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1 Introduction 

 

The Riemann hypothesis is an important problem in mathematics as its validity will affirm 

the manner of the distribution of the prime numbers. It posits that all the non-trivial zeros of 

the zeta function ζ lie on the critical strip between Re(s) = 0 and Re(s) = 1 at the critical line 

Re(s) = 1/2. The important point is whether there would be zeros appearing at other locations 

on this critical strip, e.g., at Re(s) = 1/4, 1/3, 3/4, or, 4/5, etc., which would disprove the 

Riemann hypothesis. We would look into this. 

 

The following is the Riemann zeta function ζ with its terms:- 

 

                                   ∞  

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                  (1.1) 
                                                      n = 1 

 

where s is the complex number 1/2 + bi 

 

For the term 1/21/2 + bi above, e.g., whether it would be positive or negative in value would 

depend on which part of the complex plane this term 1/21/2 + bi would be found in, which 

depends on 2(n) and b (it does not depend on 1/2 - 1/2 and 2(n) only determine how far the 

term is from zero in the complex plane). This term could be in the positive half (wherein the 

term would have a positive value) or the negative half (wherein the term would have a 

negative value) of the complex plane. Hence some of the terms in the Riemann zeta function 

ζ would have positive values while the rest would have negative values (which depend on the 

values of n and b). The sum of the series in the Riemann zeta function ζ is obtained with a 

formula, e.g., the Riemann-Siegel formula, or, the Euler-Maclaurin summation formula. The 

Riemann zeta function ζ would turn out a non-trivial zero on the critical line Re(s) = 1/2, as 

more and more terms are added, when it reaches a point at the critical line Re(s) = 1/2 where 

the positive terms (in the positive half of the complex plane, as explained above) cancel out 

the negative terms (in the negative half of the complex plane), i.e., a non-trivial zero indicates  
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the point in the Riemann zeta function ζ wherein the total value of the positive terms equals 

the total value of the negative terms. There would be an infinitude of such non-trivial zeros at  

the critical line Re(s) = 1/2, which G. H. Hardy had proved. Whether there would be zeros off 

this critical line Re(s) = 1/2 on the critical strip bounded by Re(s) = 0 and Re(s) = 1 as more 

and more terms are added to the Riemann zeta function ζ is still an open question, which 

Riemann himself had thought highly unlikely though he had no proof.  

       

Evidently Riemann anticipated that there would be an equal, or, almost equal number of 

primes among the terms in the positive half and the negative half of the complex plane when 

there is a zero, wherein the distribution of the primes would be statistically fair - the more 

terms are added to the Riemann zeta function ζ, the fairer or “more equal” would be the 

distribution of the primes in the positive half and the negative half of the complex plane when 

there is a zero. This is like the tossing of a coin wherein the more tosses there are the “more 

equal” would be the number of heads and the number of tails. In other words, in the longer 

term, with more and more terms added to the Riemann zeta function ζ, more or less 50% of 

the primes should be found in the positive half of the complex plane and the balance 50% 

should be found in the negative half of the complex plane, the more terms there are the fairer 

or “more equal” would be this distribution, when there is a zero, when the positive terms 

cancel out the negative terms in the Riemann zeta function ζ.   

       

It is evident that through the non-trivial zeros the order or pattern of the distribution of the 

primes could be observed.   

 

2 Main Results: Distribution of Non-Trivial Zeros of Riemann Zeta Function ζ and 

Possible Approaches to the Riemann Hypothesis  

 

According to the concepts of fractal geometry, phenomena which appear random when viewed 

en masse display some orderliness and pattern which could be regarded as a fractal 

characteristic. For instance, the prime numbers are very random and haphazard entities, yet, 

when viewed en masse they display a regularity in the way they thin out, whereby it is affirmed 

that the number of primes not exceeding a given natural number n is approximately n/log n, in 

the sense that the ratio of the number of such primes to n/log n eventually approaches 1 as n 

becomes larger and larger, log n being the natural logarithm (to the base e) of n (vide the prime 

number theorem proved in 1896 by Hadamard and de la Vallee-Poussin). In other words, the 

prime number theorem, which is apparently the direct outcome of the Riemann hypothesis, 

states that the limit of the quotient of the 2 functions π(n) and n/log n as n approaches infinity is 

1, which is expressed by the formula: 

 

lim  π(n)/(n/log n) = 1                      (2.1) 

                                         n→∞ 

 

the larger the number n is, the better is the approximation of the quantity of primes, as is 

implied by the above formula where π(n) is the prime counting function (π here is not the π 

which is the constant 3.142 used to compute perimeters and areas of circles, but is only a 

convenient symbol adopted to denote the prime counting function) 

 

All this is in spite of the fact that the primes are scarcer and scarcer as n is larger and larger.  
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The prime number theorem could in fact be regarded as a weaker version of the Riemann 

hypothesis which posits that all the non-trivial zeros of the zeta function ζ on the critical strip 

bounded by Re(s) = 0 and Re(s) = 1 would be at the critical line Re(s) = 1/2.  

For a better understanding of the close connection between the prime number theorem and the 

Riemann hypothesis, it should be noted that Hadamard and de la Vallee Poussin had in 1896 

independently proven that none of the non-trivial zeros lie on the very edge of the critical strip, 

on the lines Re(s) = 0 or Re(s) = 1 - this was enough for deducing the prime number theorem. 

