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Abstract In this paper a proof of the Polignac's Conjecture  is going to be presented. The proof represents an extension

of the proof of the twin prime conjecture.  It will be shown that primes with a gap of size g could be obtained through

two stage sieve process, and that will be used to prove the conjecture.

1 Introduction

In number theory, Polignac's conjecture states: For any positive even number g, there are infinitely

many prime gaps of size  g.  In other words: there are infinitely many cases of two consecutive

prime numbers with the difference g [1]. 

In literature it has been proved that exists infinitely many primes with gaps not bigger than 246  [2].

Recently, the conjecture was proved for gaps of the size 2 and 4 [3], 6 [4] and 8 [5]. The problem

was addressed in generative space, which means that prime numbers were not analyzed directly, but

rather their representatives that can be used to produce them. This paper represents an extension of

the previous work [3-5]. 

Basically, three groups of gaps bigger than 4 exist: the gaps of the size 6k, the gaps of the size 6k+2

and gaps of the size 6k+4, k ϵ N. In the text that follows we mark the prime numbers in the form 6k

– 1 as mps primes and prime numbers in the form 6k +1 as mpl primes, k ϵ N. The gaps of the size

6k could be related to the prime pairs in both  (mps, mps) and (mpl, mpl) form. The gaps in the form

6k + 2 can only be related to the pair of primes in (mps, mpl) form, while gaps in the form 6k + 4

can only be related to the pair of primes in (mpl, mps) form. In other words there is not a single

prime in mpl form that has consecutive prime that is  6k + 2 apart, and there is not a single prime in



mps form that has consecutive prime 6k + 4 apart. It is trivial to show that by simple calculation.

Although last two groups are different, they can be treated analogously. Here, three different cases

are going to be analyzed in order to explain how conjecture can be proved in general case.

First, the analysis from [5] for the gaps of the size 8 is going to be recapitulated. After that, cases in

which gaps are equal to 10 and 12 are going to be analyzed briefly. Then, the proof can easily be

generalized for the gaps of any size g. It will be shown that primes with gap of a size g (Gg-primes)

could be generated by two stage sieve process. This process will be compared to other two stage

recursion sieve process that leaves infinitely many numbers. Fact that sieve process that generate

Gg-primes leaves more numbers than the other sieve process will be used to prove that infinitely

many Gg-primes exist. 

Remark 1: In this paper any infinite series in the form c1·l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

Remark 2: In the text that follows we will use fact that number of even/odd numbers is equal to the

one half of the number of natural  numbers (also the 1/3, 4/5 and other fractions of the number of

natural numbers are used). This is not an usual way of discussing the number of numbers that are

infinitely big, but it  is  quite  suitable in this  context.  It is  important  to notice that there is  no

context in which is correct to state that number of natural numbers is equal to the number of

odd or even numbers (or that number of natural numbers is equal to the number of numbers

divisible by 3, or 5, and so on). What can be said is  that it  is possible to generate the same

number of unique labels for odd or even numbers using the same number of unique labels for

natural numbers. However, if  we want to produce all even and odd labels at the same time,



obviously, it is necessary to have two sets of natural numbers at the same time (it is necessary to

clone the set of natural numbers), which means that the number of the natural numbers in that

moment is two times bigger than the number of even or odd numbers. This analysis can also be

made in quantum probabilistic context, but it is beyond the scope of this paper. 

2 Recapitulation of the proof of Polignac's conjecture for gap equal to eight

As it was already explained in the introduction part, if two consecutive prime numbers have the gap

of the size 8 it is clear that  smaller of those numbers has to be in mps form while the bigger one has

to be in mpl form. Here, we are going to recapitulate a two stage process, that was presented in [5],

that can be used for generation of the smaller primes of the G8-prime pairs that are in mps form. 

In the first stage prime numbers are going to be produced by removal of all composite numbers

from the set of natural numbers.  

In the second stage, the following numbers are going to be removed:

- Number 2 (since it cannot generate G8-prime pair).

– All numbers in mps form that represent a smaller numbers in twin prime pairs.

