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Abstract. This paper is a trial to prove Riemann hypothesis according

to the following process.
1. We make one identity regarding x from one equation that gives Riemann

zeta function ζ(s) analytic continuation and 2 formulas (1/2+a±bi, 1/2−
a± bi) that show non-trivial zero point of ζ(s).

2. We find that the above identity holds only at a = 0.
3. Therefore non-trivial zero points of ζ(s) must be 1/2± bi because a cannot

have any value but zero.

1. Introduction

The following (1) gives Riemann zeta function ζ(s) analytic continuation to 0 < Re(s).

“+ · · · · · · ” means infinite series in all equations in this paper.

1− 2−s + 3−s − 4−s + 5−s − 6−s + · · · · · · = (1− 21−s)ζ(s) (1)

The following (2) shows the zero point of the left side of (1) and also non-trivial zero

point of ζ(s). i is
√
−1.

S0 = 1/2 + a± bi (0 ≤ a < 1/2 14 < b) (2)

The following (3) also shows non-trivial zero point of ζ(s) by the functional equation of

ζ(s).

S1 = 1− S0 = 1/2− a∓ bi (3)

We define the range of a and b as 0 ≤ a < 1/2 and 14 < b respectively. Then we can

show all non-trivial zero points of ζ(s) by the above (2) and (3). Because non-trivial

zero points of ζ(s) exist in the critical strip of ζ(s) (0 < Re(s) < 1) and non-trivial zero

points of ζ(s) found until now exist in the range of 14 < b.

We have the following (4) and (5) by substituting S0 for s in the left side of (1) and putting

both the real part and the imaginary part of the left side of (1) at zero respectively.

1 =
cos(b log 2)

21/2+a
− cos(b log 3)

31/2+a
+

cos(b log 4)

41/2+a
− cos(b log 5)

51/2+a
+ · · · · · · (4)

0 =
sin(b log 2)

21/2+a
− sin(b log 3)

31/2+a
+

sin(b log 4)

41/2+a
− sin(b log 5)

51/2+a
+ · · · · · · (5)
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We also have the following (6) and (7) by substituting S1 for s in the left side of (1)

and putting both the real part and the imaginary part of the left side of (1) at zero

respectively.

1 =
cos(b log 2)

21/2−a
− cos(b log 3)

31/2−a
+

cos(b log 4)

41/2−a
− cos(b log 5)

51/2−a
+ · · · · · · (6)

0 =
sin(b log 2)

21/2−a
− sin(b log 3)

31/2−a
+

sin(b log 4)

41/2−a
− sin(b log 5)

51/2−a
+ · · · · · · (7)

2. The identity regarding x

We define f(n) as follows.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, · · · · · · ) (8)

We have the following (9) from the above (4) and (6) with the method shown in item 1.1

of [Appendix 1: Equation construction].

0 = f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5) + · · · · · · (9)

We also have the following (10) from the above (5) and (7) with the method shown in

item 1.2 of [Appendix 1].

0 = f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5) + · · · · · · (10)

We can have the following (11) regarding real number x from the above (9) and (10)

with the method shown in item 1.3 of [Appendix 1]. The value of (11) is always zero at

any value of x.

0 ≡ cosx{the right side of (9)}+ sinx{the right side of (10)}
=cosx{f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− · · · · · · }

+ sinx{f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− · · · · · · }
=f(2) cos(b log 2− x)− f(3) cos(b log 3− x) + f(4) cos(b log 4− x)

− f(5) cos(b log 5− x) + f(6) cos(b log 6− x)− · · · · · · (11)

At a = 0 we have the following (8-1) and the above (11) holds at a = 0.

f(n) =
1

n1/2−a
− 1

n1/2+a
≡ 0 (n = 2, 3, 4, 5, · · · · · · a = 0) (8-1)

We have the following (12-1) by substituting b log 1 for x in (11).

0 =f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1) + f(4) cos(b log 4− b log 1)

− f(5) cos(b log 5− b log 1) + f(6) cos(b log 6− b log 1)− · · · · · · (12-1)

We have the following (12-2) by substituting b log 2 for x in (11).

0 =f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2) + f(4) cos(b log 4− b log 2)

− f(5) cos(b log 5− b log 2) + f(6) cos(b log 6− b log 2)− · · · · · · (12-2)
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We have the following (12-3) by substituting b log 3 for x in (11).

0 =f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3) + f(4) cos(b log 4− b log 3)

− f(5) cos(b log 5− b log 3) + f(6) cos(b log 6− b log 3)− · · · · · · (12-3)

In the same way as above we can have the following (12-N) by substituting b logN for x

in (11). (N = 4, 5, 6, 7, · · · · · · )

0 =f(2) cos(b log 2− b logN)− f(3) cos(b log 3− b logN) + f(4) cos(b log 4− b logN)

− f(5) cos(b log 5− b logN) + f(6) cos(b log 6− b logN)− · · · · · · (12-N)

3. The solution for the identity of (11)

We define g(k,N) as follows. (k = 2, 3, 4, 5, · · · · · · N = 1, 2, 3, 4, · · · · · · )

g(k,N) = cos(b log k − b log 1) + cos(b log k − b log 2) + cos(b log k − b log 3) + · · ·+ cos(b log k − b logN)

= cos(b log 1− b log k) + cos(b log 2− b log k) + cos(b log 3− b log k) + · · ·+ cos(b logN − b log k)

= cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + · · ·+ cos(b logN/k) (13)

We can have the following (14) from N equations of (12-1), (12-2), (12-3), · · · · · · , (12-N)

with the method shown in item 1.4 of [Appendix 1].

0 = f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) + · · ·+ cos(b log 2− b logN)}

−f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) + · · ·+ cos(b log 3− b logN)}

+f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3) + · · ·+ cos(b log 4− b logN)}

−f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3) + · · ·+ cos(b log 5− b logN)}

+ · · · · · ·

= f(2)g(2, N)− f(3)g(3, N) + f(4)g(4, N)− f(5)g(5, N) + · · · · · · (14)

If (11) holds, the sum of the right sides of infinite number equations of (12-1), (12-2),

(12-3), (12-4), (12-5), · · · · · · becomes zero. The rightmost side of (14) is the sum of the

right sides of N equations of (12-1), (12-2), (12-3),· · · · · · , (12-N) as shown in item 1.4 of

[Appendix 1]. Thererfore if (11) holds, lim
N→∞

{the rightmost side of (14)} = 0 must hold.