The locations of these non-trivial zeros on the critical strip could be described by a complex 

number 1/2 + bi where the real part is 1/2 and i represents the square root of -1. It had already 

been proven that there is an infinitude of non-trivial zeros at the critical line Re(s) = 1/2 on the 

critical strip between Re(s) = 0 and Re(s) = 1. The important question is whether there would 

be any zeros off the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, 

e.g., at Re(s) = 1/4, 1/3, 3/4, or, 4/5, etc., the presence of any of which would disprove the 

Riemann hypothesis. So far, no such “off-the-critical-line” zeros has been found. 

 

The validity of the Riemann hypothesis would apparently imply the validity of the prime 

number theorem, which is apparently the offspring and weaker version of the Riemann 

hypothesis, though the validity of the prime number theorem does not imply the former. 

Nevertheless, both of them have one thing in common in that they are both concerned with the 

estimate of the quantity of primes less than a given number, with the Riemann hypothesis 

positing a more exact estimate of the quantity of primes less than a given number. But, on the 

other hand, what would be the result if the Riemann hypothesis were false? We would return to 

this later. 

 

Meanwhile, we would bring up more interesting points about the non-trivial zeros of the zeta 

function ζ(s) defined by a power series shown below: 

 
                                                  ∞ 

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                       

                                                n = 1 

 

At the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 all the non-

trivial zeros would be found on an oscillatory sine-like wave which oscillates in spirals, there 

being an infinitude of these spirals, which represent the complex plane. All the properties of the 

prime counting function π(n) are in some way coded in the properties of the zeta function ζ, 

evidently resulting in the primes and the non-trivial zeros being some sort of mirror images of 

one another - the regularity in the way the primes progressively thin out and the progressively 

better approximation of the quantity of primes towards infinity by the prime counting function 

π(n) mirror or reflect the regularity in the way the non-trivial zeros of the zeta function ζ line up 

at the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, the non-

trivial zeros becoming progressively closer together there, with no zeros appearing anywhere 

else on the critical strip, and, all this has been found to be true for the first 1013 non-trivial zeros.  

 

Riemann had posited that the margin of error in the estimate of the quantity of primes less than 

a given number with the prime counting function π(n) could be eliminated by utilizing the 

following J function which is a step function involving the non-trivial zeros expressed in terms 

of the zeta function ζ, which has been shown to be effective (2 steps are involved here - first, 

the prime counting function π(n) is expressed in terms of the J(n) function, then the J(n) 

function is expressed in terms of the zeta function ζ, with the J(n) function forming the link 

between the counting of the prime counting function π(n) and the measuring (involving 
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analysis and calculus) of the zeta function ζ, which would result in the properties of the prime 

counting function π(n) somehow encoded in the properties of the zeta function ζ): 
 

                                                                                                       ∞ 

J(n) = Li(n) - ∑ Li(np) - log 2 + ∫ dt/(t(t2 - 1) log t)                (2.2)                  
                                                                          p                                         n 

 

where the first term Li(n) is generally referred to as the “principal term” and the second term 

∑ Li(np) had been called the “periodic terms” by Riemann, Li being the logarithmic integral 
 p 

 

The above formula may look fearsome but is actually not. The third term log 2 is a number  
                                                                                      ∞ 
which is 0.69314718055994… while the fourth term ∫ dt/(t(t2 - 1) log t) which is an integral  

                                                                                      n 

representing the area under the curve of a certain function from the argument all the way out to 

infinity can only have a maximum value of 0.1400101011432869…. Since these 2 terms taken 

together (and minding the signs) are limited to the range from -0.6931… to -0.5531…, and 

since the prime counting function π(n) deals with really large quantities up to millions and 

trillions they are much inconsequential and can be safely ignored. The first term or principal 

term Li(n), where n is a real number, should also be not much of a problem as its value can be 

obtained from a book of mathematical tables or computed by some math software package such 

as Mathematica or Maple.  However, special attention should be given to the second term  

∑ Li(np)  which concerns the sum of the non-trivial zeros of the zeta function ζ (p in this second     

 p 

term is a “rho”, which is the seventeenth letter of the Greek alphabet, and it means “root” - a 

root is a non-trivial zero of the Riemann zeta function ζ - a root here is a solution or value of an 

unknown of an equation which could be factorized). Riemann had evidently called the second 

term “periodic terms” as the components there vary irregularly. 

                                                                                                                     n  

The prime number theorem asserts that π(n) ~ Li(n) (technically Li(n) = ∫  dx/log (x)) which also                                                

                                                                                                                     2  

implies the weaker result that π(n) ~ n/log n. However, with Li(n) the prime count estimate 

would have a margin of error. The Riemann hypothesis asserts that the difference between the 

true number of primes p(n) and the estimated number of primes q(n) would be not much larger 

than √n. With the above J(n) function we could eliminate this margin of error and obtain an 

exact estimate of the quantity of primes less than a given number: 

 

J(n) = exact quantity of primes less than a given number 

 

Since the third and fourth terms of the J(n) function are inconsequential and can be safely 

ignored, as is described above, deducting the second term from the first term should be 

sufficient: 

 

J(n) = Li(n) - ∑ Li(np) = exact quantity of primes less than a given number 
                                                              p                   

 

The above in brief shows the intimate relationship between the primes and the non-trivial zeros 

of the zeta function ζ, the primes and the non-trivial zeros being some sort of mirror images of 

one another as is described above, with the distribution of the non-trivial zeros being regarded 

as the music of the primes by mathematicians.                                                 
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We return to the question of the consequence of the falsity of the Riemann hypothesis. Let us 

here assume that the Riemann hypothesis is false, i.e., there are also zeros found off the 

critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., at Re(s) = 

1/4, 1/3, 3/4, or, 4/5, etc., and see the consequence. What would be the significant implication 

of this assumption? The falsity of the Riemann hypothesis would imply that the distribution 

of the zeros of the zeta function ζ on the critical strip between Re(s) = 0 and Re(s) = 1 has 

lost the regularity of pattern which is characteristic of the non-trivial zeros at the critical line 

