Proof of Riemann hypothesis

By Toshihiko Ishiwata

Jan. 14, 2023

Abstract. This paper is a trial to prove Riemann hypothesis according to the following process. 1. We make one identity regarding x from one equation that gives Riemann zeta function $\zeta(s)$ analytic continuation and 2 formulas $(1/2 + a \pm bi, 1/2 - a \pm bi)$ that show non-trivial zero point of $\zeta(s)$. 2. We find that the above identity holds only at a = 0. 3. Therefore non-trivial zero points of $\zeta(s)$ must be $1/2 \pm bi$ because a cannot have any value but zero.

1. Introduction

The following (1) gives Riemann zeta function $\zeta(s)$ analytic continuation to 0 < Re(s). "+...." means infinite series in all equations in this paper.

$$1 - 2^{-s} + 3^{-s} - 4^{-s} + 5^{-s} - 6^{-s} + \dots = (1 - 2^{1-s})\zeta(s)$$
(1)

The following (2) shows the zero point of the left side of (1) and also non-trivial zero point of $\zeta(s)$. *i* is $\sqrt{-1}$.

$$S_0 = 1/2 + a \pm bi$$
 (2)

The following (3) also shows non-trivial zero point of $\zeta(s)$ by the functional equation of $\zeta(s)$.

$$S_1 = 1 - S_0 = 1/2 - a \mp bi \tag{3}$$

We define the range of a and b as $0 \le a < 1/2$ and 14 < b respectively. Then we can show all non-trivial zero points of $\zeta(s)$ by the above (2) and (3). Because non-trivial zero points of $\zeta(s)$ exist in the critical strip of $\zeta(s)$ (0 < Re(s) < 1) and non-trivial zero points of $\zeta(s)$ found until now exist in the range of 14 < b.

We have the following (4) and (5) by substituting S_0 for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero respectively.

$$1 = \frac{\cos(b\log 2)}{2^{1/2+a}} - \frac{\cos(b\log 3)}{3^{1/2+a}} + \frac{\cos(b\log 4)}{4^{1/2+a}} - \frac{\cos(b\log 5)}{5^{1/2+a}} + \dots$$
(4)

$$0 = \frac{\sin(b\log 2)}{2^{1/2+a}} - \frac{\sin(b\log 3)}{3^{1/2+a}} + \frac{\sin(b\log 4)}{4^{1/2+a}} - \frac{\sin(b\log 5)}{5^{1/2+a}} + \dots \dots$$
(5)

We also have the following (6) and (7) by substituting S_1 for s in the left side of (1) and putting both the real part and the imaginary part of the left side of (1) at zero

²⁰²⁰ Mathematics Subject Classification. Primary 11M26.

Key Words and Phrases. Riemann hypothesis.

respectively.

$$1 = \frac{\cos(b\log 2)}{2^{1/2-a}} - \frac{\cos(b\log 3)}{3^{1/2-a}} + \frac{\cos(b\log 4)}{4^{1/2-a}} - \frac{\cos(b\log 5)}{5^{1/2-a}} + \dots \dots$$
(6)

$$0 = \frac{\sin(b\log 2)}{2^{1/2-a}} - \frac{\sin(b\log 3)}{3^{1/2-a}} + \frac{\sin(b\log 4)}{4^{1/2-a}} - \frac{\sin(b\log 5)}{5^{1/2-a}} + \dots$$
(7)

2. The identity regarding x

We define f(n) as follows.

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \ge 0 \qquad (n = 2, 3, 4, 5, \dots)$$
(8)

We have the following (9) from the above (4) and (6) with the method shown in item 1.1 of [Appendix 1: Equation construction].

$$0 = f(2)\cos(b\log 2) - f(3)\cos(b\log 3) + f(4)\cos(b\log 4) - f(5)\cos(b\log 5) + \dots$$
(9)

We also have the following (10) from the above (5) and (7) with the method shown in item 1.2 of [Appendix 1].

$$0 = f(2)\sin(b\log 2) - f(3)\sin(b\log 3) + f(4)\sin(b\log 4) - f(5)\sin(b\log 5) + \dots \dots (10)$$

We can have the following (11) regarding real number x from the above (9) and (10) with the method shown in item 1.3 of [Appendix 1]. And the value of (11) is always zero at any value of x.

$$0 \equiv \cos x \{ \text{the right side of } (9) \} + \sin x \{ \text{the right side of } (10) \}$$

= $\cos x \{ f(2) \cos(b \log 2) - f(3) \cos(b \log 3) + f(4) \cos(b \log 4) - \dots \}$
+ $\sin x \{ f(2) \sin(b \log 2) - f(3) \sin(b \log 3) + f(4) \sin(b \log 4) - \dots \}$
= $f(2) \cos(b \log 2 - x) - f(3) \cos(b \log 3 - x) + f(4) \cos(b \log 4 - x)$
- $f(5) \cos(b \log 5 - x) + f(6) \cos(b \log 6 - x) - \dots$ (11)

At a = 0 we have the following (8-1) and the above (11) holds at a = 0.

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \equiv 0 \qquad (n = 2, 3, 4, 5, \dots)$$
(8-1)

We have the following (12-1) by substituting $b \log 1$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 1) - f(3)\cos(b\log 3 - b\log 1) + f(4)\cos(b\log 4 - b\log 1) - f(5)\cos(b\log 5 - b\log 1) + f(6)\cos(b\log 6 - b\log 1) - \dots$$
(12-1)

We have the following (12-2) by substituting $b \log 2$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 2) - f(3)\cos(b\log 3 - b\log 2) + f(4)\cos(b\log 4 - b\log 2) - f(5)\cos(b\log 5 - b\log 2) + f(6)\cos(b\log 6 - b\log 2) - \dots$$
(12-2)

We have the following (12-3) by substituting $b \log 3$ for x in (11).

$$0 = f(2)\cos(b\log 2 - b\log 3) - f(3)\cos(b\log 3 - b\log 3) + f(4)\cos(b\log 4 - b\log 3) - f(5)\cos(b\log 5 - b\log 3) + f(6)\cos(b\log 6 - b\log 3) - \dots$$
(12-3)

In the same way as above we can have the following (12-N) by substituting $b \log N$ for x in (11). $(N = 4, 5, 6, 7, \dots)$

$$0 = f(2)\cos(b\log 2 - b\log N) - f(3)\cos(b\log 3 - b\log N) + f(4)\cos(b\log 4 - b\log N) - f(5)\cos(b\log 5 - b\log N) + f(6)\cos(b\log 6 - b\log N) - \dots$$
(12-N)

3. The solution for the identity of (11)

We define g(k, N) as follows. $(k = 2, 3, 4, 5, \dots, N = 1, 2, 3, 4, \dots)$

$$g(k, N) = \cos(b\log k - b\log 1) + \cos(b\log k - b\log 2) + \cos(b\log k - b\log 3) + \dots + \cos(b\log k - b\log N)$$

$$= \cos(b\log 1 - b\log k) + \cos(b\log 2 - b\log k) + \cos(b\log 3 - b\log k) + \dots + \cos(b\log N - b\log k)$$

$$= \cos(b\log 1/k) + \cos(b\log 2/k) + \cos(b\log 3/k) + \dots + \cos(b\log N/k)$$
(13)

We can have the following (14) from the equations of (12-1), (12-2), (12-3), \cdots , (12-N) with the method shown in item 1.4 of [Appendix 1].

$$\begin{aligned} 0 &= f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 2) + \cos(b\log 2 - b\log 3) + \dots + \cos(b\log 2 - b\log N)\} \\ &- f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 2) + \cos(b\log 3 - b\log 3) + \dots + \cos(b\log 3 - b\log N)\} \\ &+ f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 2) + \cos(b\log 4 - b\log 3) + \dots + \cos(b\log 4 - b\log N)\} \\ &- f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 2) + \cos(b\log 5 - b\log 3) + \dots + \cos(b\log 5 - b\log N)\} \\ &+ \dots \end{aligned}$$

$$= f(2)g(2,N) - f(3)g(3,N) + f(4)g(4,N) - f(5)g(5,N) + \dots$$
(14)

