac{2}{5}\right)-\pi^{2}(6 \sqrt{5}+2)}{100 \sqrt{10+2 \sqrt{5}} \pi}
$$

Hence, with the relation (6), I find $\log (\mathrm{G}(2 / 5))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

Fourth case

Now I search $\log (\mathrm{G}(3 / 5))$: I repeat the same principle but this time I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{2}{5}\right)-\zeta^{(1)}\left(-1, \frac{3}{5}\right)$

Finally I have

$$
\frac{(-\sqrt{5}-5) \Psi^{(1)}\left(\frac{2}{5}\right)+2 \sqrt{5} \Psi^{(1)}\left(\frac{1}{5}\right)-2 \pi^{2}(\sqrt{5}-1)}{50 \sqrt{10+2 \sqrt{5}} \pi}
$$

So I have $\log (G(3 / 5))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

5 About the $\log (\mathrm{G}(1 / 8)), \log (\mathrm{G}(3 / 8)), \log (\mathrm{G}(5 / 8))$ and $\log (G(7 / 8))$

First case

I find $\log (G(7 / 8)$ easily: just I use relation (4) with $z=-1 / 8$ and we obtain $\log (G(7 / 8)$ in terms of

$$
\left(\int_{0}^{-\frac{1}{8}} \log (\Gamma(t+1)) d t\right)
$$

Second case

Now I find $\log (G(1 / 8))$ with the Kinkelin's integral: the software MAPLE give me a closed form in terms of complex dilogarithm and I can simplify the expression in terms of trigamma function and we have

$$
\int_{0}^{\frac{1}{8}} \pi t \cot (\pi t) d t
$$

equals to

$$
\begin{equation*}
-\frac{\sqrt{2} K}{4 \pi}+\frac{K}{8 \pi}-\frac{\pi}{32}-\frac{\pi \sqrt{2}}{32}+\frac{\sqrt{2} \Psi^{(1)}\left(\frac{1}{8}\right)}{64 \pi}+\frac{\log (2)}{32}-\frac{\log (1+\sqrt{2})}{16} \tag{13}
\end{equation*}
$$

where K is the Catalan's constant.

And I use the relation (12) with $\mathrm{z}=1 / 8$ and I obtain $\log (\mathrm{G}(1 / 8))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{8}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{8}\right)
$$

Third case

Now I search $\log (\mathrm{G}(3 / 8))$, I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{1}{8}\right)+$ $\zeta^{(1)}\left(-1, \frac{3}{8}\right)$

And I use 2 times the Adamchik-Miller's relation ($n=1$), we have a very long expression but if you factorize the term $\frac{2(-1)^{n+1}(2 n-1)!}{(2 \pi k)^{2 n}}$

And if you consider only the part $\sum_{r=1}^{8-1} \cos \left(\frac{2 \pi r * 1}{8}\right) \zeta^{(1)}\left(2 n, \frac{r}{8}\right)+\sum_{r=1}^{8-1} \cos \left(\frac{2 \pi r * 3}{8}\right) \zeta^{(1)}\left(2 n, \frac{r}{8}\right)$
We have

$$
-2 \zeta^{(1)}\left(2, \frac{1}{2}\right)
$$

I find the value of $\zeta^{(1)}\left(2, \frac{1}{2}\right)$ with the relation (11) with $\mathrm{k}=2$ and I have $3 \zeta^{(1)}(2)+\frac{2 \pi^{2} \log (2)}{3}$

Finally I have $-6 \zeta^{(1)}(2)-\frac{4 \pi^{2} \log (2)}{3}$
So I can finish the calcul with the trigamma function's rules and I have the closed form of $\zeta^{(1)}\left(-1, \frac{1}{8}\right)+\zeta^{(1)}\left(-1, \frac{3}{8}\right)$

We obtain

$$
-\frac{\zeta^{(1)}(-1)}{16}+\frac{\log (2)}{192}+\frac{\sqrt{2} \Psi^{(1)}\left(\frac{1}{8}\right)}{64 \pi}-\frac{\pi \sqrt{2}}{32}-\frac{\sqrt{2} K}{4 \pi}-\frac{\pi}{32}
$$

Hence, with the relation (6), I find $\log (\mathrm{G}(3 / 8))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{8}} \log (\Gamma(t+1)) d t\right)
$$

Fourth case

Now I search $\log (G(5 / 8))$: I repeat the same principle but this time I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{3}{8}\right)-\zeta^{(1)}\left(-1, \frac{5}{8}\right)$