Here we define F (a) as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + · · · · · · (15)

We have the following (22) in [Appendix 2 : Investigation of g(k,N)].

g(k,N) ∼ N cos(b logN)√
1 + b2

(N →∞ k = 2, 3, 4, 5, · · · · · · ) (22)
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From the above (15) and (22) we have the following (16).

The rightmost side of (14)

= f(2)g(2, N)− f(3)g(3, N) + f(4)g(4, N)− f(5)g(5, N) + · · · · · ·

∼ f(2)
N cos(b logN)√

1 + b2
− f(3)

N cos(b logN)√
1 + b2

+ f(4)
N cos(b logN)√

1 + b2

− f(5)
N cos(b logN)√

1 + b2
+ · · · · · ·

=
N cos(b logN)√

1 + b2
{f(2)− f(3) + f(4)− f(5) + · · · · · · }

= F (a)
N cos(b logN)√

1 + b2
(N →∞) (16)

lim
N→∞

N cos(b logN)√
1 + b2

diverges to ±∞. 0 < F (a) holds in 0 < a < 1/2 as shown in

[Appendix 3 : Investigation of F (a)]. Then lim
N→∞

{the rightmost side of (14)} diverges to
±∞ in 0 < a < 1/2 from the above (16) i.e. (11) does not hold in 0 < a < 1/2. (11)

holds at a = 0 as shown in item 2. Therefore the solution for the identity of (11) is only

a = 0.

4. Conclusion

a has the range of 0 ≤ a < 1/2 by the critical strip of ζ(s). However, a cannot have

any value but zero as shown in the above item 3. Therefore non-trivial zero point of

Riemann zeta function ζ(s) shown by (2) and (3) is 1/2 ± bi and other non-trivial zero

point does not exist.
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Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].

Theorem 1� �
If the following (Series 1) and (Series 2) converge respectively, the following (Series

3) and (Series 4) hold.

(Series 1) = a1 + a2 + a3 + a4 + a5 + · · · · · · = A

(Series 2) = b1 + b2 + b3 + b4 + b5 + · · · · · · = B

(Series 3) = (a1 + b1) + (a2 + b2) + (a3 + b3) + (a4 + b4) + · · · · · · = A+B

(Series 4) = (a1 − b1) + (a2 − b2) + (a3 − b3) + (a4 − b4) + · · · · · · = A−B� �
1.1. Construction of (9)

We can have (9) as (Series 4) by regarding (6) and (4) as (Series 1) and (Series 2)

respectively.

1.2. Construction of (10)

We can have (10) as (Series 4) by regarding (7) and (5) as (Series 1) and (Series 2)

respectively.

1.3. Construction of (11)

We can have (11) as (Series 3) by regarding the following (11-1) and (11-2) as (Series

1) and (Series 2) respectively.

(Series 1) = cos x{the right side of (9)} ≡ 0 (11-1)

(Series 2) = sin x{the right side of (10)} ≡ 0 (11-2)

1.4. Construction of (14)

1.4.1 We can have the following (12-1*2) as (Series 3) by regarding the following (12-1)

and (12-2) as (Series 1) and (Series 2) respectively.

(Series 1) =f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1)

+ f(4) cos(b log 4− b log 1)− f(5) cos(b log 5− b log 1)

+ f(6) cos(b log 6− b log 1)− · · · · · · = 0 (12-1)

(Series 2) =f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2)

+ f(4) cos(b log 4− b log 2)− f(5) cos(b log 5− b log 2)

+ f(6) cos(b log 6− b log 2)− · · · · · · = 0 (12-2)

(Series 3) =f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2)}
+ · · · · · · = 0 + 0 (12-1*2)
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1.4.2 We can have the following (12-1*3) as (Series 3) by regarding the above (12-1*2)

and the following (12-3) as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3)

+ f(4) cos(b log 4− b log 3)− f(5) cos(b log 5− b log 3)

+ f(6) cos(b log 6− b log 3)− · · · · · · = 0 (12-3)

(Series 3)

= f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3)}
+ · · · · · · = 0 + 0 (12-1*3)

1.4.3 We can have the following (12-1*4) as (Series 3) by regarding the above (12-1*3)

and the following (12-4) as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(b log 2− b log 4)− f(3) cos(b log 3− b log 4)

+ f(4) cos(b log 4− b log 4)− f(5) cos(b log 5− b log 4)

+ f(6) cos(b log 6− b log 4)− · · · · · · = 0 (12-4)

(Series 3)

= f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) + cos(b log 2− b log 4)}

−f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) + cos(b log 3− b log 4)}

+f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3) + cos(b log 4− b log 4)}

−f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3) + cos(b log 5− b log 4)}

+ · · · · · · = 0 + 0 (12-1*4)

1.4.4 In the same way as above we can have the following (12-1*N)=(14) as (Series

3) by regarding (12-1*N-1) and (12-N) as (Series 1) and (Series 2) respectively.

(N = 5, 6, 7, 8, · · · · · · ) g(k,N) is defined in page 3. (k = 2, 3, 4, 5, · · · · · · )

(Series 3)=

f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) + · · ·+ cos(b log 2− b logN)}

−f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) + · · ·+ cos(b log 3− b logN)}

+f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3) + · · ·+ cos(b log 4− b logN)}

−f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3) + · · ·+ cos(b log 5− b logN)}

+ · · · · · ·

= f(2)g(2, N)− f(3)g(3, N) + f(4)g(4, N)− f(5)g(5, N) + · · · · · ·
= 0 + 0 (12-1*N)
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Appendix 2. : Investigation of g(k,N)

2.1 We define G and H as follows. (N = 1, 2, 3, 4, · · · · · · )

G = lim
N→∞

1

N
{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + · · ·+ cos(b log

N

N
)}

=

∫ 1

0

cos(b log x)dx (20-1)

H = lim
N→∞

1

N
{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + · · ·+ sin(b log

N

N
)}

=

∫ 1

0

sin(b log x)dx (20-2)

We calculate G and H by Integration by parts.

G = [x cos(b log x)]10 + bH = 1 + bH

H = [x sin(b log x)]10 − bG = −bG

Then we can have the values of G and H from the above equations as follows.