Re(s) = 1/2 and which is described above, and is now disorderly and irregular. This would in 

turn imply that the distribution of the primes is also similarly disorderly and irregular since 

the primes and the non-trivial zeros of the zeta function ζ are intimately linked and are some 

sort of mirror images of one another - any changes in one of them would be reflected in the 

other on account of their intimate link - note that the zeta function ζ has the property of prime 

sieving encoded within it (comparable to the sieve of Eratosthenes), the properties of the 

prime counting function π(n) being somehow encoded in the properties of the zeta function ζ, 

so that if the zeros generated were disorderly and irregular it would mean that the distribution 

of the primes were also similarly disorderly and irregular - the characteristic of the primes on 

the input side of the function determines the characteristic of the zeros on the output side of 

the function (i.e., the distribution of the primes determines the distribution of the zeros, so 

that from a study of the distribution of the zeros the distribution of the primes could be 

deduced and vice versa), which is expected for a function. The overall result would be that 

the more orderly the distribution of the zeros is the more orderly would be the corresponding 

distribution of the primes, the more disorderly the distribution of the zeros is the more 

disorderly would be the corresponding distribution of the primes, and, vice versa. But, 

according to the prime number theorem, or, prime counting function π(n), which is apparently 

closely connected with the Riemann hypothesis itself being an apparent offspring and weaker 

version of it as is described above, there is instead actually a regularity in the way the primes 

thin out, with the prime counting function π(n) even providing a progressively better estimate 

of the quantity of primes towards infinity - this progressively better estimate would not be 

possible if the primes behave really badly and are really highly disorderly and irregular - 

there is no such really great disorder or irregularity among the primes, a state of affair which 

is evidently affirmed by the fact that the corresponding non-trivial zeros at the critical line 

Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 display regularity in the way 

they line up at the critical line Re(s) = 1/2, the non-trivial zeros becoming progressively 

closer together there with no zeros appearing anywhere else on the critical strip (all of which 

has been found to be true for the first 1013 non-trivial zeros - an important point to note is that 

though the non-trivial zeros at the critical line Re(s) = 1/2 become more and more closely 

packed together the farther along we move up this critical line while the primes occur farther 

and farther along the number line, the density of the one is approximately the reciprocal of 

the density of the other wherein the complementariness, regularity, symmetry is evident), this 

regularity of the distribution of the non-trivial zeros mirroring the regularity of the 

distribution of the primes as is explained above. Our assumption of the falsity of the Riemann 

hypothesis has thus resulted in a contradiction of the actual distribution of the primes and the 

actual distribution of the corresponding non-trivial zeros at the critical line Re(s) = 1/2 on the 

critical strip between Re(s) = 0 and Re(s) = 1. If our assumption that the Riemann hypothesis 

is false is correct, the prime number theorem would be false as there would be great disorder 

and irregularity among the primes with no regularity in the way the primes thin out and 

without the prime counting function π(n) providing a progressively better estimate of the 

quantity of primes towards infinity (this progressively better estimate of the quantity of 

primes actually implies some regularity in the distribution of the primes). However, as is 
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explained just above the prime number theorem is not false; it had in fact been proven 

through both non-elementary methods by Hadamard and de la Vallee Poussin, and, 

elementary methods by Erdos and Selberg later, and is indubitably true. Hence, our 

assumption of the falsehood of the Riemann hypothesis is at fault. This implies that the 

Riemann hypothesis is true, since the hypothesis cannot be false; this is a reasoning by 

contradiction which may be interesting but may not be viewed a very strong or convincing 

reasoning as the reasoning may be too subtle to be fully grasped and make great sense, even 

possibly causing misunderstanding, though, at least, it shows the close connection between 

the Riemann hypothesis and the prime number theorem; a stronger reasoning would be 

forwarded below. The close link between the Riemann hypothesis and the prime number 

theorem is thus evident. 

 

The Riemann hypothesis posits that all the non-trivial zeros of the zeta function ζ on the 

critical strip bounded by Re(s) = 0 and Re(s) = 1 will always be at the critical line Re(s) = 1/2. 

This has been observed to be true for the first 1013 non-trivial zeros. The locations of these 

non-trivial zeros on the critical strip are described by a complex number s = 1/2 + bi where 

the real part is 1/2 and i stands for the square root of -1. It should be noted that the 

mathematical operations and logic of the complex numbers a + bi, where a and b are real 

numbers and i is the imaginary number square root of -1, are practically the same as for the 

real numbers and are even more versatile. For the zeta function ζ(s) to be zero, its series 

would have to have both the positive terms and negative terms cancelling each other out, 

though the positive or “+” signs in the series may indicate positive values only which is 

misleading. We would here consider the possibility of any non-trivial zeros being off the 

critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., at Re(s) = 

1/4, 1/3, 3/4, 4/5, etc. 

 

It had been proven that there will not be zeros at Re(s) = 0 and Re(s) = 1. The first 1013 non-

trivial zeros are found only at the critical line Re(s) = 1/2. Nature appears to demand that 

these zeros must appear only at Re(s) = 1/2, exactly mid-way in the critical strip bounded by 

Re(s) = 0 and Re(s) = 1 wherein the symmetry is perfect. “1/2” in the complex number 1/2 + 

bi, which is “square root”, also appears to be compatible with and work fine with “i”, which 

is “square root of -1” - both of them are square roots. 1/2 + bi has what is called a complex 

conjugate 1/2 - bi so that when 1/2 + bi and 1/2 - bi are added together the terms bi in both 

1/2 + bi and 1/2 - bi will cancel out one another - in this way the troublesome i which does 

not actually make mathematical sense will be got rid of. 1/2 is also the reciprocal of the  

smallest prime and the smallest even number 2, which is significant. But there is a much 

more compelling reason why all the non-trivial zeros must appear on the critical line Re(s) = 

1/2 and it is due to some important similarity to Fermat’s last theorem. 