Finally I have

$$
-\frac{K}{8 \pi}-\frac{\pi \sqrt{2}}{32}-\frac{\pi}{32}-\frac{\sqrt{2} K}{4 \pi}+\frac{\sqrt{2} \Psi^{(1)}\left(\frac{1}{8}\right)}{64 \pi}
$$

So I have $\log (G(5 / 8))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{8}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{8}\right)
$$

6 About the $\log (G(1 / 10)), \log (G(3 / 10))$, $\log (\mathrm{G}(7 / 10))$ and $\log (\mathrm{G}(9 / 10))$

It's easy: the duplication formula (14) is well-known:

$$
G(2 z)
$$

is equals to

$$
\begin{equation*}
\mathrm{e}^{-\frac{1}{4}} A^{3} 2^{2 z^{2}-3 z+\frac{11}{12}} \pi^{\frac{1}{2}-z} G(z) G\left(z+\frac{1}{2}\right)^{2} G(1+z) \tag{15}
\end{equation*}
$$

where A is the Glaisher-Kinkelin constant's

If $\mathrm{z}=3 / 5$, I have directly $\log (\mathrm{G}(1 / 10))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

If $\mathrm{z}=4 / 5$, I have directly $\log (\mathrm{G}(3 / 10))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

If $\mathrm{z}=1 / 5$, I have directly $\log (\mathrm{G}(7 / 10))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

If $\mathrm{z}=2 / 5$, I have directly $\log (\mathrm{G}(9 / 10))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{5}\right), \Psi^{(1)}\left(\frac{2}{5}\right)
$$

7 About the $\log (\mathrm{G}(1 / 12)), \log (\mathrm{G}(5 / 12))$, $\log (\mathrm{G}(7 / 12))$ and $\log (\mathrm{G}(11 / 12))$

First case

I find $\log (G(11 / 12)$ easily: just I use relation (4) with $z=-1 / 12$ and we obtain $\log (\mathrm{G}(11 / 12)$ in terms of

$$
\left(\int_{0}^{-\frac{1}{12}} \log (\Gamma(t+1)) d t\right)
$$

Second case

Now I find $\log (G(1 / 12))$ with the Kinkelin's integral: the software MAPLE give me a closed form in terms of complex dilogarithm and I can simplify the expression in terms of trigamma function and we have

$$
\int_{0}^{\frac{1}{12}} \pi t \cot (\pi t) d t
$$

equals to

$$
\frac{\sqrt{3} \Psi^{(1)}\left(\frac{1}{3}\right)}{48 \pi}-\frac{\pi \sqrt{3}}{72}+\frac{K}{3 \pi}-\frac{\log (1+\sqrt{3})}{12}+\frac{\log (2)}{24}
$$

And I use the relation (12) with $\mathrm{z}=1 / 12$ and I obtain $\log (\mathrm{G}(1 / 12))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{12}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{12}\right)
$$

If you prefer, we can use the trigamma identity $\Psi^{(1)}\left(\frac{1}{12}\right)=10 \Psi^{(1)}\left(\frac{1}{3}\right)+$ $2 \pi^{2} \sqrt{3}-\frac{8 \pi^{2}}{3}+40 K$

Third case

Now I search $\log (\mathrm{G}(5 / 12))$, I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{1}{12}\right)+$ $\zeta^{(1)}\left(-1, \frac{5}{12}\right)$

And I use 2 times the Adamchik-Miller's relation ($n=1$), we have a very long expression but if you factorize the term $\frac{2(-1)^{n+1}(2 n-1)!}{(2 \pi k)^{2 n}}$

And if you consider only the part $\sum_{r=1}^{12-1} \cos \left(\frac{2 \pi r * 1}{12}\right) \zeta^{(1)}\left(2 n, \frac{r}{12}\right)+\sum_{r=1}^{12-1} \cos \left(\frac{2 \pi r * 5}{12}\right) \zeta^{(1)}\left(2 n, \frac{r}{12}\right)$
We have

$$
\zeta^{(1)}\left(2, \frac{1}{6}\right)-\zeta^{(1)}\left(2, \frac{1}{3}\right)-2 \zeta^{(1)}\left(2, \frac{1}{2}\right)-\zeta^{(1)}\left(2, \frac{2}{3}\right)+\zeta^{(1)}\left(2, \frac{5}{6}\right)
$$