G =
1

1 + b2
H =

−b
1 + b2

(21)

2.2 From (13) and the above (21) we have the following (22).

g(k,N) = cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + · · ·+ cos(b logN/k)

= N 1
N {cos(b log

1
N

N
k ) + cos(b log 2

N
N
k ) + cos(b log 3

N
N
k ) + · · ·+ cos(b log N

N
N
k )}

= N 1
N {cos(b log

1
N + b log N

k ) + cos(b log 2
N + b log N

k )

+ cos(b log 3
N + b log N

k ) + · · · · · ·+ cos(b log N
N + b log N

k )}

= N 1
N cos(b log N

k ){cos(b log
1
N ) + cos(b log 2

N ) + cos(b log 3
N ) + · · ·+ cos(b log N

N )}

−N 1
N sin(b log N

k ){sin(b log
1
N ) + sin(b log 2

N ) + sin(b log 3
N ) + · · ·+ sin(b log N

N )}

∼ N cos(b log
N

k
)G−N sin(b log

N

k
)H

= N cos(b log
N

k
)

1

1 + b2
+N sin(b log

N

k
)

b

1 + b2

=
N√
1 + b2

{cos(b log N

k
)

1√
1 + b2

+ sin(b log
N

k
)

b√
1 + b2

}

=
N√
1 + b2

cos(b log
N

k
− tan−1 b)

=
N√
1 + b2

cos{b logN(1− log k

logN
− tan−1 b

b logN
)}

∼ N cos(b logN)√
1 + b2

(N →∞ k = 2, 3, 4, 5, · · · · · · ) (22)
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Appendix 3. : Investigation of F (a)

3.1. Investigation of f(n)

We have the following (8) and (15) in the text.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, · · · · · · 0 ≤ a < 1/2) (8)

F (a) =f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · · (15)

a = 0 is the solution for F (a) = 0 due to f(n) ≡ 0 at a = 0. The alternating series F (a)

converges due to lim
n→∞

f(n) = 0.

We define the following (31) from the above (8) and we have the following (32) from (31).

f(r) =
1

r1/2−a
− 1

r1/2+a
≥ 0 (r : real number 2 ≤ r) (31)

df(r)

dr
=f ′(r) =

1/2 + a

r3/2+a
− 1/2− a

r3/2−a
=

1/2 + a

r3/2+a
{1− (

1/2− a

1/2 + a
)r2a} (32)

The value of f(r) increases with increase of r and reaches the maximum value f(rmax) at

r = rmax =(1/2+a
1/2−a)

1/(2a). Afterward f(r) decreases to zero with r →∞. f(n) also has

the maximum value f(nmax) at n = nmax and nmax is either of ⌊rmax⌋ and ⌊rmax⌋+ 1.

Then we can have the following (34).

rmax = (
1/2 + a

1/2− a
)1/(2a) = (1 + 4a+ 8a2 + · · · · · · )1/(2a)

∼ (1 + 4a)1/(2a) = {(1 + 4a)1/(4a)}2

∼ e2 = 7.39 (a→ +0) (34)

From the above (34) we have the following (35).

7 ≤ nmax (0 < a < 1/2) (35)

The following (Graph 1) shows f(n) in various value of a.



Proof of Riemann hypothesis 9

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5

Graph 1：f(n) in various a

We have the following (36) from (32).

df ′(r)

dr
=f ′′(r) =

(1/2− a)(3/2− a)

r5/2−a
− (1/2 + a)(3/2 + a)

r5/2+a

=
(1/2− a)(3/2− a)

r5/2−a
{1− (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
r−2a} (36)

We have the following (37) from the above (36) and f ′′(r0) = 0.

r0 = { (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}1/(2a) = (1 +

16

3
a+

128

9
a2 + · · · · · · )1/(2a) (37)

Then we can have the following (37-1).

r0 = (1 +
16

3
a+

128

9
a2 + · · · · · · )1/(2a)

∼ (1 +
16

3
a)1/(2a) = {(1 + 16

3
a)3/(16a)}8/3

∼ e8/3 = 14.39 (a→ +0) (37-1)

We can confirm the property of f(r) and f ′(r) from (32) and (36) as shown in the

following (Table 1) and (Figure 1).



10 T. Ishiwata

Item Range of r f(r) f '(r)
The maximum

value of |f '(r)|

3.1.1 2≦r≦r max

Positive value. Monotonically

increasing and districtly concave

function. The maximum value at

r=r max .

Positive value. Monotonically

decreasing function.  f '(r)=0  at

r=r max .

f '(2)

3.1.2 r max<r≦r 0

Positive value. Monotonically

decreasing and districtly concave

function.

Negative value. Monotonically

decreasing function. The

minimum value at r=r 0 .

-f '(r 0 )

3.1.3 r 0≦r

Positive value. Monotonically

decreasing and districtly convex

function. Converges to zero with r

→∞ .

Negative value. Monotonically

increasing function. Converges

to zero with r →∞ .

-f '(r 0 )

Table 1：The property of f(r) and f ′(r)
f(r)

2

rmax

r0

r

r

f '(r)

Monotonically increasing 

function

Monotonically decreasing function

Strictly convex functionStrictly concave function

f(rmax)

f '(r0)

f(r)

f '(r)

0

0

Monotonically increasing functionMonotonically decreasing 

function

rmax

r02

Figure 1：The property of f(r) and f ′(r)
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3.2. Verification method for 0 < F (a)

We define F (a, n) as the following (38) and we have the following (39) from (38).

F (a, n) = f(2)− f(3) + f(4)− f(5) + · · ·+ (−1)nf(n) (38)

lim
n→∞

F (a, n) = F (a) (39)

F (a) is an alternating series. So F (a, n) repeats increase and decrease by f(n) with

increase of n as shown in the following (Graph 2). In (Graph 2) upper points mean

F (a, 2m) (m = 1, 2, 3, · · · · · · ) and lower points mean F (a, 2m+1). F (a, 2m) decreases

with increase of m in nmax ≤ 2m and converges to F (a) with m→∞ due to lim
n→∞

f(n) =

0. F (a, 2m + 1) increases with increase of m in nmax ≤ 2m + 1 and also converges to

F (a) with m→∞. From the above (39) we have the following (40).

lim
m→∞

F (a, 2m) = lim
m→∞

F (a, 2m+ 1) = F (a) (40)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 10
1

F(a,2m)

F(a,2m+1)

Graph 2：F (0.1, n) from n = 2 to n = 100

We define F1(a) and F1(a, 2m+1) as the following (41) and (42-1). We have the following

(42-2) from (42-1).