If (11) holds, the sum of the right sides of infinite number equations of (12-1), (12-2), (12-3), (12-4), (12-5), \cdots becomes zero. The rightmost side of (14) is the sum of the right sides of N equations of (12-1), (12-2), (12-3), \cdots , (12-N) as shown in item 1.4 of [Appendix 1]. Therefore if (11) holds, $\lim_{N\to\infty} \{\text{the rightmost side of } (14)\} = 0$ must hold. Here we define F(a) as follows.

$$F(a) = f(2) - f(3) + f(4) - f(5) + \dots$$
(15)

We have the following (25) in [Appendix 2 : Investigation of g(k, N)].

$$g(k,N) \sim \frac{N\cos(b\log N)}{\sqrt{1+b^2}} \quad (N \to \infty \quad k = 2, 3, 4, 5, \cdots)$$
 (25)

From the above (15) and (25) we have the following (16).

The rightmost side of (14)

$$= f(2)g(2,N) - f(3)g(3,N) + f(4)g(4,N) - f(5)g(5,N) + \cdots +$$

$$\sim \quad f(2)\frac{N\cos(b\log N)}{\sqrt{1+b^2}} - f(3)\frac{N\cos(b\log N)}{\sqrt{1+b^2}} + f(4)\frac{N\cos(b\log N)}{\sqrt{1+b^2}} - f(5)\frac{N\cos(b\log N)}{\sqrt{1+b^2}} + \cdots +$$

$$= \frac{N\cos(b\log N)}{\sqrt{1+b^2}} \{f(2) - f(3) + f(4) - f(5) + \cdots + \}$$

$$= F(a)\frac{N\cos(b\log N)}{\sqrt{1+b^2}} \qquad (N \to \infty)$$
(16)

We have the following (17) by summarizing the above (16).

The rightmost side of (14)
$$\sim F(a) \frac{N \cos(b \log N)}{\sqrt{1+b^2}} \quad (N \to \infty)$$
(17)

 $\lim_{N\to\infty} \frac{N\cos(b\log N)}{\sqrt{1+b^2}} \text{ diverges to } \pm\infty. \quad 0 < F(a) \text{ holds in } 0 < a < 1/2 \text{ as shown in } [Appendix 3 : Investigation of <math>F(a)$]. Then $\lim_{N\to\infty} \{\text{the rightmost side of } (14)\}$ diverges to $\pm\infty$ in 0 < a < 1/2 from the above (17) i.e. (11) does not hold in 0 < a < 1/2. (11) holds at a = 0 as shown in item 2. Therefore the solution for the identity of (11) is only a = 0.

4. Conclusion

a has the range of $0 \le a < 1/2$ by the critical strip of $\zeta(s)$. However, a cannot have any value but zero as shown in the above item 3. Therefore non-trivial zero point of Riemann zeta function $\zeta(s)$ shown by (2) and (3) must be $1/2 \pm bi$.

Appendix 1. : Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].

- Theorem 1 -

If the following (Series 1) and (Series 2) converge respectively, the following (Series 3) and (Series 4) hold.

 $(Series 1) = a_1 + a_2 + a_3 + a_4 + a_5 + \dots = A$ $(Series 2) = b_1 + b_2 + b_3 + b_4 + b_5 + \dots = B$ $(Series 3) = (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) + (a_4 + b_4) + \dots = A + B$ $(Series 4) = (a_1 - b_1) + (a_2 - b_2) + (a_3 - b_3) + (a_4 - b_4) + \dots = A - B$

1.1. Construction of (9)

We can have (9) as (Series 4) by regarding (6) and (4) as (Series 1) and (Series 2) respectively.

1.2. Construction of (10)

We can have (10) as (Series 4) by regarding (7) and (5) as (Series 1) and (Series 2) respectively.

1.3. Construction of (11)

We can have (11) as (Series 3) by regarding the following (11-1) and (11-2) as (Series 1) and (Series 2) respectively.

(Series 1) =
$$\cos x$$
{the right side of (9)} $\equiv 0$ (11-1)

 $(Series 2) = \sin x \{ \text{the right side of } (10) \} \equiv 0$ (11-2)

1.4. Construction of (14)

1.4.1 We can have the following (12-1*2) as (Series 3) by regarding the following (12-1) and (12-2) as (Series 1) and (Series 2) respectively.

$$\begin{aligned} (\text{Series 1}) &= f(2)\cos(b\log 2 - b\log 1) - f(3)\cos(b\log 3 - b\log 1) \\ &+ f(4)\cos(b\log 4 - b\log 1) - f(5)\cos(b\log 5 - b\log 1) \\ &+ f(6)\cos(b\log 6 - b\log 1) - \dots = 0 \end{aligned} (12-1) \\ (\text{Series 2}) &= f(2)\cos(b\log 2 - b\log 2) - f(3)\cos(b\log 3 - b\log 2) \\ &+ f(4)\cos(b\log 4 - b\log 2) - f(5)\cos(b\log 5 - b\log 2) \\ &+ f(6)\cos(b\log 6 - b\log 2) - \dots = 0 \end{aligned} (12-2) \\ (\text{Series 3}) &= f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 2)\} \\ &- f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 2)\} \\ &+ f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 2)\} \\ &- f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 2)\} \\ &+ \dots = 0 + 0 \end{aligned} (12-1*2)$$

1.4.2 We can have the following (12-1*3) as (Series 3) by regarding the above (12-1*2) and the following (12-3) as (Series 1) and (Series 2) respectively.

$$(\text{Series } 2) = f(2)\cos(b\log 2 - b\log 3) - f(3)\cos(b\log 3 - b\log 3) + f(4)\cos(b\log 4 - b\log 3) - f(5)\cos(b\log 5 - b\log 3) + f(6)\cos(b\log 6 - b\log 3) - \dots = 0$$
(12-3)

(Series 3)

$$= f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 2) + \cos(b\log 2 - b\log 3)\} - f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 2) + \cos(b\log 3 - b\log 3)\} + f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 2) + \cos(b\log 4 - b\log 3)\} - f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 2) + \cos(b\log 5 - b\log 3)\} + \dots = 0 + 0$$
(12-1*3)

1.4.3 We can have the following (12-1*4) as (Series 3) by regarding the above (12-1*3) and the following (12-4) as (Series 1) and (Series 2) respectively.

$$(\text{Series } 2) = f(2)\cos(b\log 2 - b\log 4) - f(3)\cos(b\log 3 - b\log 4) + f(4)\cos(b\log 4 - b\log 4) - f(5)\cos(b\log 5 - b\log 4) + f(6)\cos(b\log 6 - b\log 4) - \dots = 0$$
(12-4)

(Series 3)

$$= f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 2) + \cos(b\log 2 - b\log 3) + \cos(b\log 2 - b\log 4)\}$$

-f(3){cos(blog 3 - blog 1) + cos(blog 3 - blog 2) + cos(blog 3 - blog 3) + cos(blog 3 - blog 4)}
+f(4){cos(blog 4 - blog 1) + cos(blog 4 - blog 2) + cos(blog 4 - blog 3) + cos(blog 4 - blog 4)}
-f(5){cos(blog 5 - blog 1) + cos(blog 5 - blog 2) + cos(blog 5 - blog 3) + cos(blog 5 - blog 4)}
+\dots = 0 + 0
(12-1*4)