 

We here compare Fermat’s last theorem with the Riemann hypothesis. As per Fermat’s last 

theorem, the following Diophantine equation which has power n = 2 is the only Diophantine 

equation with zeros or solutions (zeros and solutions are synonymous):- 

 

       x2 + y2 = z2                            (2.3) 

  

Below is a partial list of Diophantine equations with their zeros:- 

 

[1]   32 + 42 = 52                                                  

        32 + 42 - 52 = 0 

                    



7 

 

[2]   52 + 122 = 132                                             

        52 + 122 - 132 = 0           

 

[3]   72 + 242 = 252                                               

        72 + 242 - 252 = 0 

      

[4]   82 + 152 = 172                                              

        82 + 152 - 172 = 0 

 

[5]   92 + 402 = 412                                            

        92 + 402 - 412 = 0       

 

[6]   112 + 602 = 612                                             

        112 + 602 - 612 = 0     

 

[7]   122 + 352 = 372                                             

        122 + 352 - 372 = 0      

       

[8]   132 + 842 = 852                                            

        132 + 842 - 852 = 0       

 

[9]   162 + 632 = 652                                             

        162 + 632 - 652 = 0 

  

[10] 202 + 212 = 292                                             

        202 + 212 - 292 = 0 

     

[11] 282 + 452 = 532                                               

        282 + 452 - 532 = 0 

     

[12] 332 + 562 = 652                                                

        332 + 562 - 652 = 0 

   

[13] 362 + 772 = 852                                                

        362 + 772 - 852 = 0 

       

[14] 392 + 802 = 892                                              

        392 + 802 - 892 = 0 

       

[15] 482 + 552 = 732                                               

        482 + 552 - 732 = 0 

 

[16] 652 + 722 = 972                                                 

        652 + 722 - 972 = 0 

                     . 

                     . 

                     . 

 

There is some important similarity between Fermat’s last theorem and the Riemann 

hypothesis, both of them being involved with series, which will be brought up. 
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Similar to the series of the Riemann zeta function ζ (1/2), the above Diophantine equations (a 

few equations with terms that are duplicative are omitted) could be turned into a long series 

(in fact, an infinitely long series like the series of the Riemann zeta function ζ (1/2)) of 

positive and negative terms which cancel to give a zero, by adding them together as follows:- 

 

32 + 42 - 52 + 72 + 242 - 252 + 82 + 152 - 172 + 92 + 402 - 412 + 112 + 602 - 612 + 122 + 352 - 

372 + 132 + 842 - 852 + 202 + 212 - 292 + 282 + 452 - 532 + 392 + 802 - 892 + 482 + 552 - 732 + 

652 + 722 - 972 = 0 

 

or, with the same terms re-arranged in numerically ascending order, as follows:- 

 

32 + 42 - 52 + 72 + 82 + 92 + 112 + 122 + 132 + 152 - 172 + 202 + 212 + 242 - 252 + 282 - 292 + 

352 - 372 + 392 + 402 - 412 + 452 + 482 - 532 + 552 + 602 - 612 + 652 + 722 - 732 + 802 + 842 - 

852 - 892 - 972 = 0 

 

The long series above show the very great likeness between Fermat’s last theorem and the 

Riemann hypothesis. 

       

In the above Diophantine equations, the regularity of the powers n = 2 is evident. If any of 

these equations are raised to powers n > 2 the regularity will be lost and there will not be 

zeros, a truth which had been proven by Andrew Wiles as per Fermat’s last theorem.  

       

We would show why there are no zeros for the Riemann zeta function ζ for s < 1/2 and s > 

1/2 by bringing up the common underlying principle behind it and Fermat’s last theorem, s = 

1/2 being evidently the optimum or equilibrium power, the only power which brings 

equilibrium, balance or regularity and thereby the zeros to the Riemann zeta function ζ. 

       

For the case for xn + yn = zn above for Fermat’s last theorem which asserts that there are no 

solutions for n > 2, we first explain why there are no solutions for n > 2. We begin by 

selecting example [1] from the list of Diophantine equations above, which has the smallest 

odd prime number 3 and the smallest composite number 4 (which is the square of the smallest 

prime number 2) in the series on the left, i.e., the smallest Diophantine equation which has 2 

as the power, for illustration:- 

 

32 + 42 = 52 

 

If the power of 2 in the series on the left above were increased to 3, which is the next, 

consecutive whole number, e.g., the sum on the right would not be a whole number anymore, 

which is in accordance with Fermat’s last theorem:- 

  

33 + 43 = 4.497953 

 

The regularity of the power of 2 is now lost, which is for the smallest Diophantine equation 

which initially had 2 as the power. For the larger Diophantine equations with initial powers of 

2 the irregularity after increasing their powers to 3, which is the next, consecutive whole 

number, or, higher powers, could be expected to be worse. 
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In the next step we bring up the values of, say, 100, of consecutive whole number powers n, 

say, 2 to 5, this quantity 100 being representative of the terms of the equation xn + yn = zn as 

per Fermat’s last theorem, to explain the reason for this irregularity, which is as follows:- 

 

[1] 1002 = 10,000                  (The terms of the series of Fermat’s last theorem fall under this                            

                                              category. All zeros will be found under this category only.) 

