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Abstract

On 1859, the german mathematician Georg Friedrich Bernhard Riemann made one of his most famous
publications “On the Number of Prime Numbers less than a Given Quantity” when he was developing his
explicit formula to give an exact number of primes less than a given number x, in which he conjectured that
“all non-trivial zeros of the zeta function have a real part equal to 1

2
”. Riemann was sure of his statement,

but he could not prove it, remaining as one of the most important hypotheses unproven for 163 years.

This paper will prove that the Riemann Hypothesis is true., based on the following statements:

� The resulting value of the Euler-Riemann zeta function ζ(k) is the center of a spiral on the complex
plane, where k ∈ C.

� The center of this spiral when ζ(k) = 0, coincides with the origin of coordinates of the complex plane.

� There exists a function related to this spiral S∗
−k(n), such that the equality is satisfied:

ζ(k) = lim
n→∞

[
n∑

n=1

1

nk
− S∗

−k(n)

]
And S∗

−k(n) is a spiral with center at the origin of coordinates of the complex plane, and
∑n

n=1
1
nk is a

spiral with center at ζ(k).
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Figure 1: Spiral graphics in the complex plane given by the function S∗
−k(n) (blue), the series

∑n
n=1

1
nk

(green) and the point ζ(k) (red).
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1 Introduction

1.1 Euler product and the sum of inverse powers.

The infinite sum of inverse powers is a series of great interest for mathematics in number theory. Leonhard
Euler [2] managed to relate this series to an infinite product that goes through all the prime numbers:

∞∑
n=1

1

nk
=

∏
p∈P

pk

pk − 1

Where k ∈ C ∧ p is the n-th prime number.

This series is convergent for values of Re(k) > 1, however it is divergent for values of Re(k) ≤ 1.

Euler was able to find a closed formula for even powers, 2k when k ∈ N:

∞∑
n=1

1

n2k
=

(−1)k−1(2π)2kB2k

2(2k)!

Where B2k are Bernoulli numbers; B0 = 1, B1 = −1/2, B2 = 1/6, etc.

For example for k = 1, (the classic Basel problem) [3] is easily solved with this equality:

Example 1

∞∑
n=1

1

n2∗1 =
(−1)1−1(2π)2∗1B2∗1

2(2 ∗ 1)!
∞∑

n=1

1

n2
=

(−1)0(2π)2B2

2(2)!

∞∑
n=1

1

n2
=

1 ∗ 4π2 1
6

2 ∗ 2
∞∑

n=1

1

n2
=

π2

6

1.2 The Euler-Riemann zeta function ζ(k).

Riemann introduced the function ζ(k) [4], making it equal to the series of the sum of the inverse of k-th power
inverses in the convergence range Re(k) > 1:

ζ(k) =

∞∑
n=1

1

nk

And it manages to give continuity to the function, in the range of the complex plane, where the series diverges
through the functional equation:

ζ(k) = 2kπk−1sin

(
πk

2

)
Γ(1− k)ζ(1− k)

Where Γ is the gamma function.

If Re(k) < 0, then ζ(k) can be calculated with the functional equation using of the value of the convergence of
the series of the inverse of the powers

∑∞
n=1

1
n1−k = ζ(1− k), so for example for k = −1:
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Example 2

ζ(−1) = 2−1π−1−1sin

(
π(−1)

2

)
Γ(1− (−1))ζ(1− (−1))

ζ(−1) = 2−1π−2sin

(
π(−1)

2

)
Γ(2))ζ(2)

ζ(−1) = 2−1π−2(−1)(1)
π2

6

ζ(−1) = − 1

12

From the functional equation, we deduce that for even negative values of k the function ζ(k) = 0, at these
“zeros” Riemann called “Trivial zeros”. There also exist values of k that lie within the range 0 < Re(k) < 1
that makes the function ζ(k) = 0, these values of k are called “Nontrivial zeros” of the function ζ(k) and which
Riemann conjectured all lie on the straight line Re(k) = 1

2 .

The conjecture cannot be proved with the Riemann functional equation alone, because the function is redundant
for the so-called critical range: 0 < Re(k) < 1, for example:

Example 3

ζ(0.1) = 20.1π−0.9sin

(
π ∗ 0.1

2

)
Γ(0.9)ζ(0.9)

y

ζ(0.9) = 20.9π−0.1sin

(
π ∗ 0.9

2

)
Γ(0.1)ζ(0.1)

Neither ζ(0.1), nor ζ(0.9) can be solved. .