1.4.4 In the same way as above we can have the following (12-1*N)=(14) as (Series 3) by regarding (12-1*N-1) and (12-N) as (Series 1) and (Series 2) respectively. $(N = 5, 6, 7, 8, \dots) \quad g(k, N)$ is defined in page 3. $(k = 2, 3, 4, 5, \dots)$

$$(Series 3) =$$

$$\begin{aligned} &f(2)\{\cos(b\log 2 - b\log 1) + \cos(b\log 2 - b\log 2) + \cos(b\log 2 - b\log 3) + \dots + \cos(b\log 2 - b\log N)\} \\ &-f(3)\{\cos(b\log 3 - b\log 1) + \cos(b\log 3 - b\log 2) + \cos(b\log 3 - b\log 3) + \dots + \cos(b\log 3 - b\log N)\} \\ &+f(4)\{\cos(b\log 4 - b\log 1) + \cos(b\log 4 - b\log 2) + \cos(b\log 4 - b\log 3) + \dots + \cos(b\log 4 - b\log N)\} \\ &-f(5)\{\cos(b\log 5 - b\log 1) + \cos(b\log 5 - b\log 2) + \cos(b\log 5 - b\log 3) + \dots + \cos(b\log 5 - b\log N)\} \\ &+\dots \end{aligned}$$

$$= f(2)g(2,N) - f(3)g(3,N) + f(4)g(4,N) - f(5)g(5,N) + \cdots$$

= 0 + 0 (12-1*N)

Appendix 2. : Investigation of g(k, N)

2.1 We define G and H as follows. $(N = 1, 2, 3, 4, \dots)$

$$G = \lim_{N \to \infty} \frac{1}{N} \{ \cos(b \log \frac{1}{N}) + \cos(b \log \frac{2}{N}) + \cos(b \log \frac{3}{N}) + \dots + \cos(b \log \frac{N}{N}) \}$$

$$= \int_0^1 \cos(b \log x) dx \qquad (20-1)$$

$$H = \lim_{N \to \infty} \frac{1}{N} \{ \sin(b \log \frac{1}{N}) + \sin(b \log \frac{2}{N}) + \sin(b \log \frac{3}{N}) + \dots + \sin(b \log \frac{N}{N}) \}$$

$$= \int_0^1 \sin(b \log x) dx \qquad (20-2)$$

We calculate G and H by Integration by parts.

$$G = [x \cos(b \log x)]_0^1 + bH = 1 + bH$$
$$H = [x \sin(b \log x)]_0^1 - bG = -bG$$

Then we can have the values of G and H from the above equations as follows.

$$G = \frac{1}{1+b^2} \qquad H = \frac{-b}{1+b^2} \tag{21}$$

2.2 We define $E_c(N)$ and $E_s(N)$ as follows.

$$\frac{\cos(b\log\frac{1}{N}) + \cos(b\log\frac{2}{N}) + \cos(b\log\frac{3}{N}) + \dots + \cos(b\log\frac{N}{N})}{N} - G = E_c(N)$$
(22-1)

$$\frac{\sin(b\log\frac{1}{N}) + \sin(b\log\frac{2}{N}) + \sin(b\log\frac{3}{N}) + \dots + \sin(b\log\frac{N}{N})}{N} - H = E_s(N)$$
(22-2)

From (20-1), (20-2), (22-1) and (22-2) we have the following (23).

$$\lim_{N \to \infty} E_c(N) = 0 \qquad \lim_{N \to \infty} E_s(N) = 0 \tag{23}$$

2.3 From (13) we can calculate g(k, N) as follows. $(N = 1, 2, 3, 4, \dots)$

$$\begin{split} g(k,N) &= \cos(b\log 1/k) + \cos(b\log 2/k) + \cos(b\log 3/k) + \dots + \cos(b\log N/k) \\ &= N\frac{1}{N} \{\cos(b\log \frac{1}{N}\frac{N}{k}) + \cos(b\log \frac{2}{N}\frac{N}{k}) + \cos(b\log \frac{3}{N}\frac{N}{k}) + \dots + \cos(b\log \frac{N}{N}\frac{N}{k}) \} \\ &= N\frac{1}{N} \{\cos(b\log \frac{1}{N} + b\log \frac{N}{k}) + \cos(b\log \frac{2}{N} + b\log \frac{N}{k}) \\ &+ \cos(b\log \frac{3}{N} + b\log \frac{N}{k}) + \dots + \cos(b\log \frac{N}{N} + b\log \frac{N}{k}) \} \\ &= N\frac{1}{N} \cos(b\log \frac{N}{k}) \{\cos(b\log \frac{1}{N}) + \cos(b\log \frac{2}{N}) + \cos(b\log \frac{3}{N}) + \dots + \cos(b\log \frac{N}{N}) \} \\ &- N\frac{1}{N} \sin(b\log \frac{N}{k}) \{\sin(b\log \frac{1}{N}) + \sin(b\log \frac{2}{N}) + \sin(b\log \frac{3}{N}) + \dots + \sin(b\log \frac{N}{N}) \} \\ &= N \cos(b\log \frac{N}{k}) G \end{split}$$

$$+N\cos(b\log\frac{N}{k})\left\{\frac{\cos(b\log 1/N) + \cos(b\log 2/N) + \cos(b\log 3/N) + \dots + \cos(b\log N/N)}{N} - G\right\}$$
$$-N\sin(b\log\frac{N}{k})H$$
$$-N\sin(b\log\frac{N}{k})\left\{\frac{\sin(b\log 1/N) + \sin(b\log 2/N) + \sin(b\log 3/N) + \dots + \sin(b\log N/N)}{N} - H\right\} (24-1)$$
$$= N\cos(b\log\frac{N}{k})G + N\cos(b\log\frac{N}{k})E_c(N) - N\sin(b\log\frac{N}{k})H$$
$$-N\sin(b\log\frac{N}{k})E_s(N) (24-2)$$
$$= N\cos(b\log\frac{N}{k})\frac{1}{1+b^2} + N\cos(b\log\frac{N}{k})E_c(N)$$
$$+ N\sin(b\log\frac{N}{k})\frac{b}{1+b^2} - N\sin(b\log\frac{N}{k})E_s(N) (24-3)$$

$$= \frac{N}{\sqrt{1+b^2}} \{\cos(b\log\frac{N}{k})\frac{1}{\sqrt{1+b^2}} + \sin(b\log\frac{N}{k})\frac{b}{\sqrt{1+b^2}}\} + N\cos(b\log\frac{N}{k})E_c(N) - N\sin(b\log\frac{N}{k})E_s(N)$$
(24-4)

$$= N\{\frac{\cos(b\log N/k - \tan^{-1}b)}{\sqrt{1+b^2}} + \cos(b\log \frac{N}{k})E_c(N) - \sin(b\log \frac{N}{k})E_s(N)\}$$
(24-5)

$$= N \left[\frac{1}{\sqrt{1+b^2}} \cos\{b \log N (1 - \frac{\log k}{\log N} - \frac{\tan^{-1} b}{b \log N}) \right] + \cos(b \log \frac{N}{k}) E_c(N) - \sin(b \log \frac{N}{k}) E_s(N)$$
(24-6)

From (22-1), (22-2) and (24-1) we have (24-2). From (21) and (24-2) we have (24-3).

 $2.4\,$ From (23) and the above (24-6) we have the following (25).

$$g(k,N) \sim \frac{N\cos(b\log N)}{\sqrt{1+b^2}} \quad (N \to \infty \quad k=2,3,4,5,\cdots)$$
 (25)

Appendix 3. : Investigation of F(a)

3.1. Investigation of f(n)

We have the following (8) and (15) in the text.

$$f(n) = \frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}} \ge 0 \qquad (n = 2, 3, 4, 5, \dots, 0 \le a < 1/2)$$
(8)

$$F(a) = f(2) - f(3) + f(4) - f(5) + f(6) - \dots$$
(15)

a = 0 is the solution for F(a) = 0 due to $f(n) \equiv 0$ at a = 0. The alternating series F(a) converges due to $\lim_{n \to \infty} f(n) = 0$.

