ANALYTIC NUMBER THEORY Sum of powers of integers

 Palmioli Luca

 Palmioli Luca}

The purpose of this study was to rewrite the formulas for the sum of powers of integers in a subsequent general mathematical formula independent of Bernoulli polynomials and numbers, starting from the formula of Faulhaber.

Abstract:

The domain of functions throughout the work are the exponents " r " natural numbers $\mathrm{N}+$.

The history:

The sum of powers of integers is defined: $\sum_{k=1}^{n} k^{k}$
$\sum_{k=1}^{n} k^{k^{1}}=\frac{1}{2} n(1+n)$
$\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(1+n)(1+2 n)$
$\sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(1+n)^{2}$
$\sum_{k=1}^{n} k^{4}=\frac{1}{3 n} n(1+n)(1+2 n)\left(-1+3 n+3 n^{2}\right)$

In 1631 Johann Faulhaber published in the journal "Algebra Academiae" a general formula which was later proved by Carl Jacobi in 1834 where we used the Bernoulli polynomials and numbers.

$$
\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{\mathrm{I}}=\frac{\mathbf{1}}{\mathbf{r}+\mathbf{1}} *\left(\sum_{k=0}^{\mathrm{x}}\binom{\boldsymbol{x}+\mathbf{1}}{k} \star\left(\mathbf{n}+\mathbf{1}^{(\mathrm{r}+1-k)} * \boldsymbol{B}_{x}\right)\right.
$$

Processing

I ${ }^{\circ}$ Objective: To replace the binomial formula and the Bernoulli numbers, respectively, with mathematical formulas containing the Gamma and the Zeta function.

The Bernoulli numbers can be written as a function of $\zeta(\mathrm{k})$ and extrapolate from Euler's formula to find the integer values of $\zeta(2 \mathrm{k})$

$$
\zeta(2 \mathrm{k})=\frac{2^{2 \mathrm{k}-1} \times \pi^{2 k} \times \mathrm{Abs}\left[B_{2 k}\right]}{(2 \mathrm{k})!}
$$

In this formula, Euler considered the absolute value of the Bernoulli numbers as in Faulhaber's formula are used for each:

$$
\left.\mathrm{k} \in \mathrm{H}\left(1,-\frac{1}{2}, \frac{1}{6}, 0,-\frac{1}{30}, 0, \frac{1}{42}, 0,-\frac{1}{30}, 0, \frac{5}{66} \ldots\right)\right)
$$

For each $\mathrm{k}>=2$ the formula is the same:

$$
B_{k}=\left(-2^{1-k}\right) \pi^{-k} r(k+1) \cos \left[\frac{3 k \pi}{2}\right] \zeta(k) \quad \forall k \in \mathbf{N} \quad V=2
$$

The addition operator $\cos \left[\frac{3 k \pi}{2}\right]$ or $\operatorname{Re}\left[e^{\frac{3 k \pi i}{2}}\right]$ have the function take the value of the Bernoulli numbers used in Faulhaber's formula.

Processing the formula:

$\mathrm{H}+$	B_{k}	$\left(-2^{1-k}\right) \pi^{-k} \Gamma(k+1) \cos \left[\frac{3 \mathrm{k} \pi}{2}\right] \Gamma(k)$
2	$\frac{1}{6}$	$\frac{1}{6}$
3	0	0
4	$-\frac{1}{30}$	$-\frac{1}{30}$
5	0	0
6	$\frac{1}{42}$	$\frac{1}{42}$
7	0	0

Binomial formula can be rewritten in terms of Gamma function:

$$
\binom{x+1}{k}=\frac{\Gamma(x+2)}{\Gamma(k+1) \Gamma(-k+x+2)}
$$

Substituting these two functions in Faulhaber's formula

The mathematical formula so constructed will not work because the function $\zeta(\mathrm{k})$ does not converge for $\mathrm{k}=1$ (Series Harmonica $->\infty$) then we can decompose the sum in:

The Bernoulli numbers assume the value 1 when $\mathrm{k}=0$ and $(-1 / 2)$ when $\mathrm{k}=1$
$\frac{1}{r+1} *\left(\sum_{k=0}^{0}\binom{r+1}{k} *(\mathrm{n}+1)^{(\mathrm{r},-1-k)} * 1\right)+\frac{1}{r+1} *\left(\sum_{k=1}^{1}\binom{r+1}{k} \pi(\mathrm{n}+1)^{(\mathrm{r}+1-k)} *\left(-\frac{1}{2}\right)\right)+\frac{1}{\mathrm{r}+1} *\left(\sum_{k=2}^{r}\left(-\frac{2^{1-k}(1+\mathrm{n})^{1-k+r} \pi^{-k} \Gamma(r+2) \cos \left[\frac{3 k \pi}{2}\right]}{\Gamma(-k+r+2)}\right)\right)$
$=-\frac{(1+n)^{r}(-1-2 n+r)}{2(1+r)}+\frac{1}{r+1} *\left(\sum_{k=2}^{x}\left(-\frac{2^{1-k}(1+n)^{1-k+x} \boldsymbol{\pi}^{-k} \Gamma(r+2) \cos \left[\frac{3 k \pi}{2}\right] \zeta(k)}{\Gamma(-k+r+2)}\right)\right)$
$=-\frac{(1+n)^{\mathrm{r}}(-1-2 n+r)}{2(1+r)}+\frac{(1+n)^{1+\Sigma}(\Gamma(x+2))}{r+1} \star\left(\sum_{k=2}^{x}\left(-\frac{2^{1-k}(1+n)^{-k} \pi^{-k} \cos \left[\frac{3 k \pi}{2}\right] \zeta(k)}{\Gamma(-k+r+2)}\right)\right)$

Processing functions: in the second column Faulhaber's formula in the third column, the last formula:
for $r=1$
$\frac{1}{2} n(1+n)$
$\frac{1}{2} n(1+n)$
for $r=2$ $\frac{1}{6} \mathrm{n}(1+\mathrm{n})(1+2 \mathrm{n})$ $\frac{1}{6} \mathrm{n}(1+\mathrm{n})(1+2 \mathrm{n})$
for $r=3 \quad \frac{1}{4} n^{2}(1+n)^{2} \quad \frac{1}{4} n^{2}(1+n)^{2}$
for $r=4 \quad \frac{1}{30} n(1+n)(1+2 n)(-1+3 n(1+n)) \quad \frac{1}{30} n(1+n)(1+2 n)(-1+3 n(1+n))$
for $r=5 \quad \frac{1}{12} n^{2}(1+n)^{2}(-1+2 n(1+n)) \quad \frac{1}{12} n^{2}(1+n)^{2}(-1+2 n(1+n))$
for $r=6 \quad \frac{1}{42}\left(n-7 n^{3}+21 n^{5}+21 n^{6}+6 n^{7}\right) \quad \frac{1}{42}\left(n-7 n^{3}+21 n^{5}+21 n^{6}+6 n^{7}\right)$
for $r=7 \quad \frac{1}{24}\left(2 n^{2}-7 n^{4}+14 n^{6}+12 n^{7}+3 n^{8}\right) \quad \frac{1}{24}\left(2 n^{2}-7 n^{4}+14 n^{6}+12 n^{7}+3 n^{8}\right)$
for $r=8$

$$
\begin{array}{ll}
\frac{1}{90} n\left(-3+n^{2}\left(20+n^{2}\left(-42+5 n^{2}(12+n(9+2 n))\right)\right)\right) & \frac{1}{90} n\left(-3+n^{2}\left(20+n^{2}\left(-42+5 n^{2}(12+n(9+2 n))\right)\right)\right) \\
\frac{1}{20} n^{2}\left(-3+n^{2}\left(10+n^{2}\left(-14+n^{2}(15+2 n(5+n))\right)\right)\right) & \frac{1}{20} n^{2}\left(-3+n^{2}\left(10+n^{2}\left(-14+n^{2}(15+2 n(5+n))\right)\right)\right)
\end{array}
$$

