A Result of Even \& Prime

Shan Jian Wang

wangjianshan@oakmon.cn

Abstract

Objective: Any even number greater than 2 can be written as the sum of two prime numbers: Does the prime pair exist universally? If does, is the prime pair unique relatively? If not, how many prime pairs sum to one particular even? Method: $\mathrm{H}(\mathrm{a})=\mathrm{Z}(\mathrm{a}) / \mathrm{Y}(\mathrm{a})$ Result: Any even a greater than 2 can be written as the sum of two prime numbers, there are $\mathrm{T}(\mathrm{a})$ forms of the two prime numbers. Keywords

Goldbach, Euler, even, prime.

1. Structure

1.1. Concept

Set of natural numbers is denoted as $N, N=\{n\}$.
If one variable belongs to N , then it is denoted as n .
If two variables belong to N , then they are denoted as n 1 and n 2 .
Set of even numbers is denoted as $A, A=\left\{a \mid a=2^{*} n\right\}$.
If one variable belongs to A , then it is denoted as a.
If two variables belong to A , then they are denoted as a1 and a2.
Set of odd numbers is denoted as $B, B=\left\{b \mid b=2^{*} n+1\right\}$.
If one variable belongs to B, then it is denoted as b.
If two variables belong to B, then they are denoted as b 1 and b 2 .
Set of odd composite numbers is denoted as C,
$\mathrm{C}=\left\{\mathrm{c} \mid \mathrm{c}=\left(2^{*} \mathrm{n} 1+1\right)^{*}\left(2^{*} \mathrm{n} 2+1\right)\right.$, n 1 is not 0 and n 2 is not 0.$\}$.
If one variable belongs to C , then it is denoted as c .
If two variables belong to C , then they are denoted as c 1 and c 2 .
Set of prime numbers is denoted as D :
If $\{1$ is also a prime number $\}$ is true,

Shan Jian Wang

then $D=\{d \mid d$ belongs to B and does not belong to $C\}$;
If $\{1$ is also a prime number $\}$ is false,
then $\mathrm{D}=\{\mathrm{d} \mid \mathrm{d}$ belongs to B and d does not belong to C, d is not 1. $\}$.
If one variable belongs to D, then it is denoted as d.
If two variables belong to D, then they are denoted as d 1 and d 2 .
1.2. $\mathrm{N}(\mathrm{a}) \sim \mathrm{a} / 4$
$a=a / 2+a / 2, a>0$.
If $a / 2$ belongs to A, define $a=[(a / 2-1)-2 n)]+[(a / 2+1)+2 n]$.
$(a / 2+1)-2 n$ is denoted as $b L,(a / 2+1)+2 n$ is denoted as $b R$.
$\mathrm{n}<(\mathrm{a}-2) / 4, \operatorname{Card}(\mathrm{n})=\mathrm{a} / 4$.
If $a / 2$ belongs to B, define $a=(a / 2-2 n)+(a / 2+2 n)$.
$\mathrm{a} / 2-2 \mathrm{n}$ is denoted as $\mathrm{bL}, \mathrm{a} / 2+2 \mathrm{n}$ is denoted as $b R$.
$\mathrm{n}<\mathrm{a} / 4, \operatorname{Card}(\mathrm{n})=(\mathrm{a}+2) / 4$.
Three piecewise functions: $b L, b R$; $N(a)$.
$b L=(a / 2+1)-2 n, a / 2$ belongs to $A ; b L=a / 2-2 n, a / 2$ belongs to B.
$b R=(a / 2+1)+2 n, a / 2$ belongs to $A ; b R=a / 2+2 n, a / 2$ belongs to B.
Card(n) is denoted as $N(a)$:
$N(a)=a / 4, a / 2$ belongs to $A ; N(a)=(a+2) / 4, a / 2$ belongs to B.
$N(a) \sim a / 4, a>a 0$. Error is denoted as $O(a), O(a) \sim 0$ when $a>a 0$.

1.3. e=bR-bL

Increasing positive even sequence corresponds to $\{a \mid a>0\}$, set e with the sequence incrementally.

Triangular lattice, any cell corresponds to (a, e) and (bL, bR).

1.4. $\mathrm{e}=|(\mathrm{a}-\mathrm{g})-\mathrm{g}|, \mathrm{a}>\mathrm{g}$.