We define the following (31) from the above (8) and we have the following (32) from (31).

$$f(r) = \frac{1}{r^{1/2-a}} - \frac{1}{r^{1/2+a}} \ge 0 \qquad (r : \text{real number} \quad 2 \le r) \tag{31}$$

$$\frac{df(r)}{dr} = f'(r) = \frac{1/2 + a}{r^{a+3/2}} - \frac{1/2 - a}{r^{3/2 - a}} = \frac{1/2 + a}{r^{a+3/2}} \{1 - (\frac{1/2 - a}{1/2 + a})r^{2a}\}$$
(32)

The value of f(r) increases with increase of r and reaches the maximum value $f(r_{max})$ at $r = r_{max} = \left(\frac{1/2+a}{1/2-a}\right)^{1/(2a)}$. Afterward f(r) decreases to zero with $r \to \infty$. f(n) also has the maximum value $f(n_{max})$ at $n = n_{max}$ and n_{max} is either of $[r_{max}]$ and $[r_{max}] + 1$. Then we can have the following (34).

$$r_{max} = \left(\frac{1/2+a}{1/2-a}\right)^{1/(2a)} = (1+4a+8a^2+\cdots)^{1/(2a)}$$

$$\sim (1+4a)^{1/(2a)} = \{(1+4a)^{1/(4a)}\}^2$$

$$\sim e^2 = 7.39 \qquad (a \to +0) \qquad (34)$$

From the above (34) we have the following (35).

$$7 \le n_{max}$$
 (0 < a < 1/2) (35)

The following (Graph 1) shows f(n) in various value of a.

Graph 1 : f(n) in various a

We have the following (36) from (32).

$$f''(r) = \frac{df'(r)}{dr} = \frac{(1/2 - a)(3/2 - a)}{r^{5/2 - a}} - \frac{(1/2 + a)(3/2 + a)}{r^{5/2 + a}}$$
$$= \frac{(1/2 - a)(3/2 - a)}{r^{5/2 - a}} \{1 - \frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}r^{-2a}\}$$
(36)

We have the following (37) from $f''(r_0) = 0$.

$$r_0 = \left\{\frac{(1/2+a)(3/2+a)}{(1/2-a)(3/2-a)}\right\}^{1/(2a)} = \left(1 + \frac{16}{3}a + \frac{128}{9}a^2 + \dots\right)^{1/(2a)}$$
(37)

Then we can have the following (37-1).

$$r_{0} = \left(1 + \frac{16}{3}a + \frac{128}{9}a^{2} + \dots\right)^{1/(2a)}$$

$$\sim \left(1 + \frac{16}{3}a\right)^{1/(2a)} = \left\{\left(1 + \frac{16}{3}a\right)^{3/(16a)}\right\}^{8/3}$$

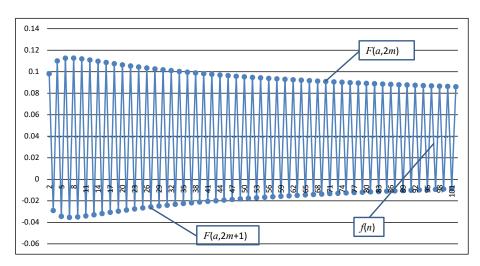
$$\sim e^{8/3} = 14.39 \qquad (a \to +0) \qquad (37-1)$$

We can confirm the property of f(r) and f'(r) from (32), (36) and (Graph 1) as shown in the following (Table 1).

Item	Range of <i>r</i>	f(r)	f'(r)	The maximum value of <i>f '(r)</i>
3.1.1	2≦r≦r _{max}	Positive value. Monotonically increasing and districtly concave function. The maximum value at $r=r_{max}$.	Positive value. Monotonically decreasing function. $f'(r)=0$ at $r=r_{max}$.	f'(2)
3.1.2	ľ max <ľ≦ľ 0	Positive value. Monotonically decreasing and districtly concave function.	Negative value. Monotonically decreasing function. The minimum value at <i>r=r</i> 0.	-f '(r ₀)
3.1.3	r₀≦r	Positive value. Monotonically decreasing and districtly convex function. Converges to zero with $r \rightarrow \infty$.	Negative value. Monotonically increasing function. Converges to zero with $r \rightarrow \infty$.	-f'(r 0)

Table 1 : The property of f(r) and f'(r)

3.2. Verification method for 0 < F(a)


We define F(a, n) as the following (38) and we have the following (39) from (38).

$$F(a,n) = f(2) - f(3) + f(4) - f(5) + \dots + (-1)^n f(n)$$
(38)

$$\lim_{n \to \infty} F(a, n) = F(a) \tag{39}$$

F(a) is an alternating series. So F(a, n) repeats increase and decrease by f(n) with increase of n as shown in the following (Graph 2). In (Graph 2) upper points mean F(a, 2m) $(m = 1, 2, 3, \dots)$ and lower points mean F(a, 2m+1). F(a, 2m) decreases with increase of n in $n_{max} \leq n$ and converges to F(a) with $m \to \infty$. F(a, 2m+1) increases with increase of n in $n_{max} \leq n$ and also converges to F(a) with $m \to \infty$ due to $\lim_{n\to\infty} f(n) = 0$. From the above (39) we have the following (40).

$$\lim_{m \to \infty} F(a, 2m) = \lim_{m \to \infty} F(a, 2m+1) = F(a)$$
(40)

Graph 2 : F(0.1, n) from n = 2 to n = 100

We define F1(a) and F1(a, 2m + 1) as follows.

$$F1(a) = \{f(2) - f(3)\} + \{f(4) - f(5)\} + \{f(6) - f(7)\} + \dots$$
(41)

$$F1(a, 2m+1) = \{f(2) - f(3)\} + \{f(4) - f(5)\} + \dots + \{f(2m) - f(2m+1)\}$$

$$= f(2) - f(3) + f(4) - f(5) + \dots + f(2m) - f(2m+1) = F(a, 2m+1)$$
(42)

We have the following (43) from the above (40), (41) and (42).

$$F1(a) = \lim_{m \to \infty} F1(a, 2m+1) = \lim_{m \to \infty} F(a, 2m+1) = F(a)$$
(43)

We can use F1(a) instead of F(a) to verify 0 < F(a).

We enclose 2 terms of F(a) each from the first term with $\{ \}$ as follows. If n_{max} is p or p+1 (p: odd number), the inside sum of $\{ \}$ from f(2) to f(p) has negative value and the inside sum of $\{ \}$ after f(p+1) has positive value.

We define as follows.

$$\{f(2) - f(3)\} + \{f(4) - f(5)\} + \dots + \{f(p-1) - f(p)\} = -B < 0$$

$$\{f(p+1) - f(p+2)\} + \{f(p+3) - f(p+4)\} + \dots = A > 0$$

We have the following (44) from the above definition.

$$F(a) = A - B \tag{44}$$

So we can verify 0 < F(a) by verifying B < A.

3.3. Investigation of f(n) - f(n+1)

3.3.1 We have the following (45-1) from (31).

$$f(r) - f(r+1) = \left(\frac{1}{r^{1/2-a}} - \frac{1}{r^{1/2+a}}\right) - \left\{\frac{1}{(r+1)^{1/2-a}} - \frac{1}{(r+1)^{1/2+a}}\right\}$$
(45-1)

We have the following (45-2) by differentiating f(r) - f(r+1) regarding r.

$$\frac{df(r)}{dr} - \frac{df(r+1)}{dr} = \frac{1/2 + a}{r^{3/2 + a}} \{1 - (\frac{r}{r+1})^{3/2 + a}\} - \frac{1/2 - a}{r^{3/2 - a}} \{1 - (\frac{r}{r+1})^{3/2 - a}\} = C(r) - D(r)$$
(45-2)

When r is small the value of f(r) - f(r+1) increases with increase of r due to D(r) < C(r). With increase of r the value reaches the maximum value $f(r_1) - f(r_1 + 1)$ at $r = r_1$. Afterward the situation changes to C(r) < D(r)and the value decreases to zero with $r \to \infty$.

f(n) - f(n+1) also has the maximum value $f(n_1) - f(n_1+1) = \{q_{max}\}$ at $n = n_1$. n_1 is either of $[r_1]$ and $[r_1] + 1$. The following (Graph 3) shows the value of f(n) - f(n+1) in various value of a. The following (Graph 4) shows the value of f(n) - f(n+1) at a = 0.1.