– A quarter  of  sexy primes (or more precisely one half of  mps sexy primes).  In  order to

understand why is it so, we are going to  consider 5 consecutive numbers 6k-1, 6k+1, 6k+3, 6(k+1)-

1, 6(k+1)+1. We can see that 6k-1 and 6(k+1)+1 can create a G8-primes only in the case when they

are both primes and when 6k+1 and 6(k+1)-1 are not primes (6k+3 is obviously composite number

divisible by 3). Here, we are going to analyze three situations.  When 6k+1 and 6(k+1)-1 are both

primes, and in the case when only 6k+1 is prime, removal of twin primes will remove mps primes

that cannot have G8-prime pair. However, when 6k+1 is not prime and  6(k+1)-1  is prime, it is also

necessary to remove smaller number of sexy prime pair (6k-1, 6(k+1)-1) since it also cannot create

a G8-prime pair.

– A half of the number of twin primes and quarter of the number of sexy primes from mpl

primes is going to be removed in such a way that Dirichlet's theorem for arithmetic progressions [8]



still holds after removal of all those numbers that are previously mentioned. 

– All prime numbers in mpl form that are left.

– All prime numbers in mps form that have a bigger odd G8-neighbor (odd number that is by

8 bigger than the prime of interest) that is a composite number. 

At the end, only the prime numbers in the mps form, that represent the smaller numbers of the G8-

prime pairs, are going to stay. Their number is a half of the number of G8-primes. It is going to be

shown that that number is infinite. 

STAGE 1

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where  i, j ϵ N. It  is simple to conclude that all odd composite numbers could be represented by

product (2i + 1)(2j + 1), where  i,  j ϵ N.  If it is checked how that formula looks like for the odd

numbers, after simple calculation, equation (1) is obtained. This calculation is presented here. The

form 2m + 1,  m ϵ N will represent odd numbers that are composite. Then the following equation

holds

2 m+1=(2 i+1)(2 j+1) .

 From that, it follows that m must be in the form



m = 2ij + i + j = (2i + 1) j + i. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers  that  cannot be represented by (1) will  stay.  This  process is  equivalent  to the sieve of

Sundaram [6].

Let us denote the numbers used for the generation of odd prime numbers with m2 (here we ignore

number 2). Those are the numbers that are left after the implementation of Sundaram sieve. The

number of those numbers that are smaller than some natural number n, is equivalent to the number

of prime numbers smaller than n. If we denote with π(n) number of primes smaller than n, than the

following equation holds [7]

π(n)≈
n

ln (n)
.

From [7] we also know that following holds

π(n)>
n

ln(n)
, n⩾ 17. (3)

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other

prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that their bigger odd G8-neighbor must be in the form 2n + 9, n ϵ N.  Now, we

should implement a second stage in which we are going to remove: 

A. Number 2 (since 2 cannot make a G8-prime pair);

B. All twin primes in mps form, a quarter of sexy primes (smaller sexy numbers in mps form). Also,

a number of primes in mpl form that is equal to the number that represents the sum of the half of the

numbers of twin primes and quarter of the numbers of sexy primes, in such a way that Dirichlet's

theorem for  arithmetic  progressions  [8]  still  holds  after  removal  of  all  those  numbers  that  are

mentioned– so number of  numbers that  is  going to be left  is  the number of primes minus the



number of twin primes minus one half of the number of sexy primes (number 2 is ignored, and that

has no impact on the analysis that follows). It is not difficult to prove that number of numbers left,

is infinite. It is not difficult to understand it having in mind that relative density of twin and sexy

primes to the density of all primes is zero. 

C. The rest of mpl primes – it is trivial to see that it can be done by one thread that is defined by 3 –

so in this step it is going to be removed, one half of the numbers that are left after step B;

D. All odd primes in the form  2m + 1 such that 2m + 9, m ϵ N represents a composite number (all

primes whose bigger odd G8-neighbor is composite number). If we make the same analysis, like in

the Stage 1, it is simple to understand that m must be in the form

m = 2ij + i + j – 4 = (2i + 1) j + i - 4. (4)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent a smaller primes of the G8-prime pairs that is in mps form. What has to be noticed is that

thread in (4) that is defined by prime number 3 (for  i = 1) is not going to remove any additional

number from the numbers left. 

