A Result of Even \& Prime

Shan Jian Wang
wangjianshan@oakmon.cn

Abstract

Objective: Any even number greater than 2 can be written as the sum of two prime numbers: Does the prime pair exist universally? If does, is the prime pair unique relatively? If not, how many prime pairs sum to one particular even? Method: $\mathrm{H}(\mathrm{a})=\mathrm{Z}(\mathrm{a}) / \mathrm{Y}(\mathrm{a})$ Result: Any even a greater than 2 can be written as the sum of two prime numbers, there are $\mathrm{T}(\mathrm{a})$ forms of the two prime numbers.

Keywords

Goldbach, Euler, even, prime.

1. Structure

1.1. Concept

Set of natural numbers is denoted as $\mathrm{N}, \mathrm{N}=\{\mathrm{n}\}$.
If one variable belongs to N, then it is denoted as n.
If two variables belong to N, then they are denoted as $n 1$ and n2.

Set of even numbers is denoted as $A, A=\{a \mid a=2 * n\}$.
If one variable belongs to A, then it is denoted as a.
If two variables belong to A, then they are denoted as a1 and a2.

Set of odd numbers is denoted as $B, B=\left\{b \mid b=2^{*} n+1\right\}$.
If one variable belongs to B, then it is denoted as b.
If two variables belong to B, then they are denoted as b1 and b2.

Set of odd composite numbers is denoted as C ,

[^0]If $\{1$ is also a prime number $\}$ is true,
then $\mathrm{D}=\{\mathrm{d} \mid \mathrm{d}$ belongs to B and d does not belong to C$\}$;
If $\{1$ is also a prime number $\}$ is false,
then $D=\{d \mid d$ belongs to B and d does not belong to C, d is not 1.\}.

If one variable belongs to D , then it is denoted as d .
If two variables belong to D, then they are denoted as $d 1$ and d2.
1.2. $\mathrm{N}(\mathrm{a}) \sim \mathrm{a} / 4$
$a=a / 2+a / 2, a>0$.
If $a / 2$ belongs to A, define $a=[(a / 2-1)-2 n)]+[(a / 2+1)+2 n]$.
$(a / 2+1)-2 n$ is denoted as bL, $(a / 2+1)+2 n$ is denoted as bR.
$\mathrm{n}<(\mathrm{a}-2) / 4, \operatorname{Card}(\mathrm{n})=\mathrm{a} / 4$.
If $a / 2$ belongs to B, define $a=(a / 2-2 n)+(a / 2+2 n)$.
$a / 2-2 n$ is denoted as $b L, a / 2+2 n$ is denoted as $b R$.
$\mathrm{n}<\mathrm{a} / 4, \operatorname{Card}(\mathrm{n})=(\mathrm{a}+2) / 4$.
Three piecewise functions: $b L, b R ; N(a)$.
$\mathrm{bL}=(\mathrm{a} / 2+1)-2 \mathrm{n}, \mathrm{a} / 2$ belongs to $\mathrm{A} ; \mathrm{bL}=\mathrm{a} / 2-2 \mathrm{n}, \mathrm{a} / 2$ belongs to B .
$\mathrm{bR}=(\mathrm{a} / 2+1)+2 \mathrm{n}, \mathrm{a} / 2$ belongs to $\mathrm{A} ; \mathrm{bR}=\mathrm{a} / 2+2 \mathrm{n}, \mathrm{a} / 2$ belongs to
B.
$\operatorname{Card}(\mathrm{n})$ is denoted as $\mathrm{N}(\mathrm{a})$:
$N(a)=a / 4, a / 2$ belongs to $A ; N(a)=(a+2) / 4, a / 2$ belongs to B.
$\mathrm{N}(\mathrm{a}) \sim \mathrm{a} / 4, \mathrm{a}>\mathrm{a} 0$. Error is denoted as $\mathrm{O}(\mathrm{a}), \mathrm{O}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.

1.3. e=bR-bL

Increasing positive even sequence corresponds to $\{a \mid a>0\}$, set e with the sequence incrementally.

Triangular lattice, any cell corresponds to (a, e) and ($b L, b R$).