To calculate the values of ζ(k) in the critical range 0 < Re(k) < 1, must to be used numerical methods that
calculate approximate values of ζ(k), which do not prove the hypothesis despite the fact that all computationally
obtained non-trivial zeros have the value of Re(k) = 1

2 .

2 Complex power of a number and its conjugate.

The complex power of a number is deduced from properties of logarithms and Euler’s identity. This will be
a basic tool for the study of functions in complex variable, to convert a complex number in polar form to its
Cartesian form and vice-versa:

z = na+bi = naeibln(n) = na [cos (b lnn) + i sin (b lnn)]

And the conjugate:
z = na−bi = nae−ibln(n) = na [cos (b lnn)− i sin (b lnn)]

3 Bernoulli numbers and the sum of k-th power.

In mathematics, the Bernoulli numbers Bk is a set of successive rational numbers with relevant importance in
number theory. They appear in Combinatorics, in the expansion of the tangent functions and the hyperbolic
tangent by Taylor series. As we have already seen, Euler obtained a closed formula for ζ(k) when k is a positive
even number. If we replace Euler’s formula in the Riemann functional equation, we obtain another closed
formula for negative integer values of k:

ζ(−k) =
Bk+1

k + 1

Where k ∈ N

They are called Bernoulli numbers because Abraham de Moivre named them that way, in honor of Jakob
Bernoulli, the first mathematician who studied them. There are several ways to obtain the values of Bk, but
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they were obtained for the first time by Jakob Bernoulli, using series of sum of k-th power, so, for example,
Jakob managed to deduce that the sum of n consecutive natural numbers can be calculated with the equation:

n∑
n=1

n1 = 1 + 2 + 3 · · · = S1(n) =
1

2
n2 +

1

2
n

Where k = 1 and Sk(n) is a continuous function.

Similarly Jakob Bernoulli was able to obtain a formula for the sum of square powers S2(n):

n∑
n=1

n2 = 12 + 22 + 32 · · · = S1(n) =
1

3
n3 +

1

2
n2 +

1

6
n

In general one can obtain the sum of k-th power Sk(n), as a function of: Sk−1(n), Sk−2(n), Sk−3(n),...S0(n)
where k ∈ N:

n∑
n=1

nk = Sk(n) =
1

k + 1

[
(n+ 1)

k+1 − 1−
k−1∑
m=0

(
k + 1

m

)
Sm(n)

]

In a posthumous publication by Jakob Bernoulli [1], we can find a listing of the sums of powers up to k = 10.
Because of the relevance of Sk(n) for proving the Riemann hypothesis, in this publication we present the Sk(n)
functions up to k = 11 so that the reader can observe the properties we will state of the Sk(n) functions later:

n∑
n=1

nk = Sk(n)

n∑
n=1

n0 = S0(n) = n

n∑
n=1

n1 = S1(n) =
1

2
n2 +

1

2
n

n∑
n=1

n2 = S2(n) =
1

3
n3 +

1

2
n2 +

1

6
n

n∑
n=1

n3 = S3(n) =
1

4
n4 +

1

2
n3 +

1

4
n2

n∑
n=1

n4 = S4(n) =
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

n∑
n=1

n5 = S5(n) =
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2

n∑
n=1

n6 = S6(n) =
1

7
n7 +

1

2
n6 +

1

2
n5 − 1

6
n3 +

1

42
n

n∑
n=1

n7 = S7(n) =
1

8
n8 +

1

2
n7 +

7

12
n6 − 7

24
n4 +

1

12
n2

n∑
n=1

n8 = S8(n) =
1

9
n9 +

1

2
n8 +

2

3
n7 − 7

15
n5 +

2

9
n3 − 1

30
n

n∑
n=1

n9 = S9(n) =
1

10
n10 +

1

2
n9 +

3

4
n8 − 7

10
n6 +

1

2
n4 − 3

20
n2

n∑
n=1

n10 = S10(n) =
1

11
n11 +

1

2
n10 +

5

6
n9 − n7 + n5 − 1

2
n3 +

5

66
n

n∑
n=1

n11 = S11(n) =
1

12
n12 +

1

2
n11 +

11

12
n10 − 11

8
n8 +

11

6
n6 − 11

8
n4 +

5

12
n2
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Note 1 Up to this point, everything presented is public knowledge and available in the bibliography, so it was
not necessary to list the equations presented. From now on, when new concepts are presented, all new equations
presented will be listed.