Let us mark the number of G8-primes with π
G8

. Also, let us define the number of numbers that is

left after two consecutive implementations of Sundaram sieve as pd8. The prime numbers that are

obtained after removal of number 2,  twin primes in mps form and a quarter of sexy primes (a half

of sexy primes in mps form) and the corresponding number of mpl primes (equal to the sum of a

half of the number of twin primes and a quarter of the number of the sexy primes)  are going to be

called G8-fs primes. The numbers obtained after recursive implementation of two Sundaram sieves

(where the second Sundaram sieve is implemented on  G8-fs primes)  are going to be called  G8-

double primes. The second stage sieve that is identical to the first stage sieve can be obtained if the

G8-fs primes are lined up next to each other and then the numbers are removed from the exactly

same positions like in the first stage – the second stage sieve is applied on the indexes of  G8-fs

primes. In that case it is easy to understand that the following equation would holds (n ϵ N)



pd8 (n)≈
π (n)− πG2(n)− 0.5πG6(n)

ln (π(n)− πG2(n)− 0.5πG6 (n))
, (5)

where pd8(n) represents the number of G8-double primes smaller than some natural number n (this

number can be easily found out (by simple counting), once it  is known which mpl numbers are

removed in the process of obtaining the G8-fs primes).  Here, it will be shown that number of G8-

double primes, marked as pd8, is smaller than the number  π
G8

/2. In order to understand why it is so,

we are going to analyze (2) and (4) in more detail. 

It is not difficult to understand that m in (2) and (4) is represented by the threads that are defined by

odd prime numbers.  For  details  see  Appendix  A.  Now we are  going  to  compare  stages  2  for

generation of G8-double primes and mps G8-primes, step by step, for a few initial steps (analysis

can be easily extended to any number of steps).  Starting point for the second stage is the moment

when the primes G8-fs are generated.

Table 1 Comparison of the stage 2 for generation of G8-double primes and mps G8-primes –

threads defined by a few smallest primes

Step Stage 2 – G8-double primes Step Stage 2 – mps G8-primes

1 Remove even numbers (except 2)

amount of numbers left is 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left is 2/3 of the
numbers that are left after previous step

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 3/4 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left is 4/5 of the
numbers that are left after previous step

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 5/6 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left is 6/7 of the
numbers that are left after previous step

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left is 9/10 of the
numbers that are left after previous step

It should be kept in mind that in the case of G8-double primes sieve is implemented on indexes of



G8-fs prime numbers (indexes are consecutive numbers 1, 2, 3, … ). 

Values of the fractions presented in the Table 1 are asymptotically correct (in the finite case those

values are only approximately correct - for details see [3] ). Here is important to understand that

it is assumed, without a proof, that Dirichlet's theorem on arithmetic progressions [8] holds on

the subset of primes marked as G8-fs primes (in other words,  after removal of  twin primes in

mps form and  after removal of the quarter of the sexy primes (half of the sexy primes in mps

form) from prime numbers, that it is possible to select the same number of  mpl primes that

are going to be removed in such a way that Dirichlet's theorem on arithmetic progressions [8]

still holds). For the arithmetic progressions that are defined by finite numbers this is a simple

task, but it requires additional attention when we are speaking about progressions defined by

infinite numbers. 

From the table,  it  can be noticed that threads defined by the same number in first  and second

column will not remove the same percentage of numbers. The reason is  obvious – consider for

instance the thread defined by 3: in the first column it will remove 1/3 of the numbers left, but in the

second column it will remove ½ of the numbers left, since the thread defined by 3 in stage 1 has

already removed one third of the numbers (odd numbers divisible by 3 in observation space). So,

only odd numbers (in observational space) that give residual 1 and -1 when they are divided by 3

are left, and there is asymptotically the same number of numbers that give residual -1 and numbers

that give residual 1, when the number is divided by 3 (see [3, Appendix C]). Same way of reasoning

can be applied for all other threads defined by the same prime in different columns.

From Table 1 can be seen that in every step, except step 1, threads in the second column will leave

bigger percentage of numbers than the corresponding threads in the first column. This could be

easily understood from the analysis that follows: 

– suppose that we have two natural numbers  j,  k  such that  j – 1 ≥  k  (j,  k ϵ N  ), then the

following set of equations is trivially true



j+k− 1⩾ 2k

− j− k+1⩽ − 2k

jk− j− k+1⩽ jk− 2k

( j− 1)(k− 1)⩽ ( j− 2) k

k− 1
k

⩽
j− 2
j− 1

The equality sign holds only in the case j = k + 1. In the set of prime numbers there is only one case

when j = k + 1 and that is in the case of primes of 2 and 3. In all other cases p(i) – p(i - 1) > 1 , (i >

1, i ϵ N, p(i) is i-th prime number).  So, in all cases i > 2

p(i− 1)− 1
p (i− 1)

<
p (i)− 2
p (i )− 1

.