If f belongs to A, then $\{(a, e) \mid a=f\}$ is denoted as $\{L=f\}$.
If g belongs to B, then $G=\{(b L, b R) \mid b L=g$ or $b R=g\}$ is denoted as $\{\mathrm{R}=\mathrm{g}\}$.
e is one function of a when g is invariable, any odd composite number belongs to $(0, a)$ corresponds to one cell in $\{\mathrm{L}=\mathrm{a}\}$.
Equation is $e=|(a-g)-g|, a>g$.
$e=|(a-1)-1|, a>1$.

$e=|(a-5)-5|, a>5$.

...
1.5. $U(a)-T(a)=S(a)-N(a)$

If bL or bR belongs to C , then color the white cell.
If bL and bR belong to C , then black the white cell.

The number of prime numbers in $(0, a]$ is denoted as $\mathrm{I}(\mathrm{a})$,
The number of odd composite numbers in $[0, a]$ is denoted as S(a).
The number of black cells in $\{L=a\}$ is denoted as $U(a)$,
The number of colored non-black cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as V(a);
The number of colorless cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $T(a)$.
$\mathrm{V}(\mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{U}(\mathrm{a})=\mathrm{N}(\mathrm{a}), \mathrm{V}(\mathrm{a})=\mathrm{S}(\mathrm{a})-2^{*} \mathrm{U}(\mathrm{a})$.

1.6. Algebra

\{Any even number greater than 2 can be written as the sum of two prime numbers $\}$ can be denoted as $\{A n y T(a)>1, a>4$.

2. Analysis

$\mathrm{W}=\{(\mathrm{bL}, \mathrm{bR}) \mid \mathrm{bL}$ belongs to($0, \mathrm{a} / 2]$, bR belongs to $[\mathrm{a} / 2, \mathrm{a})$.
$\operatorname{Card}(b L, b R)$ is denoted as $W(a), W(a)=N(a)^{\wedge} 2$.
W(22)=36

If $b L$ and $b R$ belong to C, then the cell is denoted as ($c L, c R$).
$X=\{(c L, c R) \mid c L$ and $c R$ belong to ($0, ~ a / 2-1]$.$\} ;$
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{X}(\mathrm{a}), \mathrm{X}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 2-1) *(\mathrm{~S}(\mathrm{a} / 2-1)+1) / 2$.
$\mathrm{Y}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 2]$ and cR belongs to $[\mathrm{a} / 2, \mathrm{a}-1]$.$\} ;$ $\operatorname{Card}(c L, c R)$ is denoted as $Y(a), Y(a)=S(a / 2) *(S(a-1)-S(a / 2-1))$. If $b L$ and $b R$ belong to Y, then the cell is denoted as ($y L, y R$). $Z=\{(y L, y R) \mid y L+y R$ belongs to ($0, \mathrm{a}]$.$\} ;$
$\operatorname{Card}(\mathrm{yL}, \mathrm{yR})$ is denoted as $\mathrm{Z}(\mathrm{a}), \mathrm{Z}(\mathrm{a})=\mathrm{H}(\mathrm{a}) * \mathrm{Y}(\mathrm{a})$.

2.1. $\mathrm{H}(\mathrm{a}) \sim \mathrm{H}(\mathrm{a}-2)$

Maximum error is denoted as $\operatorname{Or}(\mathrm{a}), \operatorname{Or}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$. $M=\{(c L, c R) \mid c L+c R$ belongs to $(0, a]\}$, $\operatorname{Card}(c L, c R)$ is denoted as M(a).
$M(a)=X(a)+Y(a), U(a)=M(a)-M(a-2)$.
Let $T(a)=0, U(a)=S(a)-N(a)$
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$,
H(a)~(a/4-a/ln(a)-((a/2-1)/2-(a/2-1)/ln(a/2-1))*((a/2-