3.1 Obtaining the Bernoulli numbers by the sum of powers.

It was known that to obtain the Bernoulli numbers it was necessary to derive Sk(n) and evaluate it at zero,
however this concept is not entirely correct since for B1 when applying this concept it is not possible to obtain
the value of B1 = −1/2, value obtained by other methods. The correct way to obtain the Bernoulli numbers
by the sum of k-th power is with the equation:

Bk = (−1)kS′
k(0) (1)

The equation (1) will be proofed later on

For example, to obtain B2:

Example 4

B2 = (−1)2S′
2(0)

B2 = (1)

[
1

3
n3 +

1

2
n2 +

1

6
n

]′
n=0

B2 =

[
n2 + n+

1

6

]
n=0

B2 =
1

6

Similarly, from the function Sk(n) all Bernoulli numbers are obtained: B0 = 1, B1 = −1/2, B2 = 1/6, B3 =
0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, B9 = 0, B10 = 5/66, B11 = 0.

It is noted that:
Bk = 0 / k = 2m+ 1,m ∈ N

3.2 Simplified formula to find Sk(n).

Another way to write the formula for the sum of k-th power is as follows:

Sk(n) =

k+1∑
p=1

Cp(k)n
p

Where

Cp(k) =
(−1)k+1−p

k + 1

(
k + 1

p

)
Bk+1−p

And Bk is obtained by:

Bk = − 1

k + 1

k−1∑
m=0

(
k + 1

m

)
Bm

Note 2 This way of finding Sk(n), will be very useful for the purpose of this work.

4 Properties of the function Sk(n), and its coefficients Cp(k).

4.1 Properties of the function Sk(n).

In the following, we will enumerate some properties of the function Sk(n) that are easy to verify, when k ∈ N:
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Figure 2: Graph of the function Sk(n) for values of k from 0 to 5. Common intersection points and the sym-
metry axis.

1. In any function Sk(n), or sum of k-th power, the ordered pairs: (1, 1); (0, 0); (−1, 0) ∈ Sk(n) (view Figure
2).

2. Any function Sk(n) is ”even symmetric” when k is odd and ”odd symmetric” when k is even, always with
respect to the symmetry axis n = − 1

2 . (view Figure 2).

3. If we integrate Sk(n) between [−1, 0] or, equivalently, evaluate the integral at n = −1, we obtain ζ(−k).

ζ(−k) = −
∫ 0

−1

Sk(n)dn (2)

The equation (2) will be proofed later on.

4. In the coefficients of the functions Sk(n) it is observed that there is a pattern betwenn the coefficients
of the función Sk(n) and an intimate relationship with the function ζ(k), and they are function of k in
order of ascending degree starting at:k−1, k0, k1, k2, k3, ...kn. For example the first 6 coefficients satisfy
the following functions Cp(k) where p is the position or order of the coefficients of Sk(n):

C1(k) =
1

k + 1
(3)

C2(k) =
1

2
(4)

C3(k) =
1

12
k (5)

C4(k) = 0 (6)

C5(k) =
k(k + 1)(k + 2)

720
(7)

C6(k) = 0 (8)
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4.2 The coefficients Cp(k) of Sk(n).

The coefficients Cp(k) can be calculated by solving polynomial regressions or systems of linear equations using
the values of the coefficients of the function Sk(n). But it is easier to obtain the coefficients by working a little
bit the known formula:

Sk(n) =

k+1∑
p=1

(−1)k+1−p

k + 1

(
k + 1

p

)
Bk+1−pn

p =

k+1∑
p=1

Cp(k)n
k+2−p

To obtain:

Sk(n) =

k+1∑
p=1

Cp(k)n
k+2−p (9)

Where:

Cp(k) =
(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1 (10)

Proof of equation (10):

Factorizing k + 1 and developing the summation and binomial coefficient of Sk(n):

Sk(n) =
1

1 + k

[
(−1)k(k + 1)!

1!k!
Bkn+

(−1)k−1(k + 1)!

2!(k − 1)!
Bk−1n

2 +
(−1)k−2(k + 1)!

3!(k − 2)!
Bk−2n

3+

(−1)k−3(k + 1)!

4!(k − 3)!
Bk−3n

4 + · · ·+ (−1)1(k + 1)!

k!1!
B1n

k +
(−1)0(k + 1)!

(k + 1)!(0)!
B0n

k+1

]
Rearranging terms and accommodating the factorials in order to simplify:

Sk(n) =
1

1 + k

[
(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1(k + 1)!

k!1!
B1n

k +
(−1)2(k + 1)!