F1(a) = {f(2)− f(3)}+ {f(4)− f(5)}+ {f(6)− f(7)}+ · · · · · · (41)

F1(a, 2m+ 1) = {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(2m)− f(2m+ 1)} (42-1)

= f(2)− f(3) + f(4)− f(5) + · · ·+ f(2m)− f(2m+ 1) = F (a, 2m+ 1) (42-2)

We have the following (43) from the above (40), (41), (42-1) and (42-2).

F1(a) = lim
m→∞

F1(a, 2m+ 1) = lim
m→∞

F (a, 2m+ 1) = F (a) (43)

Then we can use F1(a) instead of F (a) to verify 0 < F (a).

We enclose 2 terms of F (a) each from the first term with { } as follows. If nmax is p or
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p + 1 （p: odd number）, the inside sum of { } from f(2) to f(p) has a negative value

and the inside sum of { } after f(p+ 1) has a positive value as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− f(7) + · · · · · ·
= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(p− 1)− f(p) }+ { f(p+ 1) − f(p+ 2)}+ · · · · · ·

(inside sum of { }) < 0←−|−→(inside sum of { }) > 0

(total sum of { }) = −B ←−|−→(total sum of { }) = A

We define A and B as follows. nmax is p or p+ 1. （p: odd number）

{f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(p− 1)− f(p) } = −B < 0

{ f(p+ 1) − f(p+ 2)}+ {f(p+ 3)− f(p+ 4)}+ · · · · · · = A > 0

We have the following (44) from the above definition.

F (a) = A−B (44)

So we can verify 0 < F (a) by verifying B < A.

3.3. Investigation of h(n) = f(n) − f(n + 1)

3.3.1 We define as follows from (8) and (31).

h(n) = f(n)− f(n+ 1) (n = 2, 3, 4, 5, · · · · · · 0 ≤ a < 1/2) (45)

h(r) = f(r)− f(r + 1) (r : real number 2 ≤ r) (46)

We have the following (47) from the above (46) and (32).

dh(r)

dr
=h′(r) = f ′(r)− f ′(r + 1) (47)

We can find the following item 3.3.3.1 — 3.3.3.4 from the above (47), (Table 1)

and (Figure 1).

3.3.1.1 f ′(r) decreases monotonically in 2 ≤ r ≤ r0. Then we have the following (48)

and we have the following (49) from (48).

f ′(r) > f ′(r + 1) (2 ≤ r ≤ r0 − 1) (48)

h′(r) = f ′(r)− f ′(r + 1) > 0 (2 ≤ r ≤ r0 − 1) (49)

Thererfore h(r) increases monotonically in 2 ≤ r ≤ r0 − 1.

3.3.1.2 f ′(r) increases monotonically in r0 ≤ r. Then we have the following (50) and

we have the following (51) from (50).

f ′(r) < f ′(r + 1) (r0 ≤ r) (50)

h′(r) = f ′(r)− f ′(r + 1) < 0 (r0 ≤ r) (51)

Thererfore h(r) decreases monotonically in r0 ≤ r.

3.3.1.3 f ′(r + 1) is the figure in which f ′(r) shifts to the left by 1 as shown in the

following (Figure 2).
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r

f '(r)
f '(r+1)

f '(r0)

f '(r)

0

Monotonically increasing functionMonotonically decreasing 

function

r0

2

f '(r+1)
r0-1

0 2
r

h(r)

h(r)
h(r1)

Monotonically decreasing functionMonotonically increasing 

function

r1

r1

Figure 2：The property of f ′(r) and h(r)

Then f ′(r) and f ′(r + 1) have one intersection at r1 (r0 − 1 < r1 < r0) i.e.

h′(r1) = 0 holds. Thererfore h(r) has the maximum value h(r1) at r = r1
from the above item 3.3.1.1 and 3.3.1.2. h(n) = f(n)− f(n+ 1) also has the

maximum value f(n1) − f(n1 + 1) = {qmax} at n = n1. n1 is either of ⌊r1⌋
and ⌊r1⌋+ 1.

3.3.1.4 The sign of h(n) changes from minus to plus with increase of n at n = nmax.

Afterward the value of h(n) reaches the maximum value {qmax} at n = n1

and the value decreases to zero with n→∞.

The following (Graph 3) shows the value of h(n) in various value of a. The following

(Graph 4) shows the value of h(n) at a = 0.1.
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Graph 3：h(n) in various a
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nmax {qmax}

Graph 4：h(n) at a = 0.1

3.3.2 We have the following (52) and (53) from the above item 3.3.1.

f(3)− f(2) > f(4)− f(3) > f(5)− f(4) > · · · · · · > f(nmax − 1)− f(nmax − 2)

> f(nmax)− f(nmax − 1) > 0 (52)
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We abbreviate {f(nmax + q)− f(nmax + q + 1)} to {q} for easy description. (q =

0, 1, 2, 3, · · · · · · ) All {q} has a positive value from the above abbreviation.

{0} < {1} < {2} < {3} < · · · < {qmax − 3} < {qmax − 2} < {qmax − 1}
< {qmax} > {qmax + 1} > {qmax + 2} > {qmax + 3} > · · · · · · (53)

3.3.3 We can have the following (56) from (52).

0 < f(n+ 1)− f(n) < f(3)− f(2) (3 ≤ n ≤ nmax − 1) (56)

We can have the following (57) from (Table 1) and (Figure 1).

0 < f(n)− f(n+ 1) =

∫ n+1

n

{−f ′(r)}dr <

∫ n+1

n

{−f ′(r0)}dr = −f ′(r0)

(nmax ≤ r nmax ≤ n) (57)

We can have the following (58) from the following item 3.3.4 — 3.3.6.

0 < −f ′(r0) < f(3)− f(2) (0 < a ≤ 1/2) (58)

Then we can have the following (59) from the above (56), (57) and (58).

|f(n)− f(n+ 1)| < f(3)− f(2) (n = 3, 4, 5, · · · · · · ) (59)

3.3.4 The following (Graph 5) is plotted by calculating f(3) − f(2) and −f ′(r0) for a

every 0.01.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

f(3)-f(2) -f'(r0)

Graph 5：f(3)− f(2) and −f ′(r0) regarding a

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

f(3)-f(2) 0 0.014438 0.029008 0.043844 0.05908 0.074851 0.091297 0.108555 0.126771 0.146091 0.166667

-f '(r 0) 0 0.000601 0.001149 0.001591 0.00188 0.001976 0.001852 0.001504 0.000968 0.000361 0

Table 2：The values of f(3)− f(2) and −f ′(r0)
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If f(3)− f(2) has a convex or a concave in a0 < a < a0 + 0.01, such a convex or a

concave is not displayed in the above (Graph 5). (a0=0, 0.01, 0.02, · · · · · · , 0.48,
0.49) If the function regarding a has the property shown in the following 3 items,

the function does not have a convex or a concave in a0 ≤ a ≤ a0 + 0.01. Then the

graph can display the function correctly although the graph is plotted for a every

0.01 i.e. we can imagine the shape of the function easily from the graph.

