Division by zero

Tim Olsson

An algebraic theory of extended complex numbers.

$$
\begin{align*}
& \frac{x^{x}}{x}=x^{x-1} \Rightarrow \frac{0^{0}}{0}=0^{-1}=\frac{1}{0}=\infty \Leftrightarrow \frac{0}{0}=0^{0}=\frac{1}{0} \times 0=\infty \times 0=1 \tag{1}\\
& \frac{x}{\infty}=\frac{1}{\infty} \times x=0 \times x=0 \Leftrightarrow \frac{\infty}{x}=\frac{1}{0 \times x}=\frac{1}{0}=\infty, \quad \begin{array}{l}
x \neq 0^{n \neq 0} \\
-\infty<x<\infty
\end{array} \tag{2}\\
& \ln \left(1^{\infty}\right)=\infty \times \ln (1)=\infty \times 0=1 \Leftrightarrow 1^{\infty}=e \tag{3}\\
& \ln \left((-1)^{\infty}\right)=\infty \times \ln (-1)=\infty \times \pi i \Leftrightarrow(-1)^{\infty}=e^{\pi i \infty} \tag{4}
\end{align*}
$$

An extended number is in the form $\tau=x \infty^{n}+y$ where the infinite part $\infty^{n}(n>0)$ is a number with the property $(\pm \infty)^{n} \times 0^{n}=(\pm 1)^{n}(1)$, and a result of the indivisibility of infinite elements (2) is $f(x)=\left.x \infty \Rightarrow f\right|_{\mathbb{Q}}: \mathbb{Q} \rightarrow \mathbb{Z}_{\infty}$; the sign is located in the dividend.

The theory is noncommutative to keep compatibility with multiplication by zero: $x \infty^{n} 0^{n}=x(\infty 0)^{n}=x$ and (4) are only true with the retention of finite elements; i.e. with multiplication from the right if both sides are raised to the power of 0 as only then Euler's identity holds, this also solves the problem "which y is the solution to $y \times 0=x$?": $y=x \infty$. It is also nondistributive in this case: $1=\infty \times(0 \pm 0) \neq \infty \times 0+\infty \times 0=2 \neq \infty \times 0-\infty \times 0=0$; zeros are cancelled out inside parentheses first.
"The Seven Spirits of God": $\infty-\infty, 0 \times \infty, 0 \div 0, \infty \div \infty, 0^{0}, \infty^{0}$ and 1^{∞} which equals 1 , $1,1,1,1,1$ and $e(3)$. Fallacies are corrected by first multiplying by 0 if also dividing by 0 in this case: $0 \times a \div 0=0 \times b \div 0 \Rightarrow(0 \times a) \div 0=(0 \times b) \div 0=0 \div 0=1$.