From Table 1 (or last equation) we can see that bigger number of numbers is left in every step of

stage 2 then in the stage 1 (except 1st step). From that, we can conclude that after every step bigger

than 1, part of the numbers that is left in stage 2 is bigger than number of numbers left in the stage 1

(that  is  also  noticeable  if  we  consider  amount  of  numbers  left  after  removal  of  all  numbers

generated by threads that are defined by all prime numbers smaller than some natural number).

From previous analysis we can safely conclude that the following equation holds  

πG8 >
πG8

2
> pd8= lim

n→ ∞
pd8(n) .

Having in mind (3) and (5), we can say that for some n big enough the following inequality holds

pd8 (n)>
π(n)− πG2(n)− 0.5πG6 (n)

ln (π (n)− πG2(n)− 0.5πG6(n))
. (6)

(The n for which equations holds can be specified once the numbers in mpl form that are going to

be eliminated are known – for instance it can be said that n ≥ 317 can be chosen, since 317 is the

17th  prime left, when number 2, all twin primes which means that mps twin primes are balanced by



mpl twin primes, and a quarter of the sexy primes are eliminated from the prime numbers set, and if

we assume that all corresponding  mpl numbers (that “balance” a quarter of sexy primes that are

numbers in  mps form) that are going to be removed are all bigger than 317). It is not difficult to

prove that the number of primes that are left when 2 and twin primes in mps form and quarter of

sexy primes,  and  corresponding number  of  mpl primes  are eliminated,  is  infinite.  One way to

understand it, is the fact that the relative density of twin primes and all primes is zero as well as the

relative density of sexy primes and all primes is zero.

Having that in mind, it it easy to show that  following holds

lim
n→ ∞

π(n)− πG2(n)− 0.5πG6(n)

ln (π(n)− πG2(n)− 0.5πG6(n))
=∞ .

Then,  the following equation holds

pd8= lim
n→ ∞

pd8 (n)=∞ .

Now, we can safely conclude that the number of G8-primes is infinite. That concludes the proof.

Here we will state the following conjecture:  for n big enough, number of g8-primes is given by the

following equation 

πG8(n) ∼ 4C2⋅( (π (n) − πG2(n)− 0.5πG6(n))
ln (π(n) − πG2(n)− 0.5πG6 (n))).  

Constant C
2
 is known as twin prime constant [9]. The equation can be expressed by using only n,

but it would be cumbersome. Why it is reasonable to make such conjecture can be understood from

the procedure that is similar to one used in [3, Appendix B]. If  we mark the number of primes

smaller than some natural number n with π(n) ≈ f (n), where function f (n) gives good estimation of

the number of  primes smaller than  n,  than π
G8

(n),  for  n big enough,  is  given by the following

equation

πG8(n) ∼ 4C2 ⋅ ( f ( f (n) − πG2(n)− 0.5πG6(n))) .



Here  we  can  see  that  constant  C
2
 has  a  misleading  name.  It  is  connected  with  repeated

implementation  of  a  sieve  that  produces  prime  numbers  which  is  also,  but  not  exclusively,

connected to the twin primes.  

3 Analysis of the Polignac's conjecture for gaps equal to ten  

As it was already explained in the introduction part, if two consecutive prime numbers have the gap

of the size 10 it is clear that  smaller those numbers has to be in mpl form while the bigger one has

to be in mps form.  Proof that number of the G10-primes is infinite can be done by trivial extension

of the proof that infinitely many G8-primes exist.  Here we are only going to analyze a two stage

process that can be used for generation of the smaller primes of G10-prime pairs (mpl G10-primes),

and how it differs from two stage process used for generation of smaller primes of G8-prime pairs.

The first stage in both processes are equivalent and they produce prime numbers by removing all

composite numbers from the set of natural numbers.  Here we are going to analyze the second stage

of the process that produces mpl G10-primes. 