Graph 3: f(n) - f(n+1) in various a

T. ISHIWATA

Graph 4: f(n) - f(n+1) at a = 0.1

- 3.3.2 When n_{max} is even(odd) number the sign of f(n) f(n+1) changes from minus to plus with increase of n at $n = n_{max}(n = n_{max} + 1)$ as shown in (Graph 4). Afterward the value reaches the maximum value $\{q_{max}\}$ at $n = n_1$ and the value decreases to zero with $n \to \infty$.
- 3.3.3 We can have the following (46) and (47) from (Table 1).

$$0 < f(n+1) - f(n) = \int_{n}^{n+1} f'(r)dr \le \int_{2}^{3} f'(r)dr = f(3) - f(2)$$

$$(2 \le r \le n_{max} \qquad n+1 \le n_{max}) \qquad (46)$$

$$0 < f(n) - f(n+1) = \int_{n}^{n+1} \{-f'(r)\}dr < \int_{n}^{n+1} \{-f'(r_0)\}dr = -f'(r_0)$$

$$(n_{max} \le r \qquad n_{max} \le n) \qquad (47)$$

We can have the following (48) as shown in the following item 3.3.4, 3.3.5 and 3.3.6.

$$0 < -f'(r_0) < f(3) - f(2) \qquad (0 < a < 1/2) \tag{48}$$

Then we can have the following (49) at the same value of a from the above (46), (47) and (48).

$$|f(n) - f(n+1)| < f(3) - f(2) \qquad (n = 3, 4, 5, \dots)$$
(49)

3.3.4 The following (Graph 5) is plotted by calculating f(3) - f(2) for a every 0.01.

Table 2 : The values of f(3) - f(2)

If f(3) - f(2) has a convex or a concave in $a_0 < a < a_0 + 0.01$, such a convex or a concave is not displayed in the above (Graph 5). $(a_0=0, 0.01, 0.02, \cdots, 0.48, 0.49)$ We define "The function does not have a convex or a concave in $a_0 \leq a \leq a_0 + 0.01$." as either of the following 3 items.

- 3.3.4.1 The function does not have a local maximum value or a local minimum value in $a_0 \le a \le a_0 + 0.01$.
- 3.3.4.2 When the function has a local maximum value in $a_0 \le a < a_0 + 0.01$ the function is districtly concave regarding a in $a_0 0.02 \le a \le a_0 + 0.03$.
- 3.3.4.3 When the function has a local minimum value in $a_0 \le a < a_0 + 0.01$ the function is districtly convex regarding a in $a_0 0.02 \le a \le a_0 + 0.03$.

If the function has the property shown in the above 3 items, the graph can display the function correctly i.e. we can imagine the shape of the function easily from the graph although the graph is plotted for a every 0.01.

f(n) is a monotonically increasing and districtly convex function regarding a in $0 < a \le 1/2$ from the following (50) and (51). f(n) meets the above item 3.3.4.1.

$$\frac{df(n)}{da} = \log n(\frac{1}{n^{1/2-a}} + \frac{1}{n^{a+1/2}}) > 0 \tag{50}$$

$$\frac{d^2 f(n)}{da^2} = (\log n)^2 \left(\frac{1}{n^{1/2-a}} - \frac{1}{n^{1/2+a}}\right) \ge 0 \tag{51}$$

Then f(3) and f(2) are monotonically increasing and districtly convex functions regarding a i.e. f(3) and f(2) do not have a convex or a concave in $a_0 \le a \le a_0 + 0.01$. f(3) - f(2) also does not have a convex or a concave in $a_0 \le a \le a_0 + 0.01$ from the above property of f(3) and f(2). Therefore (Graph 5) shows f(3) - f(2) correctly.

3.3.5 The following (Graph 6) is plotted by calculating $-f'(r_0)$ for a every 0.01. If $-f'(r_0)$ has a convex or a concave in $a_0 < a < a_0 + 0.01$, such a convex or a concave is not displayed in (Graph 6). $(a_0=0, 0.01, 0.02, \cdots, 0.48, 0.49)$

Table 3 : The values of $-f'(r_0)$

We have the following (52) from (32) and (37).

$$-f'(r_{0}) = (1/2 - a)r_{0}^{a-3/2} - (1/2 + a)r_{0}^{-a-3/2}$$

$$= (1/2 - a)\left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{1/2-3/(4a)}$$

$$- (1/2 + a)\left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{-1/2-3/(4a)}$$

$$= \left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{-3/(4a)}[(1/2 - a)\left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{1/2}$$

$$- (1/2 + a)\left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{-1/2}]$$

$$= \left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{-3/(4a)}\left[\left\{\frac{(1/4 - a^{2})(3/2 + a)}{3/2 - a}\right\}^{1/2} - \left\{\frac{(1/4 - a^{2})(3/2 - a)}{3/2 + a}\right\}^{1/2}\right]$$

$$= \left\{\frac{(1/2 - a)(3/2 - a)}{(1/2 + a)(3/2 + a)}\right\}^{3/(4a)}(1/4 - a^{2})^{1/2}\left\{(\frac{3/2 + a}{3/2 - a})^{1/2} - (\frac{3/2 - a}{3/2 + a})^{1/2}\right\}$$

$$= 2a\left\{\frac{(1/2 - a)(3/2 - a)}{(1/2 + a)(3/2 + a)}\right\}^{3/(4a)}\left\{\frac{(1/2 + a)(1/2 - a)}{(3/2 + a)(3/2 - a)}\right\}^{1/2}$$

$$= 2a\left\{\frac{(1/2 - a)(3/2 - a)}{(1/2 + a)(3/2 + a)}\right\}^{3/(4a)}\left\{\frac{(1/2 + a)(1/2 - a)}{(3/2 + a)(3/2 - a)}\right\}^{1/2}$$

$$= 2a\left\{g(a)\right\}^{3/(4a)}\left\{h(a)\right\}^{1/2}$$
(52)

g(a) in the above (52) is a monotonically decreasing and districtly convex func-

tion regarding a in $0 \le a \le 1/2$ from the following (53-1) and (53-2).

$$\frac{dg(a)}{da} = \frac{4a^2 - 3}{(1/2 + a)^2(3/2 + a)^2} < 0$$
(53-1)

$$\frac{d^2g(a)}{da^2} = \frac{2(6+9a-4a^3)}{(1/2+a)^3(3/2+a)^3} > 0$$
(53-2)

h(a) in the above (52) is a monotonically decreasing and districtly concave function regarding a in $0 < a \le 1/2$ from the following (53-3) and (53-4).

$$\frac{dh(a)}{da} = \frac{-4a}{(3/2+a)^2(3/2-a)^2} \le 0$$
(53-3)

$$\frac{d^2h(a)}{da^2} = \frac{-3(3+4a^2)}{(3/2+a)^3(3/2-a)^3} < 0$$
(53-4)

a, 3/(4a), g(a) and h(a) that compose $-f'(r_0)$ meet item 3.3.4.1 and they do not have a convex or a concave in $a_0 \leq a \leq a_0 + 0.01$ respectively. Then $-f'(r_0)$ also does not have a convex or a concave in $a_0 \leq a \leq a_0 + 0.01$ from the above property of a, 3/(4a), g(a) and h(a). Therefore (Graph 6) shows $-f'(r_0)$ correctly.

Now we could confirm that (Graph 5) and (Graph 6) showed f(3) - f(2) and $-f'(r_0)$ correctly, respectively. And we can find that (48) holds from (Graph 5) and (Graph 6).

3.3.6 We can confirm that (48) holds also during $a \to +0$ from the following (54) and (55).

f(3) - f(2) can be approximated in $a \to +0$ by performing Maclaurin expansion for $2^a, 2^{-a}, 3^a$ and 3^{-a} as the following (54).

$$\begin{aligned} f(3) - f(2) \\ &= (3^{a-1/2} - 3^{-a-1/2}) - (2^{a-1/2} - 2^{-a-1/2}) \\ &= 3^{-1/2}(3^a - 3^{-a}) - 2^{-1/2}(2^a - 2^{-a}) \\ &= 3^{-1/2}[\{1 + a\log 3 + (a\log 3)^2/2 + \cdots \} - \{1 - a\log 3 + (a\log 3)^2/2 - \cdots \}] \\ &- 2^{-1/2}[\{1 + a\log 2 + (a\log 2)^2/2 + \cdots \} - \{1 - a\log 2 + (a\log 2)^2/2 - \cdots \}] \\ &= 2 * 3^{-1/2}\{a\log 3 + (a\log 3)^3/3! + (a\log 3)^5/5! + \cdots \} \\ &- 2 * 2^{-1/2}\{a\log 2 + (a\log 2)^3/3! + (a\log 2)^5/5! + \cdots \} \\ &\sim 2(3^{-1/2}\log 3 - 2^{-1/2}\log 2)a = 0.29a > 0.012a \qquad (a \to +0) \quad (54) \end{aligned}$$

 $-f'(r_0)$ can be approximated in $a \to +0$ from (32) and (37) by performing Maclaurin expansion for $(1 + \frac{16}{3}a)^{1/2}$ and $(1 + \frac{16}{3}a)^{-1/2}$ as the following (55).

$$-f'(r_0) = (1/2 - a)r_0^{a-3/2} - (1/2 + a)r_0^{-a-3/2}$$
$$= (1/2 - a)\left\{\frac{(1/2 + a)(3/2 + a)}{(1/2 - a)(3/2 - a)}\right\}^{1/2 - 3/(4a)}$$

$$-(1/2+a)\left\{\frac{(1/2+a)(3/2+a)}{(1/2-a)(3/2-a)}\right\}^{-1/2-3/(4a)}$$

$$=(1/2-a)(1+\frac{16}{3}a+\frac{128}{9}a^2+\cdots)^{1/2-3/(4a)}$$

$$-(1/2+a)(1+\frac{16}{3}a+\frac{128}{9}a^2+\cdots)^{-1/2-3/(4a)}$$

$$\sim (1/2-a)(1+\frac{16}{3}a)^{1/2-3/(4a)} -(1/2+a)(1+\frac{16}{3}a)^{-1/2-3/(4a)}$$

$$=(1+\frac{16}{3}a)^{-3/(4a)}\left\{(1/2-a)(1+\frac{16}{3}a)^{1/2} -(1/2+a)(1+\frac{16}{3}a)^{-1/2}\right\}$$

$$=(1+\frac{16}{3}a)^{-3/(4a)}\left\{(1/2-a)(1+\frac{8}{3}a-\frac{32}{9}a^2+\cdots)\right\}$$

$$\sim (1+\frac{16}{3}a)^{-3/(4a)}\left\{(1/2-a)(1+\frac{8}{3}a^2+\frac{32}{9}a^2+\cdots)\right\}$$

$$\sim (1+\frac{16}{3}a)^{-3/(4a)}\left\{(1/2-a)(1+\frac{8}{3}a) -(1/2+a)(1-\frac{8}{3}a)\right\}$$

$$=\left\{(1+\frac{16}{3}a)^{-3/(4a)}\left\{(1/2-a)(1+\frac{8}{3}a) -(1/2+a)(1-\frac{8}{3}a)\right\}$$

3.4. Verification of B < A (n_{max} is odd number.)

 n_{max} is odd number as follows.

$$\begin{aligned} F(a) &= f(2) - f(3) + f(4) - f(5) + f(6) - \cdots \\ &= \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(n_{max} - 3) - f(n_{max} - 2)\} + \{f(n_{max} - 1) - \frac{f(n_{max})}{f(n_{max})}\} \\ &+ \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 3) - f(n_{max} + 4)\} + \{f(n_{max} + 5) - f(n_{max} + 6)\} + \cdots \\ \end{aligned}$$
We can have A and B as follows. A and B are defined in item 3.2.

$$B = \{f(3) - f(2)\} + \{f(5) - f(4)\} + \{f(7) - f(6)\} + \cdots + \{f(n_{max} - 2) - f(n_{max} - 3)\} + \{\frac{f(n_{max})}{f(n_{max})} - f(n_{max} - 1)\} \end{aligned}$$

$$A = \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 3) - f(n_{max} + 4)\} + \{f(n_{max} + 5) - f(n_{max} + 6)\} + \dots + \{f(n_{max} + 6)\} +$$

3.4.1. Condition for B

We define as follows.

 $\{ \}$: the term which is included within B.

 $\{ \begin{tabular}{c} \end{tabular} \}$: the term which is not included within B.

We have the following (56).

$$f(n_{max}) - f(2) = \left\{ \frac{f(n_{max}) - f(n_{max} - 1)}{f(7) - f(6)} \right\} + \left\{ \frac{f(n_{max} - 1) - f(n_{max} - 2)}{f(5) - f(4)} \right\} + \left\{ \frac{f(1) - f(1)}{f(1) - f(2)} \right\} + \left\{ \frac{f(1) - f(2)}{f(1) - f(2)} \right\} + \left\{ \frac{f(1) - f(2)}{f(1) - f(2)} \right\}$$
(56)

And we have the following (57) from (Table 1) in item 3.1, (Graph 3) and (Graph 4). $\{ f(3) - f(2) \} > \{ f(4) - f(3) \} > \{ f(5) - f(4) \} > \{ f(6) - f(5) \} > \{ f(7) - f(6) \} > \cdots \cdots$

$$> \left\{ f(n_{max} - 2) - f(n_{max} - 3) \right\} > \left\{ f(n_{max} - 1) - f(n_{max} - 2) \right\} > \left\{ f(n_{max}) - f(n_{max} - 1) \right\} > 0$$

$$(57)$$

From the above (56) and (57) we have the following (58).

$$\begin{aligned} f(n_{max}) - f(2) + \left\{ \begin{array}{c} f(3) - f(2) \\ f(3) - f(2) \\ \end{array} \right\} + \left\{ \begin{array}{c} f(5) - f(4) \\ f(5) - f(4) \\ \end{array} \right\} + \left\{ \begin{array}{c} f(7) - f(6) \\ f(7) - f(6) \\ \end{array} \right\} + \dots + \left\{ \begin{array}{c} f(n_{max} - 2) - f(n_{max} - 3) \\ \frown \end{array} \right\} + \left\{ \begin{array}{c} f(n_{max}) - f(n_{max} - 1) \\ \frown \end{array} \right\} \\ + \left\{ \begin{array}{c} f(3) - f(2) \\ f(4) - f(3) \\ \end{array} \right\} + \left\{ \begin{array}{c} f(6) - f(5) \\ \hline f(6) - f(5) \\ \end{array} \right\} + \dots + \left\{ \begin{array}{c} f(n_{max} - 3) - f(n_{max} - 4) \\ \frown \end{array} \right\} + \left\{ \begin{array}{c} f(n_{max} - 1) - f(n_{max} - 2) \\ \hline f(n_{max} - 2) \\ \end{array} \right\} \\ > 2B \end{aligned}$$

$$(58)$$

The above (58) shows the following inequality.