 

[2] 1003 = 1,000,000             (This quantity represents an increase of 9,900% compared to [1] 

                                              above while the increase in power from n = 2 to n = 3 is only  

                                              50%.) 

 

[3] 1004 = 100,000,000         (This quantity represents an increase of 999,900% compared to  

                                              [1] above while the increase in power from n = 2 to n = 4 is only  

                                              100%.) 

          

[4] 1005 = 10,000,000,000    (This quantity represents an increase of 99,999,900% compared  

                                              to [1] above while the increase in power from n = 2 to n = 5 is  

                                              only 150%.) 

. 

. 

. 

 

The quantities from the consecutive whole number powers n > 2 above increase progressively 

compared to [1], the larger the power n is the larger the percentage of increase in the quantity 

is. The increases in the respective quantities and powers are also disproportionate when 

compared to one another, with the increases in the respective quantities being evidently much 

too quick. All this shows that the equilibrium, balance or regularity of xn + yn = zn when n = 2 

as per Fermat’s last theorem cannot be maintained when n > 2, when disproportionateness 

between the increases in the respective quantities and powers sets in as is described above, as 

the increase in quantity is too quick, and, when n < 2, e.g., n = 5/4, 3/2, 7/4, etc., as the 

increase in quantity is too slow as could be extrapolated from the above example. (Refer to 

Appendix 1 below for an analogous example.) For Fermat’s last theorem, n = 2 can be 

regarded as the optimum or equilibrium power, the only power wherein xn + yn = zn is 

possible. There is also the question of the easier solubility of equations with whole number 

powers n = 2 as compared to equations with powers n > 2, e.g., n = 3, 4, 5, etc., and n < 2, 

e.g., n = 5/4, 3/2, 7/4, etc., which is explained below. 

       

For the case of the Riemann zeta function ζ wherein there are no zeros for powers s < 1/2 and 

s > 1/2, we bring up the values of the reciprocals of, say, 100, with consecutive fractional 

powers s, say, 1/2 to 1/5, these reciprocals being representative of the terms of the Riemann 

zeta function ζ, to explain the reason for the irregularity for powers s < 1/2 and s > 1/2, which 

is as follows:- 

 

[1] 1/1001/2     = 1/10        = 0.100  (The terms of the series of the Riemann zeta function ζ                                                    

                                                      as per the Riemann hypothesis fall under this category. 1013   

                                                      zeros have been found under this category only.) 

      

[2] 1/1001/3   = 1/4.6416 = 0.215  (This quantity represents an increase of 115% compared  

                                                      to [1] above while the decrease in power from s = 1/2 to s =  

                                                      1/3 is only 33.33%.) 
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[3] 1/1001/4   = 1/3.1623 = 0.316  (This quantity represents an increase of 216% compared  

                                                      to [1] above while the decrease in power from s = 1/2 to s  

                                                      = 1/4 is only 50%.) 

 

[4] 1/1001/5    = 1/2.5119 = 0.398  (This quantity represents an increase of 298% compared  

                                                      to [1] above while the decrease in power from s = 1/2 to s  

                                                      = 1/5 is only 60%.) 

. 

. 

. 

 

As can be seen above, the smaller the power of the reciprocal/denominator is the larger will 

be the result after division with 1 (or, the larger the power of the reciprocal/denominator is 

the smaller will be the result after division with 1). The quantities from the reciprocals with 

consecutive fractional powers s < 1/2 above increase progressively compared to [1], the 

smaller the power s is the larger the percentage of increase in the quantity is, the increases in 

the quantities being similar to the case above for Fermat’s last theorem - this shows a 

similarity between Fermat’s last theorem and the Riemann hypothesis. The increases in the 

respective quantities and the decreases in the respective powers are also disproportionate 

when compared to one another, with the increases in the respective quantities being evidently 

much too quick, which is similar to the case above for Fermat’s last theorem - this shows 

another similarity between Fermat’s last theorem and the Riemann hypothesis. All this 

implies that the equilibrium, balance or regularity of the Riemann zeta function ζ when s = 

1/2 cannot be maintained when s < 1/2, when disproportionateness between the increases and 

decreases in the respective quantities and powers sets in as is described above, as the increase 

in quantity is too quick, and, when s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., as the increase in 

quantity is too slow as could be extrapolated from the above example. (Refer to Appendix 1 

below for the full details.) For these reciprocals, s = 1/2 can be regarded as the optimum or 

equilibrium power, the only power wherein zeros for the Riemann zeta function ζ are possible. 

Similar to the case for Fermat’s last theorem above, there is also the question of the easier 

solubility of equations with fractional powers s = 1/2 as compared to equations with 

fractional powers s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., and s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., 

which is explained below. 

       

The following list of the first 10 terms of the series of the Riemann zeta function ζ with 

consecutive fractional powers s ≤ 1/2 also shows that the sums with smaller powers increase 

progressively, i.e., the smaller the power s is the larger the percentage of increase in the 

quantity is:- 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + 1/61/2 + 1/71/2 + 1/81/2 + 1/91/2 + 1/101/2 + … =  

      5.03 

      (The Riemann hypothesis asserts that all zeros will be found in this series only.) 

        

[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + 1/61/3 + 1/71/3 + 1/81/3 + 1/91/3 + 1/101/3 + … =  

      6.20  

      (The sum 6.20 here represents an increase of 23.26% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/3 is 33.33%.)   

              

[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + 1/61/4 + 1/71/4 + 1/81/4 + 1/91/4 + 1/101/4 + … =  
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      6.97 

      (The sum 6.97 here represents an increase of 38.57% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/4 is 50%.)   