In order to do that  we will consider 6 consecutive numbers 

6k+1, 6k+3, 6(k+1)-1, 6(k+1)+1, 6(k+1)+3 and 6(k+2)-1.

We can see that 6(k+1) and 6(k+2)-1 can create a G10-primes only in the case when neither 6(k+1)-

1 nor 6(k+1)+1 are primes, and at the same time both 6k+1 and 6(k+2) - 1 are primes (numbers

6k+3 and 6(k+1)+3 are obviously composite). Here we are going to analyze three cases:

1. Both  6(k+1)-1 and  6(k+1)+1 are primes. We can see that removal of all smaller primes of

cousin prime pairs, removes primes in mpl form that potentially cannot have a G10-prime pair.

2. 6(k+1)-1 is a prime number and  6(k+1)+1 is a composite number. Again, we can see that

removal of all smaller primes of cousin prime pairs removes primes in  mpl form that potentially

cannot have a G10-prime pair.

3. 6(k+1)-1 is composite number and  6(k+1)+1 is prime number. Now, we can see that beside



the removal of all smaller primes in cousin prime pairs, it is necessary to remove smaller primes in

mpl sexy prime pairs (which is one half of mpl sexy primes and a quarter of all sexy primes), in

order to remove all primes in mpl form that potentially cannot have a G10-prime pair. 

4. Remove appropriate number of primes in mps form that match the number of mpl numbers

that  are  removed  in  steps  1-3  of  the  second  stage  in  such  a  way that  Dirichlet's  theorem on

arithmetic progressions still holds.

From previous analysis we can conclude that in this part of the second stage it  is necessary to

remove all number of prime numbers that is equal to the number of cousin primes and one half of

all sexy primes. After this has been done, the procedure can follow the line of reasoning that is used

in proof that infinitely many  G8-primes exist. The only small difference would be to prove that

exist infinitely many primes that are not cousin primes or one half of sexy primes (and that follows

from the fact that the ratio of density of cousin and sexy primes to all primes is zero). The other

difference comes from the fact that 10/2=5 and that means that the thread that is defined by 5, in the

second stage, will not remove any additional numbers. That will be analyzed in Appendix C.

This analysis can easily be extended to gaps g, where g=6k+2, k ϵ N.

4. Analysis of the Polignac's conjecture for gaps equal to twelve  

The G12-primes are successive prime numbers with the gap 12. It was already mentioned that in the

case when gap g=6k, where k is natural number, we can have G12-prime pairs in (mps, mps) as well

as (mpl, mpl) forms.

It is clear that we can generate G12-primes using the two stage sieve process that is similar to the

process used for generation of G6-primes [4]. The only difference will be in the part of the second

stage that is going to be analyzed here. The first stages are identical. The difference in the second

stage is related to the removal of the primes that potentially cannot produce a G12-prime pairs.

In order to see what kind of primes should be removed from the set of prime numbers.  Here, we are



going to analyze mps G12-primes (mpl G12-primes can be analyzed analogously). We are going to

analyze the following 7 consecutive odd numbers

6k-1, 6k+1, 6k+3, 6(k+1)-1, 6(k+1)+1, 6(k+1)+3 and 6(k+2)-1.

So, if want to have G12-prime pair (6k-1,  6(k+2)-1) it is clear that numbers 6k+1,  6(k+1)-1 and

6(k+1)+1 cannot be prime numbers. Here we are going to analyze all possible cases.

1. All three numbers 6k+1,  6(k+1)-1 and  6(k+1)+1, are primes. In that cases it is clear that

removal of all smaller primes in the twin prime pairs remove  mps primes that potentially

cannot have G12-prime pair.

2. 6k+1,  6(k+1)-1 are prime numbers and  6(k+1)+1 is composite number. In this case beside

removal of twin primes it is necessary to remove a smaller number in all  mps sexy prime

pairs (that represent half of mps sexy primes, or a quarter of all sexy primes).

3. 6k+1,  6(k+1)+1 are prime numbers and  6(k+1)-1 is composite number. Removal of the

smaller primes in twin prime pairs is enough, 

4. 6(k+1)+1,  6(k+1)-1 are prime numbers and  6k+1 is composite number. In this case beside

removal of twin primes it is necessary to remove a smaller number in all  mps sexy prime

pairs (that represent half of mps sexy primes, or a quarter of all sexy primes).