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[
(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1k!(k + 1)

k!1!
B1n

k +
(−1)2(k − 1)!k(k + 1)

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[
(−1)0

0!
B0n

k+1 +
(−1)1(k + 1)

1!
B1n

k +
(−1)2k(k + 1)

2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]
Rewriting as a summation of a product of factors:

Sk(n) =

k+1∑
p=1

(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1n
k+2−p

Where the coefficients Cp(k) are:

Cp(k) =
(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1

The ecuations (9) and (10) has been proofed.
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With the equation (4.2) it is possible to prove equation (1)

Proof of equation (1):

Deriving the equation (4.2) and evaluating at zero we obtain:

S′
k(0) =

k+1∑
p=1

(k + 2− p)
(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1(0)
k+1−p

Where the only term different from zero is when p = k + 1, so the expression reduces to:

S′
k(0) =

(−1)k(k + 1)!

(k + 1)k!
Bk

S′
k(0) =

(−1)k(k + 1)!

(k + 1)!
Bk

S′
k(0) = (−1)kBk

Reordering:
Bk = (−1)kS′

k(0)

the ecuation (1) has been proofed

Note that from the function Cp(k) when evaluated at k = −1 we obtain:

Cp(−1) = ζ(2− p) (11)

The equation (11) will be proofed later on.

5 The funtion S∗
k(n).

Knowing that the function Cp(k) allows us to obtain the coefficients of Sk(n), then it is possible to propose a
function S∗

k(n), which is the extension of the function Sk(n) but this time instead of adding k + 1 terms, the
sum of terms will be infinite.

Formula to calculate the sum of k-th power:

Sk(n) =

k+1∑
p=1

Cp(k)n
k+2−p

Proposed function:

S∗
k(n) =

∞∑
p=1

Cp(k)n
k+2−p (12)

Note 3 We will use the symbol ∗ to distinguish the sum of powers Sk(n), from the proposed function S∗
k(n).

Now let’s define ∆−k(n) as the difference between the two functions:

∆−k(n) =

n∑
n=1

nk − S∗
k(n) (13)

And ∆−k as the limit when n → ∞ of ∆−k(n):

∆−k = lim
n→∞

[
n∑

n=1

nk − S∗
k(n)

]
(14)

Replacing equation (12) in equation(14) we obtain:

∆−k = lim
n→∞

[
n∑

n=1

nk −
∞∑
p=1

Cp(k)n
k+2−p

]
(15)

10



5.1 Verification of the convergence of the function ∆−k.

It is known that the sum of k-th power is convergent for values of k < −1, therefore it is possible to verify if
convergence exists for ∆−k in this range:

Let k < −1:

The exponent of n is:

k < −1

k + 2− p < −1 + 2− p

k + 2− p < 1− p

Since p is always positive it is demonstrated that the power of n will always be negative:

k + 2− p < 0

Therefore: when n → ∞ and k < −1 it is satisfied that the value of nk+2−p = 0. Replacing nk+2−p in equation
(15) gives:

∆−k = lim
n→∞

[
n∑

n=1

nk − C1 ∗ 0− C2 ∗ 0− C3 ∗ 0− · · · − Cp ∗ 0

]

∆−k =

[ ∞∑
n=1

nk − 0− 0− 0− · · ·

]

∆−k =

∞∑
n=1

nk When k < −1 (16)

Making a change of variable of k by −k one can write equation (16) as follows:

∆k =

∞∑
n=1

1

nk
when k > 1 (17)

Therefore it is concluded that: the value of ∆k converges, and is equal to the sum of k-th power
inverses when k > 1.

Let’s see what happens to ∆−k when k = −1, in equation (15):

∆1 = lim
n→∞

[
n∑

n=1

n−1 − C1n
0 − C2n

−1 − C2n
−2 − · · ·

]

∆1 =

[ ∞∑
n=1

n−1 − C1 − 0− 0− · · ·

]
Since the sum of powers when k = −1 is infinite then:

∆1 =

[
∞− (−1)−1+1

(−1 + 1)(−1 + 1)!
B−1+1 − 0− 0− · · ·

]

∆1 =

[
∞− (−1)0

(0)(0)!
B0

]
∆1 = undetermined (18)

We conclude that ∆k is undetermined, so it has no convergence when k = 1.
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Now let’s analyze what happens with ∆−k in equation (15) when k ≥ 0:

Let us first separate the summation of Cp(k)n
k+2−p into two, where the first rank of p will be from 1 to

(k + 1) and the second rank, from (k + 2) to (∞):