If f belongs to A, then $\{(a, e) \mid a=f\}$ is denoted as $\{L=f\}$.

If g belongs to B, then $G=\{(b L, b R) \mid b L=g$ or $b R=g\}$ is denoted as $\{R=g\}$.
e is one function of a when g is invariable, any odd composite number belongs to (0 ,
a) corresponds to one cell in $\{\mathrm{L}=\mathrm{a}\}$.

Equation is $\mathrm{e}=|(\mathrm{a}-\mathrm{g})-\mathrm{g}|, \mathrm{a}>\mathrm{g}$. $e=|(a-1)-1|, a>1$.
 $e=|(a-3)-3|, a>3$.
 $e=|(a-5)-5|, a>5$.

Shan Jian Wang

1.5. $\mathrm{U}(\mathrm{a})-\mathrm{T}(\mathrm{a})=\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})$

If bL or bR belongs to C , then color the white cell.
If bL and bR belong to C , then black the white cell.

The number of prime numbers in $[0, a]$ is denoted as $I(a)$,
The number of odd composite numbers in ($0, a$] is denoted as $S(a)$.
The number of black cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $\mathrm{U}(\mathrm{a})$,
The number of colored non-black cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $\mathrm{V}(\mathrm{a})$;
The number of colorless cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $T(a)$.
$V(a)+T(a)+U(a)=N(a), V(a)=S(a)-2^{*} U(a)$.

1.6. Algebra

\{Any even number greater than 2 can be written as the sum of two prime numbers\} can be denoted as $\{\operatorname{Any~T}(\mathrm{a})>1, \mathrm{a}>4$.\}

2. Analysis

$\mathrm{W}=\{(\mathrm{bL}, \mathrm{bR}) \mid \mathrm{bL}$ belongs to($0, \mathrm{a} / 2]$, bR belongs to $[\mathrm{a} / 2, \mathrm{a})$.
$\operatorname{Card}(b L, b R)$ is denoted as $W(a), W(a)=N(a)^{\wedge} 2$.
W(22)=36

$$
W(24)=36
$$

Shan Jian Wang

If $b L$ and $b R$ belong to C, then the cell is denoted as ($c L, c R$).
$\mathrm{X}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ and cR belong to ($0, \mathrm{a} / 2-1]$.
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{X}(\mathrm{a}), \mathrm{X}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 2-1)^{*}(\mathrm{~S}(\mathrm{a} / 2-1)+1) / 2$.
$\mathrm{Y}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 2]$ and cR belongs to $[\mathrm{a} / 2, \mathrm{a}-1]$.\};
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{Y}(\mathrm{a}), \mathrm{Y}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 2)^{*}(\mathrm{~S}(\mathrm{a}-1)-\mathrm{S}(\mathrm{a} / 2-1))$.
If $b L$ and $b R$ belong to Y, then the cell is denoted as ($y L, y R$).
$\mathrm{Z}=\{(\mathrm{yL}, \mathrm{yR}) \mid \mathrm{yL}+\mathrm{yR}$ belongs to $(0, \mathrm{a}]$.
$\operatorname{Card}(\mathrm{yL}, \mathrm{yR})$ is denoted as $\mathrm{Z}(\mathrm{a}), \mathrm{Z}(\mathrm{a})=\mathrm{H}(\mathrm{a}) * \mathrm{Y}(\mathrm{a})$.

2.1. $\mathrm{H}(\mathrm{a}) \sim \mathrm{H}(\mathrm{a}-2)$

Maximum error is denoted as $\operatorname{Or}(\mathrm{a}), \operatorname{Or}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.
$\mathrm{M}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}+\mathrm{cR}$ belongs to $(0, a]\}$, $\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{M}(\mathrm{a})$.
$M(a)=X(a)+Y(a), U(a)=M(a)-M(a-2)$.
Let $T(a)=0, U(a)=S(a)-N(a)$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$,
$\mathrm{H}(\mathrm{a}) \sim\left(\mathrm{a} / 4-\mathrm{a} / \ln (\mathrm{a})-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1))^{*}(\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-\right.$