for $r=9$
\qquad

2nd Objective: Replacing the function $\zeta(\mathrm{k})$ with the Riemman integral and exchange integral with the summation.
$-\frac{(1+n)^{r}(-1-2 n+r)}{2(1+r)}+\frac{(1+n)^{1+r}(\Gamma(x+2))}{r+1} \pi\left(\sum_{k=2}^{x}\left(-\frac{2^{1-k}(1+n)^{-k} \pi^{-k} \cos \left[\frac{3 k \pi}{2}\right]}{\Gamma(-k+x+2)} \pi \frac{\int^{\infty}\left(\frac{x^{k-1}}{\mathbb{R}^{x}-1}\right) d d x}{\Gamma(k)}\right)\right)$
$-\frac{(1+n)^{x}(-1-2 n+r)}{2(1+r)}+\frac{(1+n)^{1+x}(\Gamma(x+2))}{\mathbf{r}+1} \pi \sum_{k=2}^{x} \int_{0}^{\infty}\left(-\frac{2^{1-k}(1+n)^{-k} \pi^{-k} \cos \left[\frac{3 k \pi}{2}\right]}{\Gamma(-k+\boldsymbol{r}+2)} * \frac{\left(\frac{x^{k}-1}{k^{x}-1}\right]}{\Gamma(k)}\right) d \mathbb{d x}$

Exchange integral with the summation:
$\int_{0}^{\infty} \sum_{k=2}^{x}\left(-\frac{2^{1-k}(1+\pi)^{-k} \pi^{-k} \cos \left[\frac{3 k \pi}{2}\right]}{\Gamma(-k+\boldsymbol{r}+2)} * \frac{\left(\frac{x^{k}-1}{\alpha^{x}-1}\right]}{\Gamma(k)}\right) \mathbb{d x}$

Adding functions omit the first integral:

On arrive at the final mathematical formula:

Processing functions: in the second column Faulhaber's formula in the third column, the last formula highlighted:

$$
\begin{array}{lll}
\text { for } r=1 & \frac{1}{2} n(1+n) & \frac{1}{2} n(1+n) \\
\text { for } r=2 & \frac{1}{6} n(1+n)(1+2 n) & \frac{1}{6} n(1+n)(1+2 n) \\
\text { for } r=3 & \frac{1}{4} n^{2}(1+n)^{2} & \frac{1}{4} n^{2}(1+n)^{2}
\end{array}
$$

for $r=4$	$\frac{1}{30} n(1+n)(1+2 n)(-1+3 n(1+n))$	$\frac{1}{30} n(1+n)(1+2 n)(-1+3 n(1+n))$
for $r=5$	$\frac{1}{12} n^{2}(1+n)^{2}(-1+2 n(1+n))$	$\frac{1}{12} n^{2}(1+n)^{2}(-1+2 n(1+n))$
for $r=6$	$\frac{1}{42}\left(n-7 n^{3}+21 n^{5}+21 n^{6}+6 n^{7}\right)$	$\frac{1}{42}\left(n-7 n^{3}+21 n^{5}+21 n^{6}+6 n^{7}\right)$
for $r=7$	$\frac{1}{24}\left(2 n^{2}-7 n^{4}+14 n^{6}+12 n^{7}+3 n^{8}\right)$	$\frac{1}{90} n\left(-3+n^{2}\left(20+n^{2}\left(-42+5 n^{2}(12+n(9+2 n))\right)\right)\right)$
for $r=8$	$\frac{1}{90} n\left(-3+n^{2}\left(20+n^{2}\left(-42+5 n^{2}(12+n(9+2 n))\right)\right)\right)$	$\frac{1}{20} n^{2}\left(-3+n^{2}\left(10+n^{2}\left(-14+n^{2}(15+2 n(5+n))\right)\right)\right)$

Text Reference

[1] Rademacher H. (Springer 1973). "Topics in Analytic Number Theory https://www.skuola.net/matematica/analytic-number-theory-sum-of-powers-of-integers.html

Italy
Ancona, 16/06/2022
Palmioli Luca