             

[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + 1/61/5 + 1/71/5 + 1/81/5 + 1/91/5 + 1/101/5 + … =  

      7.46 

      (The sum 7.46 here represents an increase of 48.31% compared to the sum 5.03 in [1]  

      above while the percentage of decrease in power from s = 1/2 to s = 1/5 is 60%.)  

. 

. 

. 

 

Note: Though the respective percentages of increase in quantity above, namely, 23.26%,  

          38.57% & 48.31%, are disproportionate with and lower than the respective percentages  

          of decrease in power, namely, 33.33%, 50% & 60%, at a later stage when there are  

          more and more terms in the series, there being an infinitude of terms, when the sums  

          get larger and larger, the percentages of increase in quantity will all be infinitely higher  

          than the percentages of decrease in power, as is evident from Table 1 below. The  

          same will apply for the quantities when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc.,   

          as could be extrapolated from the above list (and is evident from Appendix 2 below). 

 

(The series of the Riemann zeta function ζ with powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., 

will have sums which are all smaller than the sums shown in the above list for powers s ≤ 1/2  

as could be extrapolated from the above list. For the largest power in the critical strip s = 1, 

which has no zeros, the sum of the first 10 terms is a mere 2.93. Refer to Appendix 1 below 

for an analogous example.) 

 

It is evident from all the above that when the sum of the series in the Riemann zeta function ζ 

increases too quickly as is the case when the powers s < 1/2, when disproportionateness 

between the increases and decreases in the respective quantities and powers sets in as is 

described above, or, too slowly as is the case when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, 

etc., as could be extrapolated from the above list, the equilibrium, balance or regularity will 

be lost and there will not be zeros. (Refer to Appendix 1 below for an analogous example.) 

Similar to the case of Fermat’s last theorem wherein all the zeros will be at the optimum or 

equilibrium power n = 2 only, all the zeros of the Riemann zeta function ζ will be at the 

optimum or equilibrium power s = 1/2 only. (The analogue of this optimum or equilibrium 

power could be that of a shirt or pants which exactly fits a person, e.g., size A could be too 

small for the person, size C too large, while size B fits just fine.) At least 1013 zeros have 

been found at s = 1/2 while none has been found for s < 1/2 and s > 1/2.  

       

We bring up an important point here. If more and more terms are added to the series in the 

list of the sums of the Riemann zeta function ζ above where the consecutive fractional powers 

s ≤ 1/2, which presently have 10 terms each, the differences in the sums between that for 

power s = 1/2 and that for powers s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., and, that for power s = 

1/2 and that for powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., will be greater and greater, i.e., the 

differences between these sums will be more pronounced the more terms are added to the 

series. We can see this point by comparing, e.g., the sums of the first 5 terms of the Riemann 

zeta function ζ for consecutive fractional powers s ≤ 1/2 and the sums of the first 10 terms of 

the Riemann zeta function ζ for consecutive fractional powers s ≤ 1/2, which is as follows, 

and extrapolating from there:- 
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For the comparison, we here compute the sums for the first 5 terms of the series of the 

Riemann zeta function ζ with consecutive fractional powers s ≤ 1/2 as follows, after which 

the results of this computation are incorporated in Table 1 (shown in bold) below: 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 

      (The Riemann hypothesis asserts that all zeros will be found in this series only.) 

              

[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + … = 3.69  

      (The sum 3.69 here represents an increase of 13.89% (the increase here is 23.26% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.)                                                 

       

[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + … = 3.98 

      (The sum 3.98 here represents an increase of 22.84% (the increase here is 38.57% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 

       

[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + … = 4.15  

      (The sum 4.15 here represents an increase of 28.09% (the increase here is 48.31% for the  

      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 

. 

. 

. 

 

Table 1 below of the above-mentioned percentage increases for the sums for the first 2 

terms to the first 10 terms for ζ(1/3), ζ(1/4) & ζ(1/5) will give a clearer picture:- 

 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    1st. 7 Terms    1st. 8 Terms    1st. 9 Terms    1st. 10 Terms    1st. 11 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                 -                 -                -                  -                  -    
 

[2] ζ(1/3)               4.68%        8.30%       11.47%      13.89%     16.16%      18.11%      20.09%     21.87%      23.26%      To Be Extrapolated  

 
[3] ζ(1/4)               7.60%       13.54%      18.28%      22.84%     26.30%      29.78%      32.88%     35.88%      38.57%      To Be Extrapolated 

 

[4] ζ(1/5)               9.36%       16.59%      22.94%      28.09%     32.88%      37.22%      41.32%      45.01%     48.31%      To Be Extrapolated  
. 

. 

. 

 

It is evident that the percentage increases shown above will go up in value continuously to 

infinity with the infinitude of the terms of the Riemann zeta function ζ. All this indicates 

more and more bad news for the solubility of the Riemann zeta function ζ for powers s < 1/2, 

and, s > 1/2 (as could be extrapolated from the above; refer to Appendix 1 and Appendix 2 

(which provides an example) below) when there are more and more terms in the Riemann 

zeta function ζ, i.e., for powers s < 1/2 and s > 1/2, the more terms there are in the Riemann 

zeta function ζ the less soluble it will be. This is a serious irregularity and is another reason 

why there are no zeros for the Riemann zeta function ζ for powers s < 1/2 and s > 1/2. 