1) $/ 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)+1) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
2))*((a/2-2)/2-(a/2-2)/ln(a/2-2)+1)/2)/(((a/2)/2-
$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2)) *(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-$
2) $/ \ln (a / 2-1)))-((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1)) *(((a-3) / 2-(a-$
$3) / \ln (a-3))-((a / 2-2) / 2-(a / 2-2) / \ln (a / 2-2))))$.
Let $T(a)=1, U(a)=S(a)-N(a)+1$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$,
$H(a) \sim\left(a / 4-a / \ln (a)+1-((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1))^{*}((a / 2-\right.$
1)/2-(a/2-1)/ln(a/2-1)+1)/2+((a/2-2)/2-(a/2-2)/ln(a/2-
$\left.2))^{*}((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)+1) / 2\right) /(((\mathrm{a} / 2) / 2-$
$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-$
3) $/ \ln (a / 2-1)))-((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1)) *(((a-3) / 2-(a-$
4) $/ \ln (\mathrm{a}-3))-((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2))))$.

2.2. $\mathrm{H}(\mathrm{a}) \sim \mathrm{J}(\mathrm{a}) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})), \mathrm{a}>0$.

Maximum error is denoted as $\mathrm{OO}(\mathrm{a}), \mathrm{OO}(\mathrm{a}) \sim(\mathrm{W}(\mathrm{a})-$ (J(a)+K(a)))/W(a)~1/2.
$\mathrm{J}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 4]$ and cR belongs to $(\mathrm{a} / 2$, 3*a/4]\};

Card(cL, cR) is denoted as J(a), J(a)=S(a/4)*(S(3*a/4)-S(a/2)).
$K=\{(c L, c R) \mid c L$ belongs to $(a / 4, a / 2]$ and $c R$ belongs to (3*a/4,
a]\};
Card(cL, cR) is denoted as $K(a), K(a)=(S(a / 2)-S(a / 4)) *(S(a)-$ S(3*a/4))
$J(a) /(J(a)+K(a)) \sim\left(((a / 4) / 2-(a / 4) / \ln (a / 4)) *\left(\left(\left(3^{*} a / 4\right) / 2-\right.\right.\right.$

(a/4)/ln(a/4))*(((3*a/4)/2-(3*a/4)/ln(3*a/4))-((a/2)/2-
(a/2)/ln(a/2))))+((((a/2)/2-(a/2)/ln(a/2))-((a/4)/2-
$(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)))^{*}\left((\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a}))-\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\right.\right.$
(3*a/4) $/ \ln (3 * a / 4))$) $)$).
2.2.1 H(a) $\sim(J(a)+p 1+p 2) /(J(a)+K(a)+p 1+p 2+q 1+q 2), a>8$.