1) +1$) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)) *((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
2) +1$) / 2) /\left(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-\right.$
3) $/ \ln (\mathrm{a} / 2-1)))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1))^{*}(((\mathrm{a}-3) / 2-(\mathrm{a}-3) / \ln (\mathrm{a}-3))-((\mathrm{a} / 2-2) / 2-$
(a/2-2)/ln(a/2-2)))).
Let $T(a)=1, U(a)=S(a)-N(a)+1$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$,
$\mathrm{H}(\mathrm{a}) \sim\left(\mathrm{a} / 4-\mathrm{a} / \ln (\mathrm{a})+1-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1))^{*}((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-\right.$
$1)+1) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)) *((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
4) +1$) / 2) /\left(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-\right.$
5) $/ \ln (\mathrm{a} / 2-1)))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1))^{*}(((\mathrm{a}-3) / 2-(\mathrm{a}-3) / \ln (\mathrm{a}-3))-((\mathrm{a} / 2-2) / 2-$
(a/2-2)/ln(a/2-2)))).

2.2. $\mathrm{H}(\mathrm{a}) \sim \mathrm{J}(\mathrm{a}) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})), \mathrm{a}>0$.

Maximum error is denoted as $00(\mathrm{a}), \mathrm{OO}(\mathrm{a}) \sim(\mathrm{W}(\mathrm{a})-\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})) \mathrm{)} / \mathrm{W}(\mathrm{a}) \sim 1 / 2$.
$\mathrm{J}=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(0, \mathrm{a} / 4]$ and cR belongs to $\left.\left(\mathrm{a} / 2,3^{*} \mathrm{a} / 4\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as J(a), J(a)=S(a/4)*(S(3*a/4)-S(a/2)).
$\mathrm{K}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 4, \mathrm{a} / 2]$ and cR belongs to ($3 * \mathrm{a} / 4, \mathrm{a}]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $K(a), K(a)=(S(a / 2)-S(a / 4)) *\left(S(a)-S\left(3^{*} a / 4\right)\right)$.
$\mathrm{J}(\mathrm{a}) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})) \sim\left(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4))^{*}\left(\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\left(3^{*} \mathrm{a} / 4\right) / \ln \left(3^{*} \mathrm{a} / 4\right)\right)-\right.\right.$

$\left.\left.\left.\left(3^{*} \mathrm{a} / 4\right) / \ln \left(3^{*} \mathrm{a} / 4\right)\right)-((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))\right)\right)+((((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))-((\mathrm{a} / 4) / 2-$
$\left.\left.(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)))^{*}\left((\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a}))-\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\left(3^{*} \mathrm{a} / 4\right) / \ln \left(3^{*} \mathrm{a} / 4\right)\right)\right)\right)\right)$.
2.2.1 $\mathrm{H}(\mathrm{a}) \sim \mathrm{J}(\mathrm{a})+\mathrm{p} 1+\mathrm{p} 2) /(J(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\mathrm{p} 2+\mathrm{q} 1+\mathrm{q} 2), \mathrm{a}>8$.

Maximum error is denoted as $02(\mathrm{a}), 02(\mathrm{a}) \sim 1 / 4$.
$P 1=\{(c L, c R) \mid c L$ belongs to $(0, a / 8]$ and $c R$ belongs to $(3 * a / 4,7 * a / 8]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 1, \mathrm{p} 1=\mathrm{S}(\mathrm{a} / 8)^{*}(\mathrm{~S}(7 * \mathrm{a} / 8)-\mathrm{S}(3 * \mathrm{a} / 4))$.
$\mathrm{P} 2=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $\left(\mathrm{a} / 4,3^{*} \mathrm{a} / 8\right]$ and cR belongs to $\left.(\mathrm{a} / 2,5 * \mathrm{a} / 8]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 2, \mathrm{p} 2=(\mathrm{S}(3 * \mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 4)) *(\mathrm{~S}(5 * \mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 2))$.
$\mathrm{Q} 1=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 8, \mathrm{a} / 4]$ and cR belongs to (7*a/8, a]\};
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as q1, $\mathrm{q} 1=(\mathrm{S}(\mathrm{a} / 4)-\mathrm{S}(\mathrm{a} / 8))^{*}\left(\mathrm{~S}(\mathrm{a})-\mathrm{S}\left(7^{*} \mathrm{a} / 8\right)\right)$.
$\mathrm{Q} 2=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $\left(3^{*} \mathrm{a} / 8, \mathrm{a} / 2\right]$ and cR belongs to ($\left.\left.5 * \mathrm{a} / 8,3 * \mathrm{a} / 4\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 2, \mathrm{q} 2=\left(\mathrm{S}(\mathrm{a} / 2)-\mathrm{S}\left(3^{*} \mathrm{a} / 8\right)\right)^{*}\left(\mathrm{~S}\left(3^{*} \mathrm{a} / 4\right)-\mathrm{S}\left(5^{*} \mathrm{a} / 8\right)\right)$.
2.2.2 H(a) $\sim(J(a)+p 1+\ldots+p 6) /(J(a)+K(a)+p 1+\ldots+p 6+q 1+\ldots+q 6), a>24$.