5. 6k+1 is prime number and 6(k+1)+1,  6(k+1)-1 are composite numbers. What is required is

removal of twin primes.

6. 6(k+1)-1 is prime number and 6k+1,  6(k+1)+1  are composite numbers. In this case removal

of smaller  number in the mps sexy prime pairs is required.

7. 6(k+1)+1 is prime number and 6k+1,  6(k+1)-1 are composite numbers. In this case it is

necessary to remove smaller prime from all  G8-prime pairs.

Now it is necessary to remove appropriate number of mpl primes that is equal to the number of mps

primes removed in all  cases (1-7) that were analyzed. That  should be done in such a way that



Dirichlet's theorem on arithmetic progressions holds (this is assumed as possible without proof).

Now, the rest of the procedure that is applied in the G6-primes case has to be done in G12-primes

case.

Case of mpl G12-primes can be analyzed analogously. Of course in that case it would be necessary

to remove all cousin and  G10-primes, as well as  mpl sexy primes, instead of twin primes, G8-

primes and mps sexy primes.

This analysis can easily be extended to gaps g, where g=6n, n ϵ N.

4. Proof that the number of  Gg-primes is infinite

Here we are going to analyze the general case of the gap of the size g > 6. From previous analysis,

it is very simple to understand that Gg-primes could be obtained by two stage process. 

STAGE 1 

Using the same methodology as previously, generate all prime numbers. In order to do that, from

the set  of  all  natural  numbers  bigger  than 1,  remove all  even numbers  (except  2)  and all  odd

numbers generated by equation (2).

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other

prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that their bigger Gg-odd neighbor must be in the form 2n + 1 + g, n, g ϵ N, g >

6.  Now, we should implement a second step in which we are going to remove: 

A. Number 2 (since 2 cannot make Gg-prime pair), but this has no impact on the analysis,

B. If mod (g, 6) = 2: all smaller primes of twin prime pairs, all smaller primes in  s-prime pairs,

where s is even natural number in the form 6x + 2 and s < g and a quarter of all k-primes (half of the

number of k-primes in mps form), where k represents number in the form 6y and k < g (x, y ϵ N).



The adequate number of primes in  mpl form that is equal to the number of  mps primes that is

removed in this step. The number of numbers that is left after this is number of primes minus the

number of twin primes minus all s-primes minus one half of k-primes. It is not difficult to prove that

number of primes left after this step is infinite.

If mod(g, 6) = 4: all smaller primes in cousin prime pairs and all smaller primes in l-prime pairs,

where l is even natural number in the form 6x + 4 and l < g, and a quarter primes of all  k-prime

pairs (a half of the k-primes in mpl form), where k represents number in the form 6y and k < g (x, y ϵ

N).  The adequate number of primes in mps form that is equal to the number of mpl primes that is

removed in this step.  The number of numbers that is left after this is number of primes minus the

number of cousin primes, minus all  l-primes, minus one half of all  k-primes. It is not difficult to

prove that number of primes left after this step is infinite.

If mod(g, 6) = 0: Assume that we are working with numbers in  mps form, we remove smaller

primes from k-primes pairs, k is even natural number in the form 6x, and k < g; smaller prime of all

twin prime pairs and s-prime pairs, where s is even natural number in the form 6x + 2 and s < g. The

adequate number of primes in mpl form that is equal to the number of mps primes that is removed in

this step.

If we work with primes in  mpl form, we remove smaller primes from  k-primes pairs,  k is even

natural number in the form 6x, and k <g, smaller prime of all cousin prime pairs and all  l-prime

pairs,  where l is even natural number in the form 6x + 4 and l < g,  The adequate number of primes

in mps form that is equal to the number of mpl primes that is removed in this step.

It is not difficult to prove that number of primes left after this step is infinite.

C.  If mod (g, 6) = 2, all  mpl primes – it is trivial to see that it can be done by one thread that is

defined by 3 – so in this step it is going to be removed, approximately, one half of the numbers that

are left after first stage;

If mod (g, 6) = 4, all mps primes with same consequences as previously;



If mod (g, 6) = 0,  if we are working with mps primes, remove  rest of mpl primes. If we work with

mpl primes remove rest of mps primes.  