Maximum error is denoted as 02(a), 02(a)~1/4.
$\mathrm{P} 1=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 8]$ and cR belongs to $(3 * \mathrm{a} / 4$, 7*a/8]\};
Card(cL, cR) is denoted as p1, p1=S(a/8)*(S(7*a/8)-S(3*a/4)).
$\mathrm{P} 2=\left\{(\mathrm{cL}, \mathrm{cR}) \mid c \mathrm{c}\right.$ belongs to $\left(\mathrm{a} / 4,3^{*} \mathrm{a} / 8\right]$ and cR belongs to $(\mathrm{a} / 2$, 5*a/8]\};
$\operatorname{Card}(c L, \quad c R)$ is denoted as p 2 , $\mathrm{p} 2=(\mathrm{S}(3 * \mathrm{a} / 8)-$ $S(a / 4))^{*}\left(S\left(5^{*} a / 8\right)-S(a / 2)\right)$.
$\mathrm{Q} 1=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to (a/8, a/4] and cR belongs to (7*a/8, a]\};
Card(cL, cR) is denoted as q1, $\mathrm{q} 1=(\mathrm{S}(\mathrm{a} / 4)-\mathrm{S}(\mathrm{a} / 8))^{*}(\mathrm{~S}(\mathrm{a})-$ S(7*a/8)).
$\mathrm{Q} 2=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to (3*a/8, a/2] and cR belongs to (5*a/8, 3*a/4]\};
$\operatorname{Card}(\mathrm{cL}, \quad \mathrm{cR})$ is denoted as $\mathrm{q} 2, \quad \mathrm{q} 2=(\mathrm{S}(\mathrm{a} / 2)-$ S(3*a/8))*(S(3*a/4)-S(5*a/8)).
2.2.2 $\mathrm{H}(\mathrm{a}) \sim(J(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 6) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 6+\mathrm{q} 1+\ldots+\mathrm{q} 6)$, $a>24$.
Maximum error is denoted as 06(a), 06(a)~1/8.
$\mathrm{P} 3=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(0, \mathrm{a} / 16]$ and cR belongs to $\left(7^{*} \mathrm{a} / 8\right.$, 15*a/16]\};
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 3, \mathrm{p} 3=\mathrm{S}(\mathrm{a} / 16)^{*}\left(\mathrm{~S}\left(15^{*} \mathrm{a} / 16\right)-\right.$ S(7*a/8)).
$P 4=\left\{(c L, c R) \mid c L\right.$ belongs to $\left(a / 8,3^{*} a / 16\right]$ and $c R$ belongs to (3*a/4, 13*a/16]\};
Card(cL, cR) is denoted as p4, p4 $=\left(\mathrm{S}\left(3^{*} \mathrm{a} / 16\right)\right.$ $\mathrm{S}(\mathrm{a} / 8))^{*}\left(\mathrm{~S}\left(13^{*} \mathrm{a} / 16\right)-\mathrm{S}\left(3^{*} \mathrm{a} / 4\right)\right.$).
$P 5=\left\{(c L, c R) \mid c L\right.$ belongs to $\left(a / 4,5^{*} a / 16\right]$ and $c R$ belongs to (5*a/8, 11*a/16]\};
$\operatorname{Card}(\mathrm{cL}, \quad \mathrm{cR})$ is denoted as $\mathrm{p} 5, \quad \mathrm{p} 5=\left(\mathrm{S}\left(5^{*} \mathrm{a} / 16\right)\right.$ $\mathrm{S}(\mathrm{a} / 4))^{*}\left(\mathrm{~S}\left(11^{*} \mathrm{a} / 16\right)-\mathrm{S}\left(5^{*} \mathrm{a} / 8\right)\right.$).
P6=\{(cL, cR)|cL belongs to (3*a/8, 7*a/16] and cR belongs to (a/2, 9*a/16]\};
$\operatorname{Card}(\mathrm{cL}, \quad \mathrm{cR})$ is denoted as $\mathrm{p} 6, \mathrm{p} 6=\left(\mathrm{S}\left(7^{*} \mathrm{a} / 16\right)-\right.$ $S(3 * a / 8))^{*}(S(9 * a / 16)-S(a / 2))$.
$\mathrm{Q} 3=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 16, \mathrm{a} / 8]$ and cR belongs to (15*a/16, a]\};
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 3, \mathrm{q} 3=(\mathrm{S}(\mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 16))^{*}(\mathrm{~S}(\mathrm{a})-$ S(15*a/16)).
$\mathrm{Q} 4=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $\left(3^{*} \mathrm{a} / 16, \mathrm{a} / 4\right]$ and cR belongs to (13*a/16, 7*a/8]\};
$\operatorname{Card}(\mathrm{cL}, \quad \mathrm{cR})$ is denoted as $\mathrm{q} 4, \quad \mathrm{q} 4=(\mathrm{S}(\mathrm{a} / 4)-$ S(3*a/16))*(S(7*a/8)-S(13*a/16)).
$\mathrm{Q} 5=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(5 * \mathrm{a} / 16,3 * \mathrm{a} / 8$] and cR belongs to
(11*a/16, 3*a/4]\};
$\operatorname{Card}(\mathrm{cL}, \quad \mathrm{cR})$ is denoted as $\mathrm{q} 5, \mathrm{q} 5=\left(\mathrm{S}\left(3^{*} \mathrm{a} / 8\right)\right.$ $\left.S\left(5^{*} \mathrm{a} / 16\right)\right)^{*}\left(\mathrm{~S}(3 * \mathrm{a} / 4)-\mathrm{S}\left(11^{*} \mathrm{a} / 16\right)\right)$.
Q6=\{(cL, cR)|cL belongs to ($7^{* *} \mathrm{a} / 16, \mathrm{a} / 2$] and cR belongs to (9*a/16, 5*a/8]\};
$\operatorname{Card}(c L, \quad c R)$ is denoted as $q 6, \quad q 6=(S(a / 2)-$ $S(7 * a / 16))^{*}(S(5 * a / 8)-S(9 * a / 16))$.
2.2.3 H(a) $\sim(J(a)+p 1+\ldots+p \alpha) /(J(a)+K(a)+p 1+\ldots+p \alpha+q 1+\ldots+q \alpha)$, $\alpha<N(a)$.
Maximum error is denoted as $0 \alpha(a), 0 \alpha(a) \sim 1 /(\alpha+2)$.
$\alpha=2^{\wedge} \beta-2, \beta$ belongs to N and $\beta>0$.
Let $\beta=[\ln (a / 4) / \ln (2)], 0 \alpha(a) \sim 0$ when $a>a 0$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14+\mathrm{q} 1+\ldots+\mathrm{q} 14)$
Maximum error is denoted as 014(a), 014(a)~1/16.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30+\mathrm{q} 1+\ldots+\mathrm{q} 30)$
Maximum error is denoted as 030(a), O30(a)~1/32.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62) /(J(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62+\mathrm{q} 1+\ldots+\mathrm{q} 62)$
Maximum error is denoted as 062(a), 062(a)~1/64.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) / \mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 12$
6)