       

The similarity between the Riemann hypothesis and Fermat’s last theorem is great - they each 

have an optimum or equilibrium power which is the only power wherein zeros are possible - s 

= 1/2 in the case of the Riemann hypothesis and n = 2 in the case of Fermat’s last theorem, 

powers which are all solely responsible for all the zeros. The fact that all these optimum or 

equilibrium powers are either square root (s = 1/2 for the Riemann hypothesis) or square (n = 

2 for Fermat’s last theorem) is significant as they seem some sort of images of 2 which is the 

smallest prime number and the smallest even number. s = 1/2 is the largest root among the 
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roots with 1 as the numerator. As such s = 1/2 as a fractional power with 1 as the numerator 

gives the largest result as compared to the fractional powers with 1 as the numerator s < 1/2, 

e.g., s = 1/3, 1/4, 1/5, etc. (but this largest result brings the smallest increase in quantity as 

compared to the results of the fractional powers with 1 as the numerator s < 1/2, e.g., s = 1/3, 

1/4, 1/5, etc., when divided by 1, e.g., 1/21/2 < 1/21/3 < 1/21/4 < 1/21/5, etc. - this is an important 

similarity to the case for n = 2 described below) - equations with fractional powers s = 1/2 

would evidently be easier to solve than equations with fractional powers s < 1/2 (e.g., in a 

computation s = 1/2 needs only 1 rooting step while s = 1/5 needs 4 rooting steps) and s > 1/2, 

e.g., s = 2/3, 3/4, 4/5, etc. (e.g., in a computation s = 1/2 needs only 1 rooting step, while s = 

4/5 needs 7 steps - 3 squaring steps for s = 4 & 4 rooting steps for s = 1/5). n = 2 is the 

smallest whole number power which brings an increase in quantity. As such n = 2 is the 

whole number power which brings the smallest increase in quantity as compared to the whole 

number powers n > 2, e.g., n = 3, 4, 5, etc., for instance 22 < 23 < 24 < 25, etc. - equations with 

whole number powers n = 2 would evidently be easier to solve than equations with powers n > 

2 (with general equations with powers n = 5 having been proven unsolvable - n = 2 needs 

only 1 squaring step while n = 5 needs 4 squaring steps) and n < 2, e.g., n = 5/4, 3/2, 7/4, etc. 

(e.g., in a computation n = 2 needs only 1 squaring step, while n = 7/4 needs 9 steps - 6 

squaring steps for n = 7 & 3 rooting steps for n = 1/4). n = 2 and its reciprocal s = 1/2 are the 

opposite of one another but despite this there appears to be complementariness and symmetry 

between them, as is evident in the cases of Fermat’s last theorem and the Riemann hypothesis 

which involve optimum or equilibrium powers n = 2 and its reciprocal s = 1/2, the only 

powers wherein zeros are possible for each of them. n = 2 and its reciprocal s = 1/2 are 

evidently important quantities which may be comparable to π (3.14159265) or e (2.71828).  

       

It is evident that the Riemann hypothesis is the analogue of Fermat’s last theorem, which  

points to its validity. 

       

Hence, for the Riemann zeta function ζ, s = 1/2 is the optimum or equilibrium power wherein 

there would be zeros. No zeros would be found in the critical strip bounded by Re(s) = 0 and 

Re(s) = 1 for s < 1/2 and s > 1/2 because if s < 1/2 the sum of the series in the zeta function ζ 

increases too fast when more and more terms are added to the series and if s > 1/2 the sum of 

the series in the zeta function ζ increases too slowly when more and more terms are added to 

the series; s = 1/2 is evidently optimum, just fits - evidently the only power conducive for the 

production of zeros.          

       

We here elaborate more on the apparently subtle points in the above paragraph which may be 

difficult to grasp. To grasp the point that if s < 1/2 the sum of the series in the zeta function ζ 

increases too fast when more and more terms are added to the series we need to make a close 

study of and understand Table 1 above referring also to the computations above this table, 

and, to grasp the point that if s > 1/2 the sum of the series in the zeta function ζ increases too 

slowly when more and more terms are added to the series we need to study closely and 

understand Table 2 in Appendix 2 below referring also to the computations above this table. 

A careful study of Table 1 above would reveal that for s < 1/2 all the sums for these series, 

e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would diverge more and more from the sum for s = 1/2 

when more and more terms are added to all these series including s = 1/2. As evidently only 

the series for s = 1/2 are conducive for the production of zeros, what this implies is that as 

more and more terms are added to the series for s < 1/2 such as s = 1/3, 1/4, 1/5 and 1/6, it 

would be less and less likely for these series to be able to produce zeros (i.e., these series 

would be less and less soluble) due to the rate of increase of their sums becoming greater and 

greater (in fact too greatly) with more and more terms added to these series. Likewise, a 
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careful study of Table 2 in Appendix 2 below would also reveal that for s > 1/2 all the sums 

for these series, e.g., for s = 2/3, 3/4, 4/5, 5/6, etc., would diverge more and more from the 

sum for s = 1/2 when more and more terms are added to all these series including s = 1/2. 

Since evidently only the series for s = 1/2 are conducive for the production of zeros, what this 

also implies is that as more and more terms are added to the series for s > 1/2 such as s = 2/3, 

3/4, 4/5 and 5/6, it would be less and less likely for these series to be able to produce zeros 

(i.e., these series would be less and less soluble) due to the rate of decrease of their sums 

becoming greater and greater (in fact too greatly) with more and more terms added to these 

series. In other words, for the Riemann zeta function ζ for powers s < 1/2 and s > 1/2, the 

more terms there are in the Riemann zeta function ζ the less soluble it will be, which is a 

serious irregularity. Extrapolating from Table 1 and Table 2 it is evident that the non-trivial 

zeros would not be found in the critical strip bounded by Re(s) = 0 and Re(s) = 1 for s < 1/2 

and s > 1/2. 

       

There is the feeling that for s < 1/2 and s > 1/2 the Riemann zeta function ζ may yield some 

non-trivial zero or zeros after innumerable terms, e.g., after many billions, trillions or more 

terms, have been added to the series, as past experience has shown this could happen. 

However, extrapolations with Table 1 above and Table 2 in Appendix 2 below would show 

that this is not possible. It may happen only when the following occur: (a) For s < 1/2 all the 

sums for these series, e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would diverge less and less (instead 

of more and more), even gradually so, from the sum for s = 1/2 when more and more terms 

are added to all these series including s = 1/2. (b) For s > 1/2 all the sums for these series, e.g., 

for s = 2/3, 3/4, 4/5, 5/6, etc., would diverge less and less (instead of more and more), even 

gradually so, from the sum for s = 1/2 when more and more terms are added to all these series 

including s = 1/2. As the Riemann hypothesis is shown above to be the analogue of Fermat’s 

last theorem and Fermat’s last theorem posits that there are solutions only for n = 2 and none 

for n > 2 and n < 2, by the same principle there should not be solutions for s < 1/2 and s > 1/2 

and the feeling that for s < 1/2 and s > 1/2 the Riemann zeta function ζ may yield some non-

trivial zero or zeros after innumerable terms have been added to the series appears misplaced.   

 

3 Conclusion  

 

As per the reasons above, all the non-trivial zeros of the Riemann zeta function ζ could be 

expected to be found on the critical line Re(s) = 1/2 only and not anywhere else on the critical 

strip bounded by Re(s) = 0 and Re(s) = 1.  

 

Appendix 1 

 

Below are the values of the reciprocals of, say, 100, with consecutive fractional powers s ≤ 

4/5, these reciprocals being representative of the terms of the Riemann zeta function ζ:- 

 

[1] 1/1004/5    = 1/39.8107171 = 0.025 (This quantity represents a decrease of 75% compared  

                                                             to [4] below while the increase in power from s = 1/2 to  

                                                             s = 4/5 is only 60%.) 

 

[2] 1/1003/4   = 1/31.62278     = 0.032 (This quantity represents a decrease of 68% compared  

                                                             to [4] below while the increase in power from s = 1/2 to  

                                                             s = 3/4 is only 50%.) 

 

[3] 1/1002/3   = 1/21.5444       = 0.046 (This quantity represents a decrease of 54% compared   
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                                                             to [4] below while the increase in power from s = 1/2  

                                                             to s = 2/3 is only 33.33%.) 

 

[4] 1/1001/2    = 1/10                = 0.100 (The terms of the series of the Riemann zeta function ζ                                                    

                                                             as per the Riemann hypothesis fall under this category.  

                                                             1013 zeros have been found under this category only.) 

      

[5] 1/1001/3   = 1/4.6416         = 0.215 (This quantity represents an increase of 115%   

                                                             compared to [4] above while the decrease in power   

                                                             from s = 1/2 to s = 1/3 is only 33.33%.)                          

                                                           

[6] 1/1001/4   = 1/3.1623         = 0.316 (This quantity represents an increase of 216%  

                                                             compared to [4] above while the decrease in power  

                                                             from s = 1/2 to s = 1/4 is only 50%.) 

 

[7] 1/1001/5    = 1/2.5119         = 0.398 (This quantity represents an increase of 298%  

                                                             compared to [4] above while the decrease in power  

                                                             from s = 1/2 to s = 1/5 is only 60%.) 

. 

. 

. 

 

Note the disproportionateness between the respective percentages of decrease in quantity and 

the respective percentages of increase in power for the reciprocals with powers s > 1/2, and, 

between the respective percentages of increase in quantity and the respective percentages of 

decrease in power for the reciprocals with powers s < 1/2.  

 

Appendix 2 

 

The following list of the first 5 terms of the series of the Riemann zeta function ζ with 

consecutive fractional powers s ≥ 1/2 shows that the sums with larger powers decrease 

progressively, i.e., the larger the power s is the larger the percentage of decrease in the 

quantity is:- 

 

[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 

      (The Riemann hypothesis asserts that all zeros will be found in this series only.) 

        

[2] ζ(2/3) = 1 + 1/22/3 + 1/32/3 + 1/42/3 + 1/52/3 + … = 2.85 

      (The sum 2.85 here represents a decrease of 12.04% compared to the sum 3.24 in [1]  

      above.)  

                    

[3] ζ(3/4) = 1 + 1/23/4 + 1/33/4 + 1/43/4 + 1/53/4 + … = 2.68 

      (The sum 2.68 here represents a decrease of 17.28% compared to the sum 3.24 in [1]  

      above.)  

                   

[4] ζ(4/5) = 1 + 1/24/5 + 1/34/5 + 1/44/5 + 1/54/5 + … = 2.59 

      (The sum 2.59 here represents a decrease of 20.06% compared to the sum 3.24 in [1]   

      above.) 

. 

. 



16 

 

. 

 

Table 2 below is a tabulation of the above-mentioned percentage decreases for the sums for 

the first 2 terms to the first 5 terms for ζ(2/3), ζ(3/4) & ζ(4/5):- 

 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                     
 

[2] ζ(2/3)               4.52%        7.63%        9.98%       12.04%    To Be Extrapolated  

 

[3] ζ(3/4)               6.65%       11.08%      14.37%      17.28%    To Be Extrapolated 
 

[4] ζ(4/5)               7.86%       12.98%      16.78%      20.06%    To Be Extrapolated  

                                                                       . 

                                                                       . 

                                                                       . 
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