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Abstract

A direct proof shows Goldbach’s conjecture is correct. It is as

simple as can be imagined. A table consisting of two rows is used.

The lower row counts from 0 to any n and and the top row counts

down from 2n to n. All columns will have all numbers that add to

2n. Using the idea of a sieve, all composites are crossed out and only

columns with primes are left. Without loss of generality, an example

shows that primes, ones that sum to 2n will always be left in such

columns.

Introduction

Hardy and Apostol spend some time on Goldbach’s conjecture [1, 2]. The
conjecture has it that every even number can be expressed as the sum of two
primes. And indeed it is fascinating to try it on some even numbers and
quickly find some instances.

Various angles for finding examples are possible. One can just add any
two odd primes and the result will be even. So 3 + 5 = 8, 5 + 7 = 10, and so
on. This will give lots of even sums fast. If one allows, which the conjecture
does, non distinct primes then we can add 3+3 = 6 and 5+5 = 10 and start
to sense that, indeed, you might just get all evens.

Thence to the central rub with this conjecture. You get lots and lots of
pairs that sum to ever larger evens. A plethora of evidence starts accumu-
lating and one can quickly lose sight of the goal of proving it is generally
true. Things inevitably get complicated and the schemes get more and more

1



elaborate; and annoyingly, every now and again extremely simple. At least
that was my experience.

Here is a scheme for the latter leading to the former. An even can be
expressed in the form 2n− 2 +2. So take 44 = 44− 2 + 2 = 42 + 2 and start
subtracting from 42 and adding to 2; immediately 42− 1 = 41 and 2 +1 = 3
and both 41 and 3 are primes. Keep going and you will have to get all
composite and prime combinations. But how to you know you will ever get
two primes at the same time? Thence to ever more elaborate considerations
of say expressing each number using all primes via a division algorithm. So
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and for any even eventually one will get exponents, the multiples of one and
prime pairs seem to emerge. We see, for example, 131

31, 371
7, and 31

41 in (1)
and these translate to winning pairs of primes: {(13, 31), (37, 7), (3, 41)} that
all sum to 44. But do we have assurances that the remainders, the 13, 37,
and 3 will always or at least one time be prime(s)?

Thence to the frustration of seeing such hopeful evidence without getting
closer to a proof.

Pulled both ways between easy ways to get them all and difficult ways
that seem to give lots of granularity, like (1), that seems to suggest something
complicated might work – well frustration and obsession seem to wax. You
scratch your head a lot.

All of this is to say how one can forget the general intuition: it must be
something very simple. Hint: expand your ideas out from just the primes
and just the odds and odd primes and consider all numbers. Use a sieve.
Here goes.

A Sieve

Given an even 2n, we know 2 . . . n has lots of early primes and n + 1 . . . 2n
has at least one prime per Bertrand’s postulate. Use two rows to count up
to 2n with the lower row consisting of 1 . . . n and the top row consisting of
n . . . 2n, counting up from right to left. Scratch off all but the first prime
multiples of the first and second rows. What’s left are primes on the first
row and any primes on the second row line up with lower row primes because
they survived the sieve. These pairs are odd primes that sum to 2n.
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Here’s is an example: Table 1. This procedure is called a sieve. The
Greek mathematician Eratosthenes used it to find primes. We are essentially
doing the same thing.

��20 19 ��18 17 ��16 ��15 ��14 13 ��12 ��11 10

�0 �1 2 3 �4 5 �6 7 �8 �9 ��10

Table 1: The survivors of the lower row index the survivors of the top row.

The Theory for the Sieve

Figure 1: Caption for goldbach-tableFor44-527-120

How do we know that the primes on the bottom row will line up with
those of the top? Using (1), we’ll demonstrate the logic. Consider the primes
less than

√
44: P (44) = {2, 3, 5}. Any number between 2 and 44 that doesn’t

have a factor from P (44) will be a prime [2]. Using (1), we know that

44 = 2 · 22 + 0 = 3 · 14 + 2 and 44 = 5 · 8 + 4.

Let

GC(2) = {(a, b)|a = 2(22 − m) and b = 2m + 0 with 0 ≤ m ≤ 22}

GC(3) = {(a, b)|a = 3(14 − m) and b = 3m + 2 with 0 ≤ m ≤ 14}
and

GC(5) = {(a, b)|a = 3(8 − m) and b = 3m + 4 with 0 ≤ m ≤ 8}.

3



The ordered pairs in these sets correspond to the columns in a sieve for
44: Figure 1. That is

GC(2)={(44,0),(42,2),(40,4),(38,6),(36,8),(34,10),(32,12),(30,14),(28,16),(26,18),(24,20),(22,22)},

GC(3)={(42,2),(39,5),(36,8),(33,11),(30,14),(27,17),(24,20),(21,23)},

and
GC(5)={(40,4),(35,9),(30,14),(25,19),(20,24),(15,29),(10,34),(5,39)}.

Figure 2: Caption for goldbach-tableFor44-573-122-last

Using an “x” to cross reference the two tables, Figure 2 shows that four
columns remain. These columns have no numbers divisible by one or more of
P (44) and so give two prime numbers, as needed. In more technical jargon,
we are using the principle of cross classification as developed in Apostol [1].
This procedure works for any 2n.
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