{Total sum of upper row of (58)} = $B < {Total sum of lower row of <math>(58)}$ }

Then we have the following (59).

$$2B < f(n_{max}) - f(2) + \{f(3) - f(2)\}$$
(59)

3.4.2. Condition for $A(\{q_{max}\}\)$ is included within A.)

We abbreviate $\{f(n_{max} + q) - f(n_{max} + q + 1)\}$ to $\{q\}$ for easy description. $(q = 0, 1, 2, 3, \dots)$ All $\{q\}$ has positive value as shown in item 3.3.2.

We define as follows.

 $\{ \}$: the term which is included within A.

 $\{ \ldots \}$: the term which is not included within A.

 $\{q_{max}\}$ has the maximum value in all $\{q\}$. And $\{q_{max}\}$ is included within A. Then value comparison of $\{q\}$ is as follows from item 3.3.2.

$$\left\{\frac{1}{2}\right\} < \left\{\frac{2}{3}\right\} < \dots < \left\{q_{max} - 3\right\} < \left\{\frac{q_{max} - 2}{q_{max} - 2}\right\} < \left\{q_{max} - 1\right\} < \left\{\frac{q_{max}}{q_{max}}\right\} > \left\{q_{max} + 1\right\} > \left\{\frac{q_{max} + 2}{q_{max} + 2}\right\} > \left\{q_{max} + 3\right\} > \dots$$

We have the following (60).

$$f(n_{max}+1) = \left\{ \frac{f(n_{max}+1) - f(n_{max}+2)}{f(n_{max}+2)} \right\} + \left\{ \frac{f(n_{max}+2) - f(n_{max}+3)}{f(n_{max}+4) - f(n_{max}+5)} \right\} + \cdots$$

$$= \{1\} + \{2\} + \{3\} + \{4\} + \dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max}\} + \{q_{max} + 1\} + \{q_{max} + 2\} + \{q_{max} + 3\} + \dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max} - 1\} + \{q_{max} + 1\} + \{q_{max} + 2\} + \{q_{max} + 3\} + \dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max} -$$

From the above (60) we have the following (61).

(Range 1) and (Range 2) are determined as above. In (Range 1) value comparison is as follows.

$$\{1\} < \{2\} < \{3\} < \{4\} < \dots < \{q_{max} - 4\} < \{q_{max} - 3\} < \{q_{max} - 2\}$$

And we can find the following.

20

And we can find the following.

 $\begin{array}{c} \text{Total sum of} \left\{ \begin{array}{c} \\ \end{array} \right\} = \left\{ \begin{array}{c} q_{max} + 1 \\ \lor \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 3 \\ \lor \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 5 \\ \lor \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 7 \\ \lor \end{array} \right\} + \cdots \\ \text{V} \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 7 \\ \lor \end{array} \right\} + \left\{ \begin{array}{c} \\ \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 7 \\ \lor \end{array} \right\} + \cdots \\ \text{Total sum of} \left\{ \begin{array}{c} \\ \end{array} \right\} = \left\{ \begin{array}{c} q_{max} + 2 \\ \ast \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 4 \\ \ast \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 6 \\ \ast \end{array} \right\} + \left\{ \begin{array}{c} q_{max} + 8 \\ \ast \end{array} \right\} + \cdots \\ \text{Therefore} \left[\text{Total sum of} \left\{ \begin{array}{c} \\ \end{array} \right\} \right\} = \text{Total sum of} \left\{ \begin{array}{c} \\ \end{array} \right\} > \text{Total sum of} \left\{ \begin{array}{c} \\ \end{array} \right\} \right] \text{ holds.}$

In (Range 1)+(Range 2) we have [Total sum of $\{ _ \} = A > Total sum of \{ _ \}$]. We have the following (65).

$$f(n_{max} + 1) - \{q_{max}\} < 2A \tag{65}$$

3.4.4. Condition for B < A

From (62) and (65) we have the following inequality.

 $f(n_{max}+1) - [\{q_{max}\} \text{ or } \{q_{max}-1\}] < 2A$

Then the following inequalities hold from (49).

$$[\{q_{max}\} \text{ or } \{q_{max} - 1\}] < f(3) - f(2)$$

$$f(n_{max}) - f(n_{max} + 1) < f(3) - f(2)$$

We have the following (66) from the above 3 inequalities.

$$2A > f(n_{max} + 1) - [\{q_{max}\} \text{ or } \{q_{max} - 1\}] > f(n_{max} + 1) - \{f(3) - f(2)\} > f(n_{max}) - \{f(3) - f(2)\} - \{f(3) - f(2)\} = f(n_{max}) - 2\{f(3) - f(2)\}$$
(66)

We have the following (67) for B < A from (59) and (66).

$$2A > f(n_{max}) - 2\{f(3) - f(2)\} > f(n_{max}) - f(2) + \{f(3) - f(2)\} > 2B$$
(67)

From the above (67) we can have the final condition for B < A as follows.

$$f(3) < (4/3)f(2) \tag{68}$$

The following (Graph 7) is plotted by calculating the following (71) for a every 0.01.

$$J(a) = (4/3)f(2) - f(3) = (4/3)\left(\frac{1}{2^{1/2-a}} - \frac{1}{2^{1/2+a}}\right) - \left(\frac{1}{3^{1/2-a}} - \frac{1}{3^{1/2+a}}\right)$$
(71)

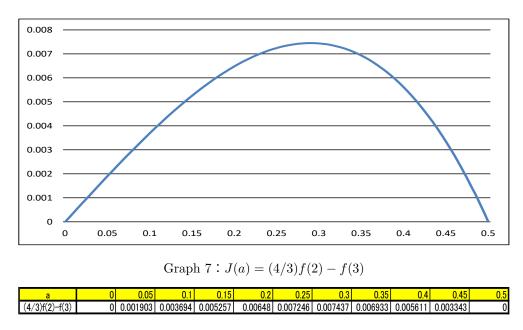


Table 4 : The values of J(a)

f(2) and f(3) do not have a convex or a concave in $a_0 \leq a \leq a_0 + 0.01$ as shown in item 3.3.4. $(a_0=0, 0.01, 0.02, \dots, 0.48, 0.49)$ J(a) also does not have a convex or a concave in $a_0 \leq a \leq a_0 + 0.01$ from the above property of f(2) and f(3). Therefore (Graph 7) shows J(a) correctly. We can confirm that 0 < J(a) holds also during $a \to +0$ and $a \to 1/2 - 0$ as shown in the following item 3.4.4.1 and 3.4.4.2. From (Graph 7) and item 3.4.4.1 and 3.4.4.2 we can find that 0 < J(a) holds in 0 < a < 1/2. Therefore B < A i.e. 0 < F(a) holds in 0 < a < 1/2 from (44).

