Fractal Belief Jensen–Shannon Divergence

Yingcheng Huang^a, Fuyuan Xiao^{a,}

^aSchool of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

4 Abstract

1

2

In this paper, a novel belief divergence measurement method, fractal belief Jensen–Shannon (*FBJS*) divergence is proposed to better measure conflicts between evidences. The proposed *FBJS* divergence is the first belief divergence that combines the belief divergence theory and the concept of fractal.

5 Keywords: Dempster–Shafer evidence theory; Belief divergence; Fractal.

6 1. The proposed method

- ⁷ **Definition 1** (*FBJS* divergence).
- ⁸ Let m_1 and m_2 be two BPAs in the frame of discernment Θ . The fractal belief Jensen–Shannon
- ⁹ divergence (FBJS divergence) is defined as

$$FBJS(m_1||m_2) = \frac{1}{2} \cdot \sum_{i=1}^{2^N - 1} \sum_{j=1}^{2^N - 1} \tau(A_i, A_j) m_{F_1}(A_i) \log_2[\frac{2m_{F_1}(A_i)}{m_{F_1}(A_i) + m_{F_2}(A_j)}] \\ + \frac{1}{2} \cdot \sum_{i=1}^{2^N - 1} \sum_{j=1}^{2^N - 1} \tau(A_j, A_i) m_{F_2}(A_j) \log_2[\frac{2m_{F_2}(A_j)}{m_{F_1}(A_i) + m_{F_2}(A_j)}].$$
(1)

 m_{F_i} is defined as

$$m_{F_j}(A_i) = \sum_{A_i \subseteq G_i}^{2^N} \frac{m_j(G_i)}{2^{|G_i|} - 1}, \quad j = 1, 2.$$
⁽²⁾

- where G_i is any subset of A_i . m_{F_i} represents that BPAs are transferred for one time.
- $\tau(A_i, A_j)$ is defined as

$$\tau(A_i, A_j) = \frac{|A_i \cap A_j|}{|A_i \cup A_j|},\tag{3}$$

where A_i are hypotheses of m. $A_i \cap A_j$ is the intersection of A_i and A_j . $A_i \cup A_j$ is the union of A_i and A_j . $|A_i|$ represents the cardinality of A_i .

Preprint submitted to Elsevier

June 24, 2022