Formula for number of primes less than a given number.

Juan Elias Millas Vera
juanmillaszgz@gmail.com

Zaragoza (Spain)

June 2022

0- Abstract.

In this paper I want to expose the possibility of making a formula which counts the exact number of primes less than a given number, using some tools in analysis of functions, some tools in series of functions and some new tools.

1- Introduction.

We should first take a look to my development in the serial tool named divisory: the serial operator of divisions.

Theorem 1.0: The division operation can be translated into a serial operator with delta notation, it has some different variations of notation, we can see two of them:

$$
\begin{aligned}
& \text { (1) } \begin{array}{l}
\stackrel{\Delta}{n=a} \\
\text { (2) } f(n)=f(a) \div f(a+1) \div f(a+2) \div \ldots \div f(b-2) \div f(b-1) \div f(b) \\
{ }_{n=i}^{k} a_{i}=a_{1} \div a_{2} \div a_{3} \div \ldots \div a_{(k-1)} \div a_{k}
\end{array}
\end{aligned}
$$

Remark 1.1: For example, if we want to do the serial divisions between the interval $(2,5)$ we can start in the smaller number and apply the serial division:

$$
\text { (3) }{ }_{n=2}^{5} a_{i}=2 /(3 /(4 / 5))=1 / 30
$$

2- The divisory of sets.

Theorem 2.0: We can use the tool of divisory but instead a variable we introduce a constant, we should apply one-to-one division operations to obtain a set as result:

```
(4) \(\{\Delta\} a_{i}=\{a / 1, a / 2, a / 3, \ldots, a /(k-1), a / k\}\)
\(n=i\)
```

As you can see, we do not obtain a single number, we obtain a set of numbers.

Remark 2.1: For example, if you do the set divisory of 4 at all range, you will get the following set:

$$
\text { (5) } \begin{gathered}
4 \\
\{\Delta\} 4 \\
n=1
\end{gathered}=\{4 / 1,4 / 2,4 / 3,4 / 4\}=\{4,2,4 / 3,1\}
$$

3- Definition of our $f(x)$ function.

Theorem 3.0: We define our $f(x)$ function as 1 if in the process of analyze the set we have, $s=2$ and we define $f(x)$ function a 0 if we have $s<2$ or $s>2$. Where s is the number of Natural numbers.

$$
\begin{gathered}
k \\
\{0 \text { if }\{\Delta\} \text { has } s<2 \\
n=i \\
k \\
\text { (6) } f(x):=\{1 \text { if }\{\Delta\} \text { has } s=2 \\
n=i \\
k \\
\{0 \text { if }\{\Delta\} \text { has } s>2 \\
n=i
\end{gathered}
$$

Where $\mathrm{s}=\# \mathrm{n}$ for $n \in \mathbb{N}$
With the option of $\mathrm{s}<2$ we exclude the option of number 1 as prime later on.

Remark 3.1: For example $f(x)$ is equal to 1 for the number 3 :

$$
\text { (7) } \begin{aligned}
& 3 \\
& \{\Delta\} 3=\{3 / 1,3 / 2,3 / 3\}=\{3,3 / 2,1\} \\
& n=1
\end{aligned}
$$

$f(x)=1$ because in set $\{3,3 / 2,1\}$ there are 2 natural numbers.

Remark 3.2: For example $f(x)$ is equal to 1 for the number 7:

$$
\text { (8) } \begin{aligned}
& 7 \\
& \{\Delta\} 7=\{7 / 1,7 / 2,7 / 3,7 / 4,7 / 5,7 / 6,7 / 7\}=\{7,7 / 2,7 / 3,7 / 4,7 / 5,7 / 6,1\} \\
& n=1
\end{aligned}
$$

$f(x)=1$ because $s=2$.

Remark 3.3: For example $f(x)$ is equal to 0 for the number 4:

$$
\text { (9) } \begin{gathered}
4 \\
\{\Delta\} 4=\{4 / 1,4 / 2,4 / 3,4 / 4\}=\{4,2,4 / 3,1\} \\
n=1
\end{gathered}
$$

$f(x)=0$ because $s=3>2$.

Remark 3.4: For example $f(x)$ is equal to 0 for the number 1 :

$$
\begin{gather*}
1 \\
\{\Delta\} \tag{10}\\
n=1
\end{gather*}
$$

$f(x)=0$ because $s=1<2$

Lemma 3.5: A number prime always give an $f(x)=1$ and a composite number always give an $f(x)=0$.

4- A formula for the number of prime numbers less than a given number.

Theorem 4.0: The formula for the exact number of prime less than a given number implies a summation for the accumulation of the results and a set serial division which gives us the partial results, and it is the next formula:
(11) $\sum_{m=j}^{t} \underset{\substack{\sum_{j} \\ a_{j} \\\{\Delta\} \\ n=i}}{k} a_{i}=\#$ primes less than a_{i}
k
Where $f(x):=\{\Delta\} a_{i}$ and a_{j} ranges from 1 to k.

$$
n=i
$$

Note: the variable t is a hypothetical result as maximum of the summation, the result of number of primes will always less than t .

Remark 4.1: For example the number of primes less than 4 are given by:

$$
\begin{aligned}
& \text { (12) } \sum_{m=1}^{4} \stackrel{4}{a_{j}\{\Delta\}} \begin{array}{c}
\\
n=1
\end{array} a_{i}=\sum_{m=1}^{4} f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)=
\end{aligned}
$$

5- Number primes in an interval.

Finally, I will exemplify the use of this formula as an interval, in example if you want to get the number of primes between 10 and 15 (there are 2 it is obvious), you can put this numbers on the formula:

$$
\begin{aligned}
& =0+1+0+1+0+0=2
\end{aligned}
$$

6- Conclusions:

This is my perception of a truly formula for this old problem, I imagine that it is not the most efficient way to compute in a machine a result of this formula (it will take a long process to compute this with large numbers), but in my opinion this is an exact method and number theory needs the two ways of solving the problems: the approximation way methods and the methods of accuracy.