3.3.4.1 The function does not have a local maximum value or a local minimum value

in a0 ≤ a ≤ a0 + 0.01.

3.3.4.2 When the function has a local maximum value in a0 ≤ a < a0 + 0.01 the

function is districtly concave regarding a in a0 − 0.02 ≤ a ≤ a0 + 0.03.

3.3.4.3 When the function has a local minimum value in a0 ≤ a < a0 + 0.01 the

function is districtly convex regarding a in a0 − 0.02 ≤ a ≤ a0 + 0.03.

For example, in the following (Figure 3) the blue line is the function that meets

the above item 3.3.4.2 and the red line is the graph that is plotted for a every 0.01.

We can imagine the shape of the function easily from the graph.

0 a0-0.02
a0-0.01

a0+0.01
a0+0.02

a0+0.03a0
a

Value of 
function

Figure 3：The function and the graph

f(n) is a monotonically increasing and districtly convex function regarding a in

0 < a ≤ 1/2 from the following (60) and (61). Therefore f(n) meets the above

item 3.3.4.1.

df(n)

da
= log n(

1

n1/2−a
+

1

n1/2+a
) > 0 (60)

d2f(n)

da2
= (log n)2(

1

n1/2−a
− 1

n1/2+a
) ≥ 0 (61)
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Then f(3) and f(2) are monotonically increasing and districtly convex functions

regarding a i.e. f(3) and f(2) do not have a convex or a concave in a0 ≤ a ≤
a0+0.01. f(3)−f(2) also does not have a convex or a concave in a0 ≤ a ≤ a0+0.01

from the above property of f(3) and f(2). Therefore (Graph 5) shows f(3)− f(2)

correctly.

3.3.5 The following (Graph 6) is plotted by calculating −f ′(r0) for a every 0.01. If

−f ′(r0) has a convex or a concave in a0 < a < a0 + 0.01, such a convex or a

concave is not displayed in (Graph 6). (a0=0, 0.01, 0.02, · · · · · · , 0.48, 0.49)

0

0.0005

0.001

0.0015

0.002

0.0025

Graph 6：−f ′(r0) regarding a

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-f '(r 0) 0 0.000601 0.001149 0.001591 0.00188 0.001976 0.001852 0.001504 0.000968 0.000361 0

Table 3：The values of −f ′(r0)

We have the following (62) from (32) and (37).

− f ′(r0) = (1/2− a)r
a−3/2
0 − (1/2 + a)r

−a−3/2
0

= (1/2− a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}1/2−3/(4a)

− (1/2 + a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}−1/2−3/(4a)

= { (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}−3/(4a)[(1/2− a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}1/2

− (1/2 + a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}−1/2]

= { (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}−3/(4a)[{ (1/4− a2)(3/2 + a)

3/2− a
}1/2

− { (1/4− a2)(3/2− a)

3/2 + a
}1/2]

= { (1/2− a)(3/2− a)

(1/2 + a)(3/2 + a)
}3/(4a)(1/4− a2)1/2{(3/2 + a

3/2− a
)1/2 − (

3/2− a

3/2 + a
)1/2}
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= 2a{ (1/2− a)(3/2− a)

(1/2 + a)(3/2 + a)
}3/(4a){ (1/2 + a)(1/2− a)

(3/2 + a)(3/2− a)
}1/2

= 2a{u(a)}3/(4a){v(a)}1/2 (62)

u(a) in the above (62) is a monotonically decreasing and districtly convex function

regarding a in 0 ≤ a ≤ 1/2 from the following (63-1) and (63-2).

du(a)

da
=

4a2 − 3

(1/2 + a)2(3/2 + a)2
< 0 (63-1)

d2u(a)

da2
=

2(6 + 9a− 4a3)

(1/2 + a)3(3/2 + a)3
> 0 (63-2)

v(a) in the above (62) is a monotonically decreasing and districtly concave function

regarding a in 0 < a ≤ 1/2 from the following (63-3) and (63-4).

dv(a)

da
=

−4a
(3/2 + a)2(3/2− a)2

≤ 0 (63-3)

d2v(a)

da2
=

−3(3 + 4a2)

(3/2 + a)3(3/2− a)3
< 0 (63-4)

a, 3/(4a), u(a) and v(a) compose −f ′(r0) as shown in (62). These 4 functions do

not have a convex or a concave in a0 ≤ a ≤ a0 + 0.01 respectively because they

meet item 3.3.4.1. Then −f ′(r0) also does not have a convex or a concave in

a0 ≤ a ≤ a0 + 0.01 from the above property of a, 3/(4a), u(a) and v(a). Therefore

(Graph 6) shows −f ′(r0) correctly.

Now we can confirm that (Graph 5) and (Graph 6) show f(3)− f(2) and −f ′(r0)

correctly and we can find that (58) holds from (Graph 5) and (Graph 6).

3.3.6 We can confirm that (58) holds also during a → +0 from the following (64) and

(65).

f(3) − f(2) can be approximated in a → +0 by performing Maclaurin expansion

for 2a, 2−a, 3a and 3−a like the following (64).

f(3)− f(2)

= (3a−1/2 − 3−a−1/2)− (2a−1/2 − 2−a−1/2)

= 3−1/2(3a − 3−a)− 2−1/2(2a − 2−a)

= 3−1/2[{1 + a log 3 + (a log 3)2/2 + · · · · · · } − {1− a log 3 + (a log 3)2/2− · · · · · · }]

− 2−1/2[{1 + a log 2 + (a log 2)2/2 + · · · · · · } − {1− a log 2 + (a log 2)2/2− · · · · · · }]

= 2 ∗ 3−1/2{a log 3 + (a log 3)3/3! + (a log 3)5/5! + · · · · · · }

− 2 ∗ 2−1/2{a log 2 + (a log 2)3/3! + (a log 2)5/5! + · · · · · · }

∼ 2(3−1/2 log 3− 2−1/2 log 2)a = 0.29a > 0.012a (a→ +0) (64)

−f ′(r0) can be approximated in a→ +0 from (32) and (37) by performing Maclau-

rin expansion for (1 + 16
3 a)1/2 and (1 + 16

3 a)−1/2 like the following (65).