Maximum error is denoted as 0126(a), 0126(a)~1/128.

2.3. Conclusion

$S(a)=C h *(a / 2-a / \ln (a)), C h \sim 1$ when $a>a 0$.
Error of $S(a) \sim a / 2-a / \ln (a)$ is denoted as $\mathrm{Oe}(\mathrm{a}), \mathrm{Oe}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.
(1) $\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha) / \mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} \alpha+\mathrm{q} 1+\ldots+\mathrm{q} \alpha)$, $\alpha=2^{\wedge}[\ln (a / 4) / \ln (2)]-2$.
(2) If $\mathrm{T}(\mathrm{a})=0$, then $\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$

But,
$(J(a)+p 1+\ldots+p \alpha) / J(a)+K(a)+p 1+\ldots+p \alpha+q 1+\ldots+q \alpha)>(a / 4-$ $a / \ln (a)-((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1)) *((a / 2-1) / 2-(a / 2-$

1) $/ \ln (a / 2-1)+1) / 2+((a / 2-2) / 2-(a / 2-2) / \ln (a / 2-2)) *((a / 2-$
2)/2-(a/2-2)/ln(a/2-2)+1)/2)/(((a/2)/2-(a/2)/ln(a/2))*(((a-
1)/2-(a-1)/ln(a-1))-((a/2-1)/2-(a/2-1)/ln(a/2-1)))-((a/2-
1)/2-(a/2-1)/ln(a/2-1))*(((a-3)/2-(a-3)/ln(a-3))-((a/2-2)/2-
(a/2-2)/ln(a/2-2)))).
So, $T(a)>0$ when $a>a 1$.
Error analysis endorse a1(minimum) $=0$, appendix.
Any $\mathrm{T}(\mathrm{a})>0, \mathrm{a}>0$.
(3) If $\mathrm{T}(\mathrm{a})=1$, then $\mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-$
2))

But,
$(J(a)+p 1+\ldots+p \alpha) /(J(a)+K(a)+p 1+\ldots+p \alpha+q 1+\ldots+q \alpha)>(a / 4-$
$a / \ln (a)+1-((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1)) *((a / 2-1) / 2-(a / 2-$ 1) $/ \ln (\mathrm{a} / 2-1)+1) / 2+((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2))^{*}((\mathrm{a} / 2-$ 2)/2-(a/2-2)/ln(a/2-2)+1)/2)/(((a/2)/2-(a/2)/ln(a/2))*(((a-1)/2-(a-1)/ln(a-1))-((a/2-1)/2-(a/2-1)/ln(a/2-1)))-((a/2-1)/2-(a/2-1)/ln(a/2-1))*(((a-3)/2-(a-3)/ln(a-3))-((a/2-2)/2-(a/2-2)/ln(a/2-2))) $)$.
So, $\mathrm{T}(\mathrm{a})>1$ when $\mathrm{a}>\mathrm{a} 2$.
Error analysis endorse a2(minimum) $=4$, appendix.
Any $\mathrm{T}(\mathrm{a})>1, \mathrm{a}>4$.
Conclusion: Any even number greater than 2 can be written as the sum of two prime numbers.