3.4.4.1 J(a) can be approximated in $a \to +0$ by performing Maclaurin expansion for $2^a, 2^{-a}, 3^a$ and 3^{-a} as the following (71-1).

$$\begin{split} J(a) &= (4/3)f(2) - f(3) \\ &= (4/3)(2^{a-1/2} - 2^{-a-1/2}) - (3^{a-1/2} - 3^{-a-1/2}) \\ &= (4/3)2^{-1/2}(2^a - 2^{-a}) - 3^{-1/2}(3^a - 3^{-a}) \\ &= (4/3)2^{-1/2}[\{1 + a\log 2 + (a\log 2)^2/2 + \cdots \} - \{1 - a\log 2 + (a\log 2)^2/2 - \cdots \}] \\ &- 3^{-1/2}[\{1 + a\log 3 + (a\log 3)^2/2 + \cdots \} - \{1 - a\log 3 + (a\log 3)^2/2 - \cdots \}] \\ &= 2 * (4/3)2^{-1/2}\{a\log 2 + (a\log 2)^3/3! + (a\log 2)^5/5! + \cdots \} \\ &- 2 * 3^{-1/2}\{a\log 3 + (a\log 3)^3/3! + (a\log 3)^5/5! + \cdots \} \\ &\sim (4/3)2^{-1/2}(2a\log 2) - 3^{-1/2}(2a\log 3) = 0.038a > 0 \qquad (a \to +0) \quad (71\text{-}1) \end{split}$$

3.4.4.2 Let (1/2 - a) be t. J(a) can be approximated in $a \to 1/2 - 0$ by performing Maclaurin expansion for $2^t, 2^{-t}, 3^t$ and 3^{-t} as the following (71-2).

$$J(a) = (4/3)f(2) - f(3)$$

22

Proof of Riemann hypothesis

$$= (4/3)(2^{a-1/2} - 2^{-a-1/2}) - (3^{a-1/2} - 3^{-a-1/2})$$

$$= (4/3)(2^{-t} - 2^{t-1}) - (3^{-t} - 3^{t-1}) = (4/3)(2^{-t} - 2^{t}/2) - (3^{-t} - 3^{t}/3)$$

$$= (4/3)[\{1 - t \log 2 + (t \log 2)^2/2 - \dots \}$$

$$- (1/2)\{1 + t \log 2 + (t \log 2)^2/2 + \dots \}]$$

$$- [\{1 - t \log 3 + (t \log 3)^2/2 - \dots \}$$

$$- (1/3)\{1 + t \log 3 + (t \log 3)^2/2 + \dots \}]$$

$$\sim (4/3)\{(1 - t \log 2) - (1 + t \log 2)/2\} - \{(1 - t \log 3) - (1 + t \log 3)/3\}$$

$$= (4/3)\{1/2 - (3/2)t \log 2\} - \{2/3 - (4/3)t \log 3\} = 0.0785t$$

$$= 0.0785(1/2 - a) > 0 \qquad (t \to +0 \quad a \to 1/2 - 0) \qquad (71-2)$$

3.5. Verification of
$$B < A$$
 $(n_{max}$ is even number.)

 n_{max} is even number as follows.

$$\begin{split} F(a) &= f(2) - f(3) + f(4) - f(5) + f(6) - \cdots \\ &= \{f(2) - f(3)\} + \{f(4) - f(5)\} + \cdots + \{f(n_{max} - 4) - f(n_{max} - 3)\} + \{f(n_{max} - 2) - f(n_{max} - 1)\} \\ &+ \{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\} + \{f(n_{max} + 4) - f(n_{max} + 5)\} + \cdots \\ \end{split}$$

We can have A and B as follows.

$$\begin{split} B &= \{f(3) - f(2)\} + \{f(5) - f(4)\} + \{f(7) - f(6)\} \\ &+ \dots + \{f(n_{max} - 3) - f(n_{max} - 4)\} + \{f(n_{max} - 1) - f(n_{max} - 2)\} \\ A &= \{\frac{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\} + \{f(n_{max} + 4) - f(n_{max} + 5)\} + \dots \\ f(n_{max}) &= \{\frac{f(n_{max}) - f(n_{max} + 1)\} + \{f(n_{max} + 1) - f(n_{max} + 2)\} + \{f(n_{max} + 2) - f(n_{max} + 3)\} \\ &+ \{f(n_{max} + 3) - f(n_{max} + 4)\} + \dots \\ &= \{0\} + \{1\} + \{2\} + \{3\} + \{4\} \end{split}$$

$$+\dots + \{q_{max} - 3\} + \{q_{max} - 2\} + \{q_{max} - 1\} + \{q_{max}\} + \{q_{max} + 1\} + \{q_{max} + 2\} + \{q_{max} + 3\} + \dots$$

After the same process as in item 3.4.1 we can have the following (73).

$$f(n_{max} - 1) - f(2) + \{f(3) - f(2)\} > 2B$$
(73)

The following inequality holds from (49).

$$[\{q_{max}\} \text{ or } \{q_{max} - 1\}] < f(3) - f(2)$$

We have the following (74) from the above inequality and the same process as in item 3.4.2 and item 3.4.3.

$$2A > f(n_{max}) - [\{q_{max}\} \text{ or } \{q_{max} - 1\}] > f(n_{max}) - \{f(3) - f(2)\}$$

>
$$f(n_{max} - 1) - \{f(3) - f(2)\}$$
 (74)

We have the following (75) for B < A from (73) and (74).

$$2A > f(n_{max} - 1) - \{f(3) - f(2)\} > f(n_{max} - 1) - f(2) + \{f(3) - f(2)\} > 2B \quad (75)$$

From the above (75) we can have the final condition for B < A as follows.

$$f(3) < (3/2)f(2) \tag{76}$$

In the following (77), (4/3)f(2) < (3/2)f(2) is true self-evidently and in item 3.4.4 we already confirmed that the following (68) was true in 0 < a < 1/2.

$$0 < f(3) < (4/3)f(2) < (3/2)f(2)$$
(77)

$$f(3) < (4/3)f(2) \tag{68}$$

Therefore the above (76) is true in 0 < a < 1/2. Now we can confirm 0 < F(a) in 0 < a < 1/2.

3.6. Conclusion

0 < F(a) holds in 0 < a < 1/2 as shown in the above item 3.4 and item 3.5.

Appendix 4. Graph of F(a)

4.1 We can approximate F(a) as the following (81) from (38). We have the following (82) and (83) from (81).

$$F(a)_n = \frac{F(a,n) + F(a,n+1)}{2}$$
(81)

$$\lim_{n \to \infty} F(a)_n = F(a) \tag{82}$$

$$F(a)_{n+1} = F(a)_n - (-1)^n \frac{f(n+1) - f(n+2)}{2}$$
(83)

The following (Graph 8) is plotted by calculating $F(a)_{500}$ and $F(a)_{501}$ for a every 0.01.

Graph 8 : $F(a)_{500}$ and $F(a)_{501}$

а	0	0.01	0.1	0.2	0.3	0.4	0.5
F(a)500	0	0.0038667	0.038666	0.077326	0.115971	0.154587	0.193146
F(a)501	0	0.0038648	0.038647	0.077289	0.115919	0.154537	0.193148
F(a)	0	0.00386	0.0386	0.077	0.1159	0.1545	-

Table 5 : The values of $F(a)_{500}$ and $F(a)_{501}$

The range of a is $0 \le a < 1/2$. a = 1/2 is not included in the range. But we added $F(1/2)_n$ to calculation due to the following reason. f(n) at a = 1/2 is (1 - 1/n) and F(1/2) fluctuates due to $\lim_{n\to\infty} f(n) = 1$. The above (83) shows that $F(a)_n$ is partial sum of alternating series which has the term of $\frac{f(n+1)-f(n+2)}{2}$. Then $\lim_{n\to\infty} F(1/2)_n$ can converge to the fixed value on the condition of $\lim_{n\to\infty} \{f(n+1) - f(n+2)\} = 0$. The condition holds due to $f(n+1) - f(n+2) = -1/(n^2 + 3n + 2)$.

4.2 r_0 in (37) has the value of 217 at a = 0.49. Then f(n+1) - f(n+2) has positive value

and decreases monotonically with increase of n in 217 < n and $0 < a \le 0.49$. $F(a)_n$ converges to F(a) with $n \to \infty$ as (82) shows. Then we can have the following (84) from (83).

$$F(a)_{501} < F(a) < F(a)_{500} \qquad (0 < a \le 0.49) \tag{84}$$

Therefore (Graph 8) shows F(a) as well as $F(a)_{500}$ and $F(a)_{501}$ in $0 \le a \le 0.49$.

References

 Yukio Kusunoki, Introduction to infinite series, Asakura syoten, (1972), page 22, (written in Japanese)

> Toshihiko ISHIWATA E-mail: toshihiko.ishiwata@gmail.com