−f ′(r0) =(1/2− a)r
a−3/2
0 − (1/2 + a)r

−a−3/2
0
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=(1/2− a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}1/2−3/(4a)

− (1/2 + a){ (1/2 + a)(3/2 + a)

(1/2− a)(3/2− a)
}−1/2−3/(4a)

=(1/2− a)(1 +
16

3
a+

128

9
a2 + · · · · · · )1/2−3/(4a)

− (1/2 + a)(1 +
16

3
a+

128

9
a2 + · · · · · · )−1/2−3/(4a)

∼ (1/2− a)(1 +
16

3
a)1/2−3/(4a) − (1/2 + a)(1 +

16

3
a)−1/2−3/(4a)

=(1 +
16

3
a)−3/(4a){(1/2− a)(1 +

16

3
a)1/2 − (1/2 + a)(1 +

16

3
a)−1/2}

=(1 +
16

3
a)−3/(4a){(1/2− a)(1 +

8

3
a− 32

9
a2 + · · · · · · )

− (1/2 + a)(1− 8

3
a+

32

3
a2 + · · · · · · )}

∼ (1 +
16

3
a)−3/(4a){(1/2− a)(1 +

8

3
a)− (1/2 + a)(1− 8

3
a)}

={(1 + 16

3
a)3/(16a)}−4(

8

3
− 2)a

∼ 8/3− 2

e4
a = 0.012a < 0.29a (a→ +0) (65)

3.4. Verification of B < A (nmax is odd number.)

nmax is odd number as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · ·

= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(nmax − 3)− f(nmax − 2)}+ {f(nmax − 1)− f(nmax) }

+{f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 3)− f(nmax + 4)}+ {f(nmax + 5)− f(nmax + 6)}+ · · · · · ·

We can have A and B as follows. A and B are defined in item 3.2.

B = {f(3)− f(2)}+ {f(5)− f(4)}+ {f(7)− f(6)}+ · · ·+ {f(nmax − 2)− f(nmax − 3)}+ { f(nmax) − f(nmax − 1)}

A = {f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 3)− f(nmax + 4)}+ {f(nmax + 5)− f(nmax + 6)}+ · · · · · ·

3.4.1. Condition for B

We define as follows.

{ aa } : the term which is included within B.

{ aa } : the term which is not included within B.

We have the following (66).

f(nmax)− f(2) = { f(nmax)− f(nmax − 1) }+ { f(nmax − 1)− f(nmax − 2) }+ { f(nmax − 2)− f(nmax − 3) }

+ · · ·+ { f(7)− f(6) }+ { f(6)− f(5) }+ { f(5)− f(4) }+ { f(4)− f(3) }+ { f(3)− f(2) } (66)

And we have the following (67) from (52) in item 3.3.2.

{ f(3)− f(2) } > { f(4)− f(3) } > { f(5)− f(4) } > { f(6)− f(5) } > { f(7)− f(6) } > · · · · · ·

> { f(nmax − 2)− f(nmax − 3) } > { f(nmax − 1)− f(nmax − 2) } > { f(nmax)− f(nmax − 1) } > 0
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(67)

From the above (66) and (67) we have the following (68).

f(nmax)− f(2) + { f(3)− f(2) }

= { f(3)− f(2) }+ { f(5)− f(4) }+ { f(7)− f(6) }+ · · ·+ { f(nmax − 2)− f(nmax − 3) }+ { f(nmax)− f(nmax − 1) }
∥ ∧ ∧ ∧ ←Value comparison→ ∧

+{ f(3)− f(2) }+ { f(4)− f(3) }+ { f(6)− f(5) }+ · · ·+ { f(nmax − 3)− f(nmax − 4) }+ { f(nmax − 1)− f(nmax − 2) }

> 2B (68)

The above (68) shows the following inequality.

{Total sum of upper row of (68)} = B < {Total sum of lower row of (68)}

Then we have the following (69).

2B < f(nmax)− f(2) + {f(3)− f(2)} (69)

3.4.2. Condition for A ({qmax} is included within A.)

We abbreviate {f(nmax + q) − f(nmax + q + 1)} to {q} for easy description.

(q = 0, 1, 2, 3, · · · · · · ) All {q} has a positive value from the above abbreviation.

We define as follows.

{ aa } : the term which is included within A.

{ aa } : the term which is not included within A.

{qmax} has the maximum value in all {q}. And {qmax} is included within A. Then

value comparison of {q} is as follows from (53) in item 3.3.2.

{ 1 } < { 2 } < { 3 } < · · · < { qmax − 3 } < { qmax − 2 } < { qmax − 1 } < { qmax } > { qmax + 1 } > { qmax + 2 } > { qmax + 3 } > · · · · · ·

We have the following (70).

f(nmax + 1) = { f(nmax + 1)− f(nmax + 2) }+ { f(nmax + 2)− f(nmax + 3) }+ { f(nmax + 3)− f(nmax + 4) }

+{ f(nmax + 4)− f(nmax + 5) }+ · · · · · ·

= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·

(70)

From the above (70) we have the following (71).

f(nmax + 1)− { qmax − 1 }

= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·(71)
← · · · · · · · · · · · Range 1 · · · · · · · · · · · · →|← · · · · · · · · · · · · Range 2 · · · · · · · · · · · ·

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as

follows.

{ 1 } < { 2 } < { 3 } < { 4 } < · · · < { qmax − 4 } < { qmax − 3 } < { qmax − 2 }

And we can find the following.
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Total sum of { aa } = { 1 }+ { 3 }+ { 5 }+ { 7 }+ · · ·+ { qmax − 4 }+ { qmax − 2 }
∨ ∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { 2 }+ { 4 }+ { 6 }+ · · ·+ { qmax − 5 }+ { qmax − 3 }

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 2) value comparison is as follows.

{ qmax } > { qmax + 1 } > { qmax + 2 } > { qmax + 3 } > { qmax + 4 } > { qmax + 5 } > { qmax + 6 } > · · · · · ·

We have the following (71-1) and (71-2). The right sides of (71-1) and (71-2) are

alternating series regarding f(n) and they converge due to lim
n→∞

f(n) = 0.