Maximum error is denoted as 06(a), 06(a)~1/8.
$\mathrm{P} 3=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(0, \mathrm{a} / 16]$ and cR belongs to $\left.\left(7 * \mathrm{a} / 8,15^{*} \mathrm{a} / 16\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 3, \mathrm{p} 3=\mathrm{S}(\mathrm{a} / 16)^{*}\left(\mathrm{~S}\left(15^{*} \mathrm{a} / 16\right)-\mathrm{S}(7 * \mathrm{a} / 8)\right)$.
$\mathrm{P} 4=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 8,3 * \mathrm{a} / 16]$ and cR belongs to $(3 * \mathrm{a} / 4,13 * \mathrm{a} / 16]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 4, \mathrm{p} 4=(\mathrm{S}(3 * \mathrm{a} / 16)-\mathrm{S}(\mathrm{a} / 8))^{*}\left(\mathrm{~S}\left(13^{*} \mathrm{a} / 16\right)-\mathrm{S}\left(3^{*} \mathrm{a} / 4\right)\right)$.
$\mathrm{P} 5=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $\left(\mathrm{a} / 4,5^{*} \mathrm{a} / 16\right]$ and cR belongs to $\left.\left(5 * \mathrm{a} / 8,11^{*} \mathrm{a} / 16\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 5, \mathrm{p} 5=\left(\mathrm{S}\left(5^{*} \mathrm{a} / 16\right)-\mathrm{S}(\mathrm{a} / 4)\right)^{*}\left(\mathrm{~S}\left(11^{*} \mathrm{a} / 16\right)-\mathrm{S}\left(5^{*} \mathrm{a} / 8\right)\right)$.
P6 $=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(3 * a / 8,7 * a / 16]$ and $c R$ belongs to $(a / 2,9 * a / 16]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 6, \mathrm{p} 6=(\mathrm{S}(7 * \mathrm{a} / 16)-\mathrm{S}(3 * \mathrm{a} / 8))^{*}(\mathrm{~S}(9 * \mathrm{a} / 16)-\mathrm{S}(\mathrm{a} / 2))$.
$\mathrm{Q} 3=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 16, \mathrm{a} / 8]$ and cR belongs to $(15 * \mathrm{a} / 16, \mathrm{a}]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 3, \mathrm{q} 3=(\mathrm{S}(\mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 16))^{*}\left(\mathrm{~S}(\mathrm{a})-\mathrm{S}\left(15^{*} \mathrm{a} / 16\right)\right)$.
$\mathrm{Q} 4=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(3 * \mathrm{a} / 16, \mathrm{a} / 4]$ and cR belongs to $(13 * \mathrm{a} / 16,7 * \mathrm{a} / 8]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 4, \mathrm{q} 4=\left(\mathrm{S}(\mathrm{a} / 4)-\mathrm{S}\left(3^{*} \mathrm{a} / 16\right)\right)^{*}\left(\mathrm{~S}(7 * \mathrm{a} / 8)-\mathrm{S}\left(13^{*} \mathrm{a} / 16\right)\right)$.
$\mathrm{Q} 5=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $\left(5 * \mathrm{a} / 16,3^{*} \mathrm{a} / 8\right]$ and cR belongs to $\left.\left(11 * \mathrm{a} / 16,3^{*} \mathrm{a} / 4\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 5, \mathrm{q} 5=\left(\mathrm{S}\left(3^{*} \mathrm{a} / 8\right)-\mathrm{S}\left(5^{*} \mathrm{a} / 16\right)\right)^{*}\left(\mathrm{~S}(3 * \mathrm{a} / 4)-\mathrm{S}\left(11^{*} \mathrm{a} / 16\right)\right)$.
Q6=\{(cL, cR)|cL belongs to ($7^{* *} \mathrm{a} / 16, \mathrm{a} / 2$] and cR belongs to ($\left.\left.9 * \mathrm{a} / 16,5^{*} \mathrm{a} / 8\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 6, \mathrm{q} 6=(\mathrm{S}(\mathrm{a} / 2)-\mathrm{S}(7 * \mathrm{a} / 16))^{*}\left(\mathrm{~S}\left(5^{*} \mathrm{a} / 8\right)-\mathrm{S}(9 * \mathrm{a} / 16)\right)$.
2.2.3 H(a) $\sim(J(a)+p 1+\ldots+p \alpha) /(J(a)+K(a)+p 1+\ldots+p \alpha+q 1+\ldots+q \alpha), \alpha<N(a)$.