I have successively $\sum_{r=1}^{6-1} \zeta^{(1)}\left(2 n, \frac{r}{6}\right)=6 \pi^{2} \log (2)+6 \pi^{2} \log (3)+35 \zeta^{(1)}(2)$
is equals to $\zeta^{(1)}\left(2, \frac{1}{6}\right)+\zeta^{(1)}\left(2, \frac{1}{3}\right)+\zeta^{(1)}\left(2, \frac{1}{2}\right)+\zeta^{(1)}\left(2, \frac{2}{3}\right)+\zeta^{(1)}\left(2, \frac{5}{6}\right)$
And $\zeta^{(1)}\left(2, \frac{1}{6}\right)+\zeta^{(1)}\left(2, \frac{5}{6}\right)=35 \zeta^{(1)}(2)+6 \pi^{2} \log (6)-\zeta^{(1)}\left(2, \frac{1}{3}\right)-$ $\zeta^{(1)}\left(2, \frac{1}{2}\right)-\zeta^{(1)}\left(2, \frac{2}{3}\right)$

And $\sum_{r=1}^{3-1} \zeta^{(1)}\left(2 n, \frac{r}{3}\right)=8 \zeta^{(1)}(2)+\frac{3 \pi^{2} \log (3)}{2}$
is equals to $\zeta^{(1)}\left(2, \frac{1}{3}\right)+\zeta^{(1)}\left(2, \frac{2}{3}\right)$
I have $\zeta^{(1)}\left(2, \frac{1}{6}\right)+\zeta^{(1)}\left(2, \frac{5}{6}\right)=\frac{16 \pi^{2} \log (2)}{3}+\frac{9 \pi^{2} \log (3)}{2}+24 \zeta^{(1)}(2)$

Finally I have $4 \pi^{2} \log (2)+3 \pi^{2} \log (3)+10 \zeta^{(1)}(2)$
So I can finish the calcul with the trigamma function's rules and I have the closed form of $\zeta^{(1)}\left(-1, \frac{1}{12}\right)+\zeta^{(1)}\left(-1, \frac{5}{12}\right)$

We obtain

$$
\frac{\zeta^{(1)}(-1)}{12}+\frac{K}{3 \pi}+\frac{\log (3)}{288}
$$

Hence, with the relation (6), I find $\log (G(5 / 12))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{12}} \log (\Gamma(t+1)) d t\right), \Psi^{(1)}\left(\frac{1}{12}\right)
$$

Fourth case

Now I search $\log (G(7 / 12))$: I repeat the same principle but this time I evaluate the closed form of $\zeta^{(1)}\left(-1, \frac{5}{12}\right)-\zeta^{(1)}\left(-1, \frac{7}{12}\right)$

Finally I have

$$
-\frac{\sqrt{3} \Psi^{(1)}\left(\frac{1}{3}\right)}{48 \pi}+\frac{\pi \sqrt{3}}{72}+\frac{K}{3 \pi}
$$

So I have $\log (\mathrm{G}(7 / 12))$ in terms of

$$
\left(\int_{0}^{-\frac{1}{12}} \log (\Gamma(t+1)) d t\right)
$$

Conclusion:

The 16 formulas Barnes G-function are proved.

I remark that this paper is complementary with my 2 papers "Values of Barnes function" and "Another values of Barnes function and formulas":

In this article, I prove the 16 formulas but I have no information about the closed form of

$$
\left(\int_{0}^{-\frac{1}{12}} \log (\Gamma(t+1)) d t\right)
$$

or

$$
\left(\int_{0}^{-\frac{1}{8}} \log (\Gamma(t+1)) d t\right)
$$

or

$$
\left(\int_{0}^{-\frac{1}{5}} \log (\Gamma(t+1)) d t\right)
$$

In the 2 papers "Values of Barnes function" and "Another values of Barnes function and formulas", I don't prove the formulas but in the same time, I have more information about the integral log gamma but just I can evaluate some terms, hence it isn't sufficient to obtain a final closed form of the integrals.

The priority is to find closed form of three integrals and the trigamma identity $\Psi^{(1)}\left(\frac{2}{5}\right)$ in terms of $\Psi^{(1)}\left(\frac{1}{5}\right)$.

8 References

(1): E. W. Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math. 31 (1900), 264-314
$(2),(3),(4),(5):$ https://dlmf.nist.gov/5.17
(6): V. S. Adamchik, On the Barnes function, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, Ontario; July 22-25, 2001, ACM Press, New York, 2001, 15-20.
(7),(11): https://dlmf.nist.gov/25.11
(8): https://mathworld.wolfram.com/BernoulliPolynomial.html
(9): https://mathworld.wolfram.com/BernoulliNumber.html
(10): https://mathworld.wolfram.com/PolygammaFunction.html
(12): J. Choi and H. M. Srivastava, The Clausen function Cl2(x) and its related integrals (2014)
(13): https://mathworld.wolfram.com/CatalansConstant.html
(14): Joshua W. E. Farrell, Generalising the Wallis Product (2019)
(15): https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html