Total sum of { aa } = { qmax }+ { qmax + 2 }+ { qmax + 4 }+ { qmax + 6 }+ · · · · · · (71-1)

∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { qmax + 1 }+ { qmax + 3 }+ { qmax + 5 }+ { qmax + 7 }+ · · · · · · (71-2)

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 1)+(Range 2) we have [Total sum of { aa } = A > Total sum of { aa }].
We have the following (72).

f(nmax + 1)− {qmax − 1} < 2A (72)

3.4.3. Condition for A ({qmax} is not included within A.)

We have the following (73). {qmax} is not included within A.

f(nmax + 1) = { f(nmax + 1)− f(nmax + 2) }+ { f(nmax + 2)− f(nmax + 3) }+ { f(nmax + 3)− f(nmax + 4) }

+{ f(nmax + 4)− f(nmax + 5) }+ · · · · · ·

= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·
(73)

From the above (73) we have the following (74).

f(nmax + 1)− { qmax }

= { 1 }+ { 2 }+ { 3 }+ { 4 }+ · · ·+ { qmax − 3 }+ { qmax − 2 }+ { qmax − 1 }+ { qmax + 1 }+ { qmax + 2 }+ { qmax + 3 }+ · · · · · ·(74)
← · · · · · · · · · · · · · · · · · · Range 1 · · · · · · · · · · · · · · · →|← · · · · · · · · · Range 2 · · · · · · · · ·

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as

follows.

{ 1 } < { 2 } < { 3 } < { 4 } < · · · < { qmax − 4 } < { qmax − 3 } < { qmax − 2 } < { qmax − 1 }

And we can find the following.

Total sum of { aa } = { 1 }+ { 3 }+ { 5 }+ { 7 }+ · · ·+ { qmax − 3 }+ { qmax − 1 }
∨ ∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { 2 }+ { 4 }+ { 6 }+ · · ·+ { qmax − 4 }+ { qmax − 2 }

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 2) value comparison is as follows.

{ qmax + 1 } > { qmax + 2 } > { qmax + 3 } > { qmax + 4 } > { qmax + 5 } > { qmax + 6 } > { qmax + 7 } > · · · · · ·
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And we can find the following.

Total sum of { aa } = { qmax + 1 }+ { qmax + 3 }+ { qmax + 5 }+ { qmax + 7 }+ · · · · · ·
∨ ∨ ∨ ∨ ←Value comparison

Total sum of { aa } = { qmax + 2 }+ { qmax + 4 }+ { qmax + 6 }+ { qmax + 8 }+ · · · · · ·

Therefore [Total sum of { aa } > Total sum of { aa }] holds.
In (Range 1)+(Range 2) we have [Total sum of { aa } = A > Total sum of { aa }].
We have the following (75).

f(nmax + 1)− {qmax} < 2A (75)

3.4.4. Condition for B < A

From (72) and (75) we have the following inequality.

f(nmax + 1)− [{qmax} or {qmax − 1}] < 2A

Then the following inequalities hold from (59).

[{qmax} or {qmax − 1}] < f(3)− f(2)

f(nmax)− f(nmax + 1) < f(3)− f(2)

We have the following (76) from the above 3 inequalities.

2A >f(nmax + 1)− [{qmax} or {qmax − 1}] > f(nmax + 1)− {f(3)− f(2)}
>f(nmax)− {f(3)− f(2)} − {f(3)− f(2)} = f(nmax)− 2{f(3)− f(2)} (76)

We have the following (77) for B < A from (69) and (76).

2A > f(nmax)− 2{f(3)− f(2)} > f(nmax)− f(2) + {f(3)− f(2)} > 2B (77)

From the above (77) we can have the final condition for B < A as follows.

f(3) < (4/3)f(2) (78)

The following (Graph 7) is plotted by calculating the following (79) for a every 0.01.

J(a) = (4/3)f(2)− f(3) = (4/3)(
1

21/2−a
− 1

21/2+a
)− (

1

31/2−a
− 1

31/2+a
) (79)
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Graph 7：J(a) = (4/3)f(2)− f(3)

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(4/3)f(2)-f(3) 0 0.001903 0.003694 0.005257 0.00648 0.007246 0.007437 0.006933 0.005611 0.003343 0

Table 4：The values of J(a)

f(2) and f(3) do not have a convex or a concave in a0 ≤ a ≤ a0 + 0.01 as shown in

item 3.3.4. (a0=0, 0.01, 0.02, · · · · · · , 0.48, 0.49) J(a) also does not have a convex or

a concave in a0 ≤ a ≤ a0 + 0.01 from the above property of f(2) and f(3). Therefore

(Graph 7) shows J(a) correctly. We can confirm that 0 < J(a) holds also during a→ +0

and a → 1/2 − 0 from the following item 3.4.4.1 and 3.4.4.2. From (Graph 7), item

3.4.4.1 and 3.4.4.2 we can find that 0 < J(a) holds in 0 < a < 1/2. Therefore B < A

holds in 0 < a < 1/2 i.e. 0 < F (a) holds in 0 < a < 1/2 from (44).

3.4.4.1 J(a) can be approximated in a → +0 by performing Maclaurin expansion for

2a, 2−a, 3a and 3−a like the following (80).

J(a) = (4/3)f(2)− f(3)

= (4/3)(2a−1/2 − 2−a−1/2)− (3a−1/2 − 3−a−1/2)

= (4/3)2−1/2(2a − 2−a)− 3−1/2(3a − 3−a)

= (4/3)2−1/2[{1 + a log 2 + (a log 2)2/2 + · · · · · · } − {1− a log 2 + (a log 2)2/2− · · · · · · }]

− 3−1/2[{1 + a log 3 + (a log 3)2/2 + · · · · · · } − {1− a log 3 + (a log 3)2/2− · · · · · · }]

= 2 ∗ (4/3)2−1/2{a log 2 + (a log 2)3/3! + (a log 2)5/5! + · · · · · · }

− 2 ∗ 3−1/2{a log 3 + (a log 3)3/3! + (a log 3)5/5! + · · · · · · }

∼ (4/3)2−1/2(2a log 2)− 3−1/2(2a log 3) = 0.038a > 0 (a→ +0) (80)

3.4.4.2 Let (1/2 − a) be t. J(a) can be approximated in a → 1/2 − 0 by performing

Maclaurin expansion for 2t, 2−t, 3t and 3−t like the following (81).