Maximum error is denoted as $0 \alpha(\mathrm{a}), 0 \alpha(\mathrm{a}) \sim 1 /(\alpha+2)$.
$\alpha=2^{\wedge} \beta-2, \beta$ belongs to N and $\beta>0$.
Let $\beta=[\ln (\mathrm{a} / 4) / \ln (2)], 0 \alpha(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14+\mathrm{q} 1+\ldots+\mathrm{q} 14)$
Maximum error is denoted as 014(a), 014(a)~1/16.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30+\mathrm{q} 1+\ldots+\mathrm{q} 30)$
Maximum error is denoted as 030 (a), $030(\mathrm{a}) \sim 1 / 32$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62+\mathrm{q} 1+\ldots+\mathrm{q} 62)$
Maximum error is denoted as 062(a), 062(a)~1/64.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) / \mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 126)$
Maximum error is denoted as 0126(a), 0126(a)~1/128.

Shan Jian Wang

2.3. Conclusion

$\mathrm{S}(\mathrm{a})=\mathrm{Ch}^{*}(\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a})$), Ch~1 when $\mathrm{a}>\mathrm{a} 0$.
Error of $\mathrm{S}(\mathrm{a}) \sim \mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a})$ is denoted as $\mathrm{Oe}(\mathrm{a}), \mathrm{Oe}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.
(1) $\mathrm{H}(\mathrm{a}) \sim \mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha) / \mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha+\mathrm{q} 1+\ldots+\mathrm{q} \alpha), \alpha=2^{\wedge}[\ln (\mathrm{a} / 4) / \ln (2)]-2$.
(2) If T(a) $=0$, then $\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$

But,
(J(a) $+\mathrm{p} 1+\ldots+\mathrm{p} \alpha) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha+\mathrm{q} 1+\ldots+\mathrm{q} \alpha)>(\mathrm{a} / 4-\mathrm{a} / \ln (\mathrm{a})-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-$

1) $/ \ln (\mathrm{a} / 2-1))^{*}((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)+1) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
2) $) *((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)+1) / 2) /\left(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}((\mathrm{a}-1) / 2-(\mathrm{a}-\right.$
3) $/ \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1))^{*}((\mathrm{a}-$
$3) / 2-(a-3) / \ln (a-3))-((a / 2-2) / 2-(a / 2-2) / \ln (a / 2-2))))$.
$\mathrm{H}(\mathrm{a})>(\mathrm{H}(\mathrm{a})$ when $\mathrm{T}(\mathrm{a})=0)$, which is contradictory.
So, $\mathrm{T}(\mathrm{a})>0$ when $\mathrm{a}>\mathrm{a} 1$.
Error analysis endorse a1 (minimum) $=0$, appendix.
Any T(a) $>0, a>0$.
(3) If $\mathrm{T}(\mathrm{a})=1$, then $\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$

But,
(J(a) $+\mathrm{p} 1+\ldots+\mathrm{p} \alpha) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha+\mathrm{q} 1+\ldots+\mathrm{q} \alpha)>(\mathrm{a} / 4-\mathrm{a} / \ln (\mathrm{a})+1-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-$

1) $/ \ln (\mathrm{a} / 2-1)) *((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)+1) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
2))*((a/2-2)/2-(a/2-2)/ln(a/2-2)+1)/2)/(((a/2)/2-(a/2)/ln(a/2))*(((a-1)/2-(a-
2) $/ \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)) *(((\mathrm{a}-$
3)/2-(a-3)/ln(a-3))-((a/2-2)/2-(a/2-2)/ln(a/2-2)))).
$\mathrm{H}(\mathrm{a})>(\mathrm{H}(\mathrm{a})$ when $\mathrm{T}(\mathrm{a})=1)$, which is contradictory.
So, $\mathrm{T}(\mathrm{a})>1$ when $\mathrm{a}>\mathrm{a} 2$.
Error analysis endorse a2(minimum) $=4$, appendix.
Any T(a) $>1, \mathrm{a}>4$.
Conclusion: Any even number greater than 2 can be written as the sum of two prime numbers.