D.  Assume now  that  we are working with  numbers  in  mps form (everything should  be done

analogously for numbers in mpl form). Remove all odd primes in the form  2m + 1 such that 2m + g,

m ϵ N,  represents a composite number (those that have composite bigger  g-odd neighbor).  If we

make the same analysis again, it is simple to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i - g/2. (7)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent a smaller primes of the Gg-prime pairs.  

It should be noticed that if g/2 is divisible by the prime (2i+1) that defines thread in (7), there will

be no additional removals of the numbers defined by that thread in STAGE2. That will lead to an

additional correction of the formula for the estimation of number of Gg-primes smaller than some

natural number n (see Appendix C).

Following identical procedure like in the case of sexy or G8-primes it is possible to it possible to

prove that the number of Gg-primes is infinite. 

Here,  we are  going to  conjecture  several  formulas  for  the  number  of  Gg-primes.  Why this  is

reasonable can be seen in Appendix B and C. If we mark the number of primes smaller than some

natural number  n with π(n)  ≈ f (n), where function  f  (n) gives good estimation of the number of

primes smaller than n, than π
Gg

(n), for n big enough, is given by the following equation

a. Case mod(g, 6) = 2

πG g (n) ∼ CG( g)⋅ 4C2 ⋅( f ( f (n)− πG2(n)− ∑
2<S<g

(πGS (n))− 0.5 ∑
0<K< g

(πGK (n)))) ,

where S are even numbers in the form 6x+2 and  K is an even number in the form 6y, x, y ϵ N, and

C
G
 (g) is correction constant for gap g (for details, see Appendix C). If we us f (n) = MoLi (n) [10]



and we define P
g
(n) as 

Pg (n) =π(n) − πG2(n)− ∑
2<S<g

(πGS (n))− 0.5 ∑
0<K<g

(πGK(n)) ,

then we have 

πG g (n) ∼ CG(n)⋅ 4C 2⋅ ∫
2

P g (n)
dx

ln( x+√Pg (n))
.

b. Case mod(g, 6) = 4

πG g (n) ∼ CG( g)⋅ 4C2⋅( f ( f (n)− πG4(n) − ∑
4<L<g

(πGL(n))− 0.5 ∑
0<K<g

(πGK (n)))) ,

where L are even numbers in the form 6x+4 and  K is an even number in the form 6y, x,y ϵ N, and

C
G(

(g) is correction constant for gap g (for details, see Appendix C).

If we us f (n) = MoLi (n) [10] and we define P
g
(n) as 

Pg (n) =π(n) − πG4(n)− ∑
4<L<g

(πGL(n))− 0.5 ∑
0<K<g

(πGK (n)) ,

then we have 

πG g (n) ∼ CG(n)⋅ 4C 2⋅ ∫
2

P g (n)
dx

ln( x+√Pg (n))
.

c. Case mod(g, 6) = 0 

πG g (n) ∼ CG( g)⋅ 4C2 ⋅( f ( f (n)− πG2(n) − ∑
1⩽ K<g

(0.5πGK (n)) − ∑
2<S<g

(πGS (n))))
+CG( g)⋅ 4C2⋅( f ( f (n) − πG4(n) − ∑

1⩽ K<g
(0.5πGK (n)) − ∑

4<L< g
(πGL(n)))) ,

and S, L, K and C
G
(g) are defined as previously.

If we us f (n) = MoLi (n) [10] and we define P
gS

(n) as 

PgS (n) =π(n) − πG2(n) − ∑
1⩽ K< g

(0.5πGK (n)) − ∑
2<S<g

(πGS (n)) ,



and P
gL

(n) as 

PgL (n) =π(n)− πG4(n) − ∑
1⩽ K< g

(0.5πGK (n)) − ∑
4<L<g

(πGL(n)) ,

then we have 

πG g (n) ∼ CG( g)⋅ 4C2 ⋅ ∫
2

P gS (n )
dx

ln (x+√PgS(n))
+CG (g )⋅ 4C 2⋅ ∫

2

P gL(n)
dx

ln ( x+√PgL (n))
.
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APPENDIX A.

Here it is going to be proved that m in (2) is represented by threads defined by odd prime numbers.