J(a) = (4/3)f(2)− f(3)
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= (4/3)(2a−1/2 − 2−a−1/2)− (3a−1/2 − 3−a−1/2)

= (4/3)(2−t − 2t−1)− (3−t − 3t−1) = (4/3)(2−t − 2t/2)− (3−t − 3t/3)

= (4/3)[{1− t log 2 + (t log 2)2/2− · · · · · · }
− (1/2){1 + t log 2 + (t log 2)2/2 + · · · · · · }]

− [{1− t log 3 + (t log 3)2/2− · · · · · · }
− (1/3){1 + t log 3 + (t log 3)2/2 + · · · · · · }]

∼ (4/3){(1− t log 2)− (1 + t log 2)/2} − {(1− t log 3)− (1 + t log 3)/3}
= (4/3){1/2− (3/2)t log 2} − {2/3− (4/3)t log 3} = 0.0785t

= 0.0785(1/2− a) > 0 (t→ +0 a→ 1/2− 0) (81)

3.5. Verification of B < A (nmax is even number.)

nmax is even number as follows.

F (a) = f(2)− f(3) + f(4)− f(5) + f(6)− · · · · · ·

= {f(2)− f(3)}+ {f(4)− f(5)}+ · · ·+ {f(nmax − 4)− f(nmax − 3)}+ {f(nmax − 2)− f(nmax − 1)}

+{ f(nmax) − f(nmax + 1)}+ {f(nmax + 2)− f(nmax + 3)}+ {f(nmax + 4)− f(nmax + 5)}+ · · · · · ·

We can have A and B as follows.

B = {f(3)− f(2)}+ {f(5)− f(4)}+ {f(7)− f(6)}

+ · · ·+ {f(nmax − 3)− f(nmax − 4)}+ {f(nmax − 1)− f(nmax − 2)}

A = { f(nmax )− f(nmax + 1)}+ {f(nmax + 2)− f(nmax + 3)}+ {f(nmax + 4)− f(nmax + 5)}+ · · · · · ·

f(nmax) = { f(nmax) − f(nmax + 1)}+ {f(nmax + 1)− f(nmax + 2)}+ {f(nmax + 2)− f(nmax + 3)}

+{f(nmax + 3)− f(nmax + 4)}+ · · · · · ·

= {0}+ {1}+ {2}+ {3}+ {4}

+ · · ·+ {qmax − 3}+ {qmax − 2}+ {qmax − 1}+ {qmax}+ {qmax + 1}+ {qmax + 2}+ {qmax + 3}+ · · · · · ·

After the same process as in item 3.4.1 we can have the following (82).

f(nmax − 1)− f(2) + {f(3)− f(2)} > 2B (82)

After the same process as in item 3.4.2 and item 3.4.3 we can have the following inequalty.

f(nmax)− [{qmax} or {qmax − 1}] < 2A

The following inequality holds from (59).

[{qmax} or {qmax − 1}] < f(3)− f(2)

We have the following (83) from the above 2 inequalities.

2A >f(nmax)− [{qmax} or {qmax − 1}] > f(nmax)− {f(3)− f(2)}
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>f(nmax − 1)− {f(3)− f(2)} (83)

We have the following (84) for B < A from (82) and (83).

2A > f(nmax − 1)− {f(3)− f(2)} > f(nmax − 1)− f(2) + {f(3)− f(2)} > 2B (84)

From the above (84) we can have the final condition for B < A as follows.

f(3) < (3/2)f(2) (85)

In the following (86), (4/3)f(2) < (3/2)f(2) is true due to 0 < f(2) in 0 < a < 1/2 and

we already confirmed in item 3.4.4 that the following (78) was true in 0 < a < 1/2.

0 < f(3) < (4/3)f(2) < (3/2)f(2) (86)

f(3) < (4/3)f(2) (78)

Therefore the above (85) is true in 0 < a < 1/2. Now we can confirm 0 < F (a) in

0 < a < 1/2.

3.6. Conclusion

0 < F (a) holds in 0 < a < 1/2 as shown in the above item 3.4 and item 3.5.
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Appendix 4. Graph of F (a)

4.1 We can approximate F (a) like the following (91) from (38). We have the following

(92) and (93) from (91).

F (a)n =
F (a, n) + F (a, n+ 1)

2
(91)

lim
n→∞

F (a)n = F (a) (92)

F (a)n = F (a)n−1 + (−1)n f(n)− f(n+ 1)

2
(93)

The following (Graph 8) is plotted by calculating F (a)500 and F (a)501 for a every

0.01. F (a)500 and F (a)501 almost overlap because the values of F (a)500 and F (a)501
are equal up to 3 digits after the decimal point as shown in the following (Table 5).
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F(a)500 F(a)501

Graph 8：F (a)500 and F (a)501

a 0 0.01 0.1 0.2 0.3 0.4 0.5

F(a)500 0 0.0038667 0.038666 0.077326 0.115971 0.154587 0.193146

F(a)501 0 0.0038648 0.038647 0.077289 0.115919 0.154537 0.193148

F(a) 0 0.00386 0.0386 0.077 0.1159 0.1545 －

Table 5：The values of F (a)500 and F (a)501

The range of a is 0 ≤ a < 1/2. a = 1/2 is not included in the range. But we added

F (1/2)n to calculation due to the following reason.

f(n) at a = 1/2 is (1 − 1/n) and F (1/2) fluctuates due to lim
n→∞

f(n) = 1. The

above (93) shows that F (a)n is partial sum of alternating series which has the

term of
f(n)−f(n+1)

2 . Then lim
n→∞

F (1/2)n can converge to the fixed value on the

condition of lim
n→∞

{f(n)−f(n+1)} = 0. The condition holds due to f(n)−f(n+1) =

−1/(n2 + n).
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4.2 r0 in (37) has the value of 217 at a = 0.49. Then h(n) = f(n) − f(n + 1) has a

positive value and decreases monotonically to zero with n → ∞ in 217 < n and

0 < a ≤ 0.49. F (a)n converges to F (a) with n → ∞ as (92) shows. Then we can

have the following (94) from (93).

F (a)219 < F (a)221 < F (a)223 < · · · < F (a)501 < · · · · · · · · ·
< F (a) < · · · · · · · · · < F (a)500 < · · · < F (a)222 < F (a)220 < F (a)218

(0 < a ≤ 0.49) (94)

Therefore (Graph 8) shows F (a) as well as F (a)500 and F (a)501 in 0 ≤ a ≤ 0.49.

Because F (a)500 and F (a)501 almost overlap and F (a) exists between F (a)500 and

F (a)501.
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