2.4. T(a)

The number of prime pair an even a can be written as is denoted as $\mathrm{T}(\mathrm{a})$,
$\left.\mathrm{T}(\mathrm{a}) \sim(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))^{*} \mathrm{~J}(\mathrm{a}) / \mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})\right)+\mathrm{X}(\mathrm{a})-\mathrm{X}(\mathrm{a}-2)-\mathrm{S}(\mathrm{a})+\mathrm{N}(\mathrm{a})$;
T(a)~ (($\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-$
1)))-((a/2-1)/2-(a/2-1)/ln(a/2-1))*(((a-3)/2-(a-3)/ln(a-3))-((a/2-2)/2-(a/2-
$2) / \ln (\mathrm{a} / 2-2))))^{*}\left(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4))^{*}\left(\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\left(3^{*} \mathrm{a} / 4\right) / \ln \left(3^{*} \mathrm{a} / 4\right)\right)-\right.\right.$
$((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2)))) /\left(\left(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)) *\left(\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\right.\right.\right.\right.$
(3*a/4)/ln(3*a/4))-((a/2)/2-(a/2)/ln(a/2))))+((((a/2)/2-(a/2)/ln(a/2))-((a/4)/2-

1) $/ \ln (\mathrm{a} / 2-1))^{*}((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)+1) / 2-((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
$2))^{*}((a / 2-2) / 2-(a / 2-2) / \ln (a / 2-2)+1) / 2+a / \ln (a)-a / 4$.

2.5. New Conjecture

$J(a) / J(a)+K(a)) \sim(J(a)+p 1+\ldots+p \alpha) /(J(a)+K(a)+p 1+\ldots+p \alpha+q 1+\ldots+q \alpha)$.

APPENDIX

Table 1. APPENDIX
$\left.\begin{array}{ccc}\hline \text { Function } & \text { If } & \text { Error } \\ \hline \begin{array}{c}\mathrm{N}(\mathrm{a})=\mathrm{a} / 4, \\ \mathrm{a} / 2 \text { belongs to } \\ \mathrm{A} ;\end{array} \\ \begin{array}{c}\mathrm{N}(\mathrm{a})=(\mathrm{a}+2) / 4, \\ \mathrm{a} / 2 \text { belongs to } \\ \text { B. }(\mathrm{a}>0)\end{array} & \mathrm{N}(\mathrm{a}) \sim \mathrm{a} / 4\end{array}\right)$

Appendix shows that the paper only covers five errors, and all five errors have their own limits for any $\mathrm{H}(\mathrm{a})$ form, after a finite expansion of $\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha+\mathrm{q} 1+\ldots+\mathrm{q} \alpha), 0 \alpha(\mathrm{a})$ becomes smaller, and the direction of inequality can be determined.

References

[1] Hardy, G. H., \& Littlewood, J. E. (1916). Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes. Acta Mathematica, 41(0), 119-196.
[2] Skewes, S. (1933). On the Difference $\pi(x)-\operatorname{li}(x)$ (I). Journal of the London Mathematical Society, s1-8(4), 277-283.
[3] Skewes, S. (1955). On the Difference $\pi(x)-\operatorname{li}(x)$ (II). Proceedings of the London Mathematical Society, s3-5(1), 4870.
[4] Stoll, D., \& Demichel, P. (2011). The impact of () complex zeros on () for $<10^{\wedge}\left\{10^{13}\right\}$. Mathematics of Computation, 80(276), 2381-2394.
[5] Ingham, A. E. (1934). The Distribution of Prime Numbers. Cambridge University Press.
[6] Montgomery, H. L., \& Vaughan, R. C. (2007). Multiplicative number theory I: Classical theory. Cambridge University Press.

