Validity of the Collatz Conjecture

Wiroj Homsup
June 1, 2022

Abstract

We establish an equivalent condition to the validity of the Collatz conjecture: The Collatz conjecture is true if and only if every natural number $\mathrm{n} \geq 3$ can be represented in the form $$
\mathrm{n}=\left(2^{m}-2^{m-2} b_{m-1}-\sum_{i=1}^{m-2} b_{i} 2^{i-1} 3^{\sum_{j=i+1}^{m} b_{j}}\right) / 3^{\sum_{j=1}^{m-1} b_{j}}
$$ for some $\mathrm{m} \in N, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots \ldots \mathrm{~b}_{\mathrm{m}-1} \in\{1,0\}$.

1. Introduction

Denote by $N=\{1,2,3 \ldots \ldots \ldots \ldots\}$ the set of all natural numbers, define a recursive equation introduced by R. Terras[1]:

$$
\begin{equation*}
a_{n+1}=\left(3^{b_{n}} a_{\mathrm{n}}+b_{n}\right) / 2 \tag{1}
\end{equation*}
$$

where $b_{n}=1$ when a_{n} is odd and $b_{n}=0$ when a_{n} is even. The Collatz conjecture [2] asserts that for every positive integer a_{1} and by applying eq.(1) , there exists $k \in N$ such that $a_{k}=1$.
For example,
Let $\mathrm{a}_{1}=2$ then $\mathrm{a}_{2}=1$;

$$
\begin{aligned}
& a_{1}=3 \text { then } a_{2}=5, a_{3}=8, a_{4}=4, a_{5}=2, a_{6}=1 ; \\
& a_{1}=16 \text { then } a_{2}=8, a_{3}=4, a_{4}=2, a_{5}=1 .
\end{aligned}
$$

2. The collatz tree

Define the iterating function by

$$
\begin{equation*}
\mathrm{T}(\mathrm{n})=\left(2 \mathrm{n}-b_{n}\right) / 3^{b_{n}}, \tag{2}
\end{equation*}
$$

where $b_{n}=0$ or $b_{n}=0$ and $b_{n}=1$ if $\mathrm{n} \equiv 2 \bmod 3$. Thus, denote n as a node value it can have one branch or two branches coming out.

Let G be a tree with nodes represented by integers generated from eq.(2) starting with $\mathrm{n}=1$. This tree is called the Collatz tree which is divided into many levels as shown in Figure 1.

Figure 1. Six levels of the Collatz tree

3. Representation of natural numbers

Assume the Collatz conjecture is true; by starting with $\mathrm{a}_{1} \geq 3$ and takes m steps following eq.(1) to reach 1 , thus $a_{m}=2, a_{m+1}=1$. All equations are given by

$$
\begin{equation*}
3^{b_{n}} a_{n}-2 a_{n+1}=-b_{n} \tag{3}
\end{equation*}
$$

where $\mathrm{n}=1,2, \ldots \ldots,(\mathrm{~m}-2), \mathrm{b}_{\mathrm{n}} \in\{1,0\}$. and

$$
\begin{equation*}
3^{b_{m-1}} a_{m-1}=4-b_{m-1} \tag{4}
\end{equation*}
$$

By substitute eq. (4) back into eq.(3), finally we have

$$
\begin{equation*}
a_{1}=\left(2^{m}-2^{m-2} b_{m-1}-\sum_{i=1}^{m-2} b_{i} 2^{i-1} 3^{\sum_{j=i+1}^{m-1} b_{j}}\right) / 3^{\sum_{j=1}^{m-1} b_{j}} \tag{5}
\end{equation*}
$$

where $b_{1}, b_{2}, \ldots . . b_{m-1} \in\{1,0\}$.
For example,
If $a_{1}=5$ then $\mathrm{m}=4, b_{1}=1, b_{2}=0, b_{3}=0$;

$$
a_{1}=3 \text { then } \mathrm{m}=5, b_{1}=1, b_{2}=1, b_{3}=0 . b_{4}=0
$$

$$
\begin{aligned}
& a_{1}=7 \text { then } \mathrm{m}=11, b_{1}=1, b_{2}=1, b_{3}=1 . b_{4}=0 \\
& \qquad b_{5}=1, b_{6}=0, b_{7}=0 . b_{8}=1, b_{9}=0 . b_{10}=0 . \\
& a_{1}=1 \text { and } a_{1}=2 \text { are trivial cases. }
\end{aligned}
$$

4. Conclusion

For any $a_{1} \geq 3$ finding m and $b_{1}, b_{2}, \ldots \ldots b_{m-1} \in\{1,0\}$ by eq. (5) is hard. Proving the Collatz conjecture seem to be a NP-problem.

References

[1] R . Terras, (1976). "A stopping time problem on the positive integers". Acta Arithmetica, 30(3), 241-252.
[2] D. Dominici, " Working with 2s and 3s ": eprint: arxiv: 0704.1057v1 [math. DS] 9 April 2007.