2.4. T(a)

The number of prime pair an even a can be written as is denoted as T(a),

T(a)~(Y(a)-Y(a-2))*J(a)/(J(a)+K(a))+X(a)-X(a-2)-S(a)+N(a); T(a)~ (($\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))^{*}(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-$ ((a/2-1)/2-(a/2-1)/ln(a/2-1)))-((a/2-1)/2-(a/2-1)/ln(a/21)) ${ }^{(}((\mathrm{a}-3) / 2-(\mathrm{a}-3) / \ln (\mathrm{a}-3))-((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$ $2))))^{*}(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)))^{*}\left(\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\right.\right.$ (3*a/4)/ln(3*a/4))-((a/2)/2-(a/2)/ln(a/2))))/((((a/4)/2-(a/4)/ln(a/4))*(((3*a/4)/2-(3*a/4)/ln(3*a/4))-((a/2)/2$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))))+((((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))-((\mathrm{a} / 4) / 2-$ $(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)))^{*}\left((\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a}))-\left(\left(3^{*} \mathrm{a} / 4\right) / 2-\right.\right.$
$\left.\left.\left.\left.\left(3^{*} a / 4\right) / \ln \left(3^{*} a / 4\right)\right)\right)\right)\right)+((a / 2-1) / 2-(a / 2-1) / \ln (a / 2-1)) *((a / 2-$
1)/2-(a/2-1)/ln(a/2-1)+1)/2-((a/2-2)/2-(a/2-2)/ln(a/2-
$2))^{*}((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)+1) / 2+\mathrm{a} / \ln (\mathrm{a})-\mathrm{a} / 4$.

2.5. New Conjecture

$J(a) /(J(a)+K(a)) \sim(J(a)+p 1+\ldots+p \alpha) /(J(a)+K(a)+p 1+\ldots+p \alpha+q 1+$... $+\mathrm{q} \alpha$).

APPENDIX

Table 1. APPENDIX

$S(a)=a / 2-I(a) \quad S(a) \sim a / 2-a / \ln (a) \quad$ Oe(a)
appendix

References

[1] Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. http://dx.doi.org/10.1080/028418501127346846
[2] Hu, T. and Desai, J.P. (2004) Soft-Tissue Material Properties under Large Deformation: Strain Rate Effect. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, 1-5 September 2004, 2758-2761.
[3] Ortega, R., Loria, A. and Kelly, R. (1995) A Semiglobally Stable Output Feedback PI2D Regulator for Robot Manipulators. IEEE Transactions on Automatic Control, 40, 1432-1436. http://dx.doi.org/10.1109/9.402235
[4] Wit, E. and McClure, J. (2004) Statistics for Microarrays: Design, Analysis, and Inference. 5th Edition, John Wiley \& Sons Ltd., Chichester.
[5] Prasad, A.S. (1982) Clinical and Biochemical Spectrum of Zinc Deficiency in Human Subjects. In: Prasad, A.S., Ed., Clinical, Biochemical and Nutritional Aspects of Trace Elements, Alan R. Liss, Inc., New York, 5-15.
[6] Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica Della Pineta di san Vitale (Ravenna). Ph.D. Thesis, Bologna University, Bologna.
[7] Wu, J.K. (1994) Two Problems of Computer Mechanics Program System. Proceedings of Finite Element Analysis and CAD, Peking University Press, Beijing, 9-15.
[8] Honeycutt, L. (1998) Communication and Design Course. http://dcr.rpi.edu/commdesign/class1.html

Wright and Wright, W. (1906) Flying-Machine. US Patent No. 821393.

[^0]: $\mathrm{C}=\left\{\mathrm{c} \mid \mathrm{c}=\left(2^{*} \mathrm{n} 1+1\right)^{*}\left(2^{*} \mathrm{n} 2+1\right), \mathrm{n} 1\right.$ is not 0 and n 2 is not 0.$\}$.
 If one variable belongs to C, then it is denoted as c.
 If two variables belong to C, then they are denoted as c 1 and c 2 .
 Set of prime numbers is denoted as D:

