ANALYTIC NUMBER THEORY Sum of powers of integers

Palmioli Luca

The purpose of this study was to rewrite the formulas for the sum of powers of integers in a subsequent general mathematical formula independent of Bernoulli polynomials and numbers, starting from the formula of Faulhaber.

Abstract:

The domain of functions throughout the work are the exponents "r" natural numbers N+.

The history:

The sum of powers of integers is defined: $\sum_{i=1}^{n} k^{i}$

 $\sum_{k=1}^{n} k^{1} = \frac{1}{2} n (1+n)$ $\sum_{k=1}^{n} k^{2} = \frac{1}{6} n (1+n) (1+2n)$ $\sum_{k=1}^{n} k^{3} = \frac{1}{4} n^{2} (1+n)^{2}$ $\sum_{k=1}^{n} k^{4} = \frac{1}{30} n (1+n) (1+2n) (-1+3n+3n^{2})$

In 1631 Johann Faulhaber published in the journal "Algebra Academiae" a general formula which was later proved by Carl Jacobi in 1834 where we used the Bernoulli polynomials and numbers.

$$\sum_{k=1}^{n} k^{r} = \frac{1}{r+1} \star \left(\sum_{k=0}^{r} \binom{r+1}{k} \star (n+1)^{(r+1-k)} \star B_{k} \right)$$

PROCESSING

I ° Objective: To replace the binomial formula and the Bernoulli numbers, respectively, with mathematical formulas containing the Gamma and the Zeta function.

The Bernoulli numbers can be written as a function of $\zeta(k)$ and extrapolate from Euler's formula to find the integer values of $\zeta(2k)$

$$\zeta(2k) = \frac{2^{2k-1} \star \pi^{2k} \star Abs[B_{2k}]}{(2k)!}$$

In this formula, Euler considered the absolute value of the Bernoulli numbers as in Faulhaber's formula are used for each:

$$k \in \mathbb{N}\left(1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, 0, -\frac{1}{30}, 0, \frac{5}{66} \cdots\right)\right)$$

For each $k \ge 2$ the formula is the same:

$$B_{k} = \left(-2^{1-k}\right) \pi^{-k} \Gamma(k+1) \cos\left[\frac{3 k \pi}{2}\right] \zeta(k) \quad \forall k \in \mathbb{N} \quad \bigvee k \geq 2$$

The addition operator $\cos\left[\frac{3 \, k \pi}{2}\right]$ or $\operatorname{Re}\left[e^{\frac{3 \, k \pi i}{2}}\right]$ have the function take the value of the Bernoulli numbers used in Faulhaber's formula.

Processing the formula:

7

0

0

N +	B _k	$(-2^{1-k})\pi^{-k}$	$\Gamma(k+1) \cos\left[\frac{3 \mathbf{k} \pi}{2}\right] \zeta(k)$
2	$\frac{1}{6}$	$\frac{1}{6}$	
3	0	0	
4	$-\frac{1}{30}$	$-\frac{1}{30}$	
5	0	0	
6	$\frac{1}{42}$	$\frac{1}{42}$	

Binomial formula can be rewritten in terms of Gamma function:

$$\binom{r+1}{k} = \frac{\Gamma(r+2)}{\Gamma(k+1)\Gamma(-k+r+2)}$$

Substituting these two functions in Faulhaber's formula

$$\sum_{k=1}^{n} \mathbf{k}^{z} = \frac{1}{r+1} \star \left(\sum_{k=0}^{z} \binom{r+1}{k} \star (n+1)^{(r+1-k)} \star B_{k} \right) = \frac{1}{r+1} \star \sum_{k=0}^{z} \binom{\Gamma(r+2)}{(\Gamma(k+1)\Gamma(-k+r+2))} \star (n+1)^{(r+1-k)} \star \left(\binom{-2^{1-k}}{k} \pi^{-k}\Gamma(k+1)\operatorname{Cos}\left[\frac{3k\pi}{2} \right] \zeta(k) \right) \right)$$

The mathematical formula so constructed will not work because the function ζ (k) does not converge for k = 1 (Series Harmonica -> ∞) then we can decompose the sum in:

$$\frac{1}{r+1} \star \left(\sum_{k=0}^{1} {\binom{r+1}{k}} \star (n+1)^{(r+1-k)} \star B_k \right) + \frac{1}{r+1} \star \left(\sum_{k=2}^{r} \left(-\frac{2^{1-k} (1+n)^{1-k+r} \pi^{-k} \Gamma(r+2) \cos\left[\frac{3k\pi}{2}\right] \zeta(k)}{\Gamma(-k+r+2)} \right) \right)$$

The Bernoulli numbers assume the value 1 when k = 0 and (-1/2) when k = 1

$$\frac{1}{r+1} * \left(\sum_{k=0}^{0} \binom{r+1}{k} * (n+1)^{(r+1-k)} * 1 \right) + \frac{1}{r+1} * \left(\sum_{k=1}^{1} \binom{r+1}{k} * (n+1)^{(r+1-k)} * \left(-\frac{1}{2} \right) \right) + \frac{1}{r+1} * \left(\sum_{k=2}^{r} \left(-\frac{2^{1-k} (1+n)^{1-k+r} \pi^{-k} \Gamma(r+2) \cos\left[\frac{3 k \pi}{2} \right] \zeta(k)}{\Gamma(-k+r+2)} \right) \right)$$

$$= -\frac{(1+n)^{r}(-1-2n+r)}{2(1+r)} + \frac{1}{r+1} * \left(\sum_{k=2}^{r} \left(-\frac{2^{1-k}(1+n)^{1-k+r}\pi^{-k}\Gamma(r+2)\cos\left[\frac{3k\pi}{2}\right]\zeta(k)}{\Gamma(-k+r+2)} \right) \right)$$
$$= -\frac{(1+n)^{r}(-1-2n+r)}{2(1+r)} + \frac{(1+n)^{1+r}(\Gamma(r+2))}{r+1} * \left(\sum_{k=2}^{r} \left(-\frac{2^{1-k}(1+n)^{-k}\pi^{-k}\cos\left[\frac{3k\pi}{2}\right]\zeta(k)}{\Gamma(-k+r+2)} \right) \right)$$

Processing functions: in the second column Faulhaber's formula in the third column, the last formula:

for r=1	$\frac{1}{2}n(1+n)$ $\frac{1}{2}n(1+n)$	
for r=2	$\frac{1}{6}n (1+n) (1+2n) \qquad \qquad \frac{1}{6}n (1+n)$	(1 + 2 n)
for r=3	$\frac{1}{4}n^{i}(1+n)^{i} \qquad \qquad \frac{1}{4}n^{i}(1+n)^{i}$	
for r=4	$\frac{1}{30}n(1+n)(1+2n)(-1+3n(1+n))$	$\frac{1}{30}n(1+n)(1+2n)(-1+3n(1+n))$
for r=5	$\frac{1}{12}n^{2}(1+n)^{2}(-1+2n(1+n))$	$\frac{1}{12}n^{2}(1+n)^{2}(-1+2n(1+n))$
for r=6	$\frac{1}{42} \left(n - 7 n^3 + 21 n^5 + 21 n^6 + 6 n^7 \right)$	$\frac{1}{42} \left(n - 7 n^3 + 21 n^5 + 21 n^6 + 6 n^7 \right)$
for r=7	$\frac{1}{24} \left(2 n^2 - 7 n^4 + 14 n^6 + 12 n^7 + 3 n^8 \right)$	$\frac{1}{24} \left(2 n^2 - 7 n^4 + 14 n^6 + 12 n^7 + 3 n^8 \right)$
for r=8	$\frac{1}{90}n\left(-3+n^{2}\left(20+n^{2}\left(-42+5n^{2}\left(12+n\left(9+2n\right)\right)\right)\right)\right)$	$\frac{1}{90} n \left(-3 + n^{2} \left(20 + n^{2} \left(-42 + 5 n^{2} (12 + n (9 + 2 n))\right)\right)\right)$
for r=9	$\frac{1}{20}n^{2}\left(-3+n^{2}\left(10+n^{2}\left(-14+n^{2}\left(15+2n\left(5+n\right)\right)\right)\right)\right)$)) $\frac{1}{20}n^{2}\left(-3+n^{2}\left(10+n^{2}\left(-14+n^{2}\left(15+2n\left(5+n\right)\right)\right)\right)\right)$

2nd Objective: Replacing the function ζ (k) with the Riemman integral and exchange integral with the summation.

$$-\frac{(1+n)^{r}(-1-2n+r)}{2(1+r)} + \frac{(1+n)^{1+r}(\Gamma(r+2))}{r+1} * \left[\sum_{k=2}^{r} \left(-\frac{2^{1-k}(1+n)^{-k}\pi^{-k}\cos\left[\frac{3k\pi}{2}\right]}{\Gamma(-k+r+2)} * \frac{\int_{0}^{\infty}\left(\frac{x^{k-1}}{e^{x}-1}\right)dx}{\Gamma(k)}\right]\right]$$
$$-\frac{(1+n)^{r}(-1-2n+r)}{2(1+r)} + \frac{(1+n)^{1+r}(\Gamma(r+2))}{r+1} * \sum_{k=2}^{r} \int_{0}^{\infty} \left(-\frac{2^{1-k}(1+n)^{-k}\pi^{-k}\cos\left[\frac{3k\pi}{2}\right]}{\Gamma(-k+r+2)} * \frac{\left(\frac{x^{k-1}}{e^{x}-1}\right)}{\Gamma(k)}\right]dx$$

Exchange integral with the summation:

$$\int_{0}^{\infty} \sum_{k=2}^{r} \left(-\frac{2^{1-k} \left(1+n\right)^{-k} \pi^{-k} \operatorname{Cos}\left[\frac{3 k \pi}{2}\right]}{\Gamma\left(-k+r+2\right)} + \frac{\left(\frac{3 k \pi}{2}\right)}{\Gamma\left(k\right)} \right) d\mathbf{x}$$
$$\int_{0}^{\infty} \left(\sum_{k=2}^{r} \left(-\frac{2^{1-k} \left(1+n\right)^{-k} \pi^{-k} x^{-1-k} \operatorname{Cos}\left[\frac{3 k \pi}{2}\right]}{\left(-1+e^{x}\right) \Gamma\left(k\right) \Gamma\left(-k+r+2\right)} \right) \right) d\mathbf{x} = \int_{0}^{\infty} \frac{\left(1+n\right)^{-1-r} \left(2 \pi\right)^{-1-r} \left(\frac{n}{r} \left(1+n\right)^{r} \left(\left(2 \pi-\frac{n}{2}x\right)^{r}-\left(2 \pi+\frac{n}{2}x\right)^{r}\right)+2 x^{r} \operatorname{Sin}\left[\frac{3 \pi r}{2}\right]}{\left(-1+e^{x}\right) \Gamma\left(k\right) \Gamma\left(-k+r+2\right)} \right) d\mathbf{x}$$

$$= \frac{(1+n)^{-1-r}}{\Gamma(r+1)} \int_0^{\infty} \frac{(2\pi)^{-1-r} \left(\dot{n} \left(1+n\right)^r \left(\left(2\pi - \frac{\dot{n}_x}{1+n}\right)^r - \left(2\pi + \frac{\dot{n}_x}{1+n}\right)^r \right) + 2x^r \operatorname{Sin}\left[\frac{3\pi r}{2}\right] \right)}{(-1+e^x)} dx$$

Adding functions omit the first integral:

$$-\frac{(1+n)^{r}(-1-2n+r)}{2(1+r)} + \left(\frac{(1+n)^{1+r}(\Gamma(r+2))}{r+1} + \frac{(1+n)^{-1-r}}{\Gamma(r+1)}\right) \int_{0}^{\infty} \frac{(2\pi)^{-1-r}\left(\dot{n}\left((2\pi + (n+1) - \dot{n} \times)^{r} - (2\pi + (n+1) + \dot{n} \times)^{r}\right) + 2\times^{r} \operatorname{Sin}\left[\frac{3\pi r}{2}\right]\right)}{(-1+e^{2\pi})} dx$$

On arrive at the final mathematical formula:

$$\sum_{k=1}^{n} \mathbf{k}^{z} = -\frac{(1+n)^{z} \ (-1-2n+r)}{2 \ (1+r)} + \frac{(n+1)^{z} \ \dot{\mathbf{n}} \ \pi^{-z-1}}{2^{z+1}} \left(\int_{0}^{\infty} \frac{\left(\left(2\pi - \frac{\dot{\mathbf{n}} \times}{1+n} \right)^{z} - \left(2\pi + \frac{\dot{\mathbf{n}} \times}{1+n} \right)^{z} \right)}{(-1+e^{z})} \, d\mathbf{x} \right) + 2^{-z} \ \pi^{-1-z} \ \operatorname{Sin} \left[\frac{3\pi r}{2} \right] \int_{0}^{\infty} \left(\frac{\mathbf{x}^{z}}{-1+e^{z}} \right) \, d\mathbf{x}$$

$$\sum_{k=1}^{n} \mathbf{k}^{z} = -\frac{(1+n)^{z} \ (-1-2n+r)}{2 \ (1+r)} + \dot{\mathbf{n}} \ (1+n)^{z} \ (2\pi)^{-1-z} \left(\int_{0}^{\infty} \frac{\left(\left(2\pi - \frac{\dot{\mathbf{n}} \times}{1+n} \right)^{z} - \left(2\pi + \frac{\dot{\mathbf{n}} \times}{1+n} \right)^{z} \right)}{(-1+e^{z})} \, d\mathbf{x} \right) + 2^{-z} \ \pi^{-1-z} \ \operatorname{Sin} \left[\frac{3\pi r}{2} \right] \Gamma(z+1) \ \zeta(z+1)$$

Processing functions: in the second column Faulhaber's formula in the third column, the last formula highlighted:

for r=1
$$\frac{1}{2}$$
 n (1 + n) $\frac{1}{2}$ n (1 + n)
for r=2 $\frac{1}{6}$ n (1 + n) (1 + 2 n) $\frac{1}{6}$ n (1 + n) (1 + 2 n)
for r=3 $\frac{1}{4}$ n² (1 + n)² $\frac{1}{4}$ n² (1 + n)²

Text Reference

[1] Rademacher H. (Springer 1973). "Topics in Analytic Number Theory https://www.skuola.net/matematica/analytic-number-theory-sum-of-powers-of-integers.html

Italy

Ancona, 16/06/2022

Palmioli Luca