Now, the form of  (2) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 

Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From

examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the the thread defined by

one of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assume

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or



m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (4), (5) and (7).

Note: It is not difficult to understand that after implementation of stage 1, the number of numbers in

residual classes of some specific prime number are equal. In other words, after implementation of

stage 1, for example, all numbers divisible by 3 (except 3, but it does not affect the analysis) are

removed. However, the number of numbers in the forms 3k + 1 and 3k + 2 (alternatively, 3k – 1)

are equal.  The reason is that the thread defined by any other prime number (bigger than 2) will

remove the same number of numbers from the numbers in the form  3k + 1 and from the numbers in

the form 3k + 2. It is simple to understand that, for instance, thread defined by number 5, is going

to remove 1/5 of the numbers in form  3k + 1 and  1/5 of the numbers in form 3k + 2. This can be

proved by elementary calculation. That will hold for all other primes and for all other residual

classes.



APPENDIX B.

Here asymptotic density of numbers left, after implementation of the first and second Sundaram

sieve is calculated.

After first k steps of the first Sundaram sieve, after removal of all composite even numbers, density

of numbers left is given by the following equation

ck=
1
2
∏
j=2

k+1

(1−
1

p( j )
) ,

where p(j) is j-th prime number.

In the case of second “Sundaram” sieve the density of numbers left after the first k-steps is given by

the following equation

c2k=∏
j=2

k+1

(1− 1
p ( j)− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

So, if implementation of first sieve will result in the number of prime numbers smaller than n which

we denote as π(n), than implementation of the second sieve on some set of size π(n) should result in

the number of numbers gp(n) that are defined by the following equation (for some big enough n)

gp(n)=rS2S1(n)⋅
π(n)

ln (π (n))
,

where r
S2S1

(n) is defined by the following equation (k is the number of primes smaller or equal to n1

= sqrt(n), where sqrt marks square root function)

r S2S1(n)=
c2k

ck

=

∏
p>2, p≤ n1

( p − 2
p − 1)

∏
p≤ n1
( p − 1

p )
=2 ∏

p>2, p≤ n1
( p − 2

p − 1)(
p

p − 1)≈ 2C2 .

For n that is not big, gp(n) should be defined as   

gp(n)= f COR(n)⋅ 2C2⋅
π(n)

ln(π(n))
,



where  f
COR

(n)  represents  correction  factor  that  asymptotically  tends  toward  1  when  n tends  to

infinity.



APPENDIX C. 

Here we are going to repeat equation (7)

m = 2ij + i + j – 1 = (2i + 1) j + i – g/2.

From equation is quite clear that thread defined by the prime (2i + 1) in STAGE 2 will not produce

new removals of numbers in addition to removals produced by the thread defined by the same prime

in the STAGE 1, in the case when (2i+1) divides g/2. That means that r
S2S1

 defined in Appendix B

has to be changed. From Appendix B we know that r
S2S1

 is defined by the following equation

r S2S1(n)=
c2k

ck

=

∏
p>2, p≤ n

( p − 2
p − 1)

∏
p≤ n
( p − 1

p )
=2 ∏

p>2, p≤ n
( p − 2

p − 1)(
p

p − 1)≈ 2C2 ,

while c2
k
 is defined by the following equation

c2k=∏
j=2

k+1

(1− 1
p ( j )− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

In the case when prime p(j) divides g/2 corresponding term in c2
k
 is actually 1 instead of 

p( j)− 2
p ( j)− 1

.

That means that c2
k
 has to be multiplied by the following term

p ( j) − 1
p( j) − 2

,

in order to obtain the correct equation. 

If we mark with  Z set of all primes 3 < p ≤ n1 (n1 = sqrt(n)) that divide g/2, a constant  C
G
(g) is

defined by the following equation

CG( g) =∏
p∈ Z
( p − 1

p − 2).



Now, we can write the proper values for c2
k
  and r

S2S1
 as

c2k=C G(g ) ∏
j=2

k+1

( p( j)− 2
p( j)− 1) ,

and

r S2S1(n)=CG( g) ⋅
c2k

ck

=CG (g ) ⋅ 2 ∏
p>2, p≤ n

( p − 2
p − 1)(

p
p − 1)≈ CG( g) ⋅ 2C2 .