∆−k = lim
n→∞

 n∑
n=1

nk −
k+1∑
p=1

Cp(k)n
k+2−p −

∞∑
p=k+2

Cp(k)n
k+2−p


Since:

n∑
n=1

nk =

k+1∑
p=1

Cp(k)n
k+2−p

We obtain:

∆−k = − lim
n→∞

 ∞∑
p=k+2

Cp(k)n
k+2−p


Developing the summation:

∆−k = − lim
n→∞

[
Ck+2(k)n

0 + Ck+3(k)n
−1 + Ck+4(k)n

−2 + · · ·
]

Replacing the limit:
∆−k = −[Ck+2(k) + Ck+3(k)0 + Ck+4(k)0 + · · · ]

Simplifying:
∆−k = −Ck+2(k) para k < 0 (19)

Replacing the value of Ck+2(k) gives:

∆−k = − (−1)k+1

(k + 1)(k + 1)!

k+1∏
m=1

(k + 2−m)Bk+1 (20)

Solving the product:

∆−k = − (−1)k+1

(k + 1)(k + 1)!
Bk+1 [(k + 1) ∗ k ∗ (k − 1) ∗ (k − 2) ∗ · · · ∗ 1]

∆−k = − (−1)k+1

(k + 1)(k + 1)!
Bk+1(k + 1)!

Simplifying terms:

∆−k =
(−1)kBk+1

(k + 1)
(21)

This equation is equivalent to the well-known formula for the function ζ(−k) when k ∈ N, and also satisfies
when k = 0.
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Theorem 1 Let S∗
k(n) be defined as:

S∗
k(n) =

∞∑
p=1

(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1n
k+2−p (22)

And the function ∆−k:

∆−k = lim
n→∞

[
n∑

n=1

nk − S∗
k(n)

]
It can be written:

∆−k = lim
n→∞

[
n∑

n=1

nk −
∞∑
p=1

(−1)p−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)Bp−1n
k+2−p

]
(23)

Since the limit when n → ∞ of the function converges for all k ∈ Z, and is expressed as a power series, it also
converges for any k ∈ C, moreover its value coincides with that of the function ζ(−k) therefore one can define
the function ζ(k) as follows:

ζ(k) = lim
n→∞

[
n∑

n=1

1

nk
− S∗

−k(n)

]
(24)

Where S∗
−k(n) is the related function of

∑n
n=1

1
nk .

Now let us compare the summation of k-th powers for any real value of k in the function S∗
k(n), giving in-

creasingly larger n values:

Example 5 Let k = 1
4 :

To facilitate the calculations without losing much precision, as k < 1, and n will become larger and larger,
we will use the first 3 terms of the function S∗

k(n), since the value of the rest of the terms tends quickly to 0:

S∗
k(n) ≈

1

k + 1
nk+1 +

1

2
nk +

k

12
nk−1 (25)

For n = 4
4∑

n=1

n
1
4 = 1

1
4 + 2

1
4 + 3

1
4 + 4

1
4 ∼= 4.91949469

S∗
1
4
(n) ≈ 1

1
4 + 1

n
1
4+1 +

1

2
n

1
4 +

1
4

12
n

1
4−1

S∗
1
4
(n) ≈ 4

5
n

5
4 +

1

2
n

1
4 +

1

48
n− 3

4

S∗
1
4
(4) ≈ 4

5
4

5
4 +

1

2
4

1
4 +

1

48
4−

3
4 ≈ 5.23995588

The difference ∆−k(n) between
∑n

n=1 n
k and S∗

k(n) is:

∆− 1
4
(4) =

4∑
n=1

n
1
4 − S∗

1
4
(4) ≈ −0.32046119

For n = 20
The sum is:

20∑
n=1

n
1
4 ∼= 34.57500317

The function S∗(n) is :
S∗

1
4
(20) = 34.89545455

13



And ∆(n):

∆− 1
4
(20) =

20∑
n=1

n
1
4 − S∗

1
4
(20) ≈ −0.32045138

For n = 1000
The sum is:

1000∑
n=1

n
1
4 ∼= 4501.221974

The function S∗(n) is:
S∗

1
4
(1000) = 4501.542425

y ∆(n):

∆− 1
4
(1000) =

1000∑
n=1

n
1
4 − S∗

1
4
(1000) ≈ −0.320451264

If we compute the value of ζ(− 1
4 ) by some numerical method we obtain the approximate value −0.320451264,

and by comparing with the value of ∆− 1
4
= ζ(− 1

4 )

Example 6 Now let’s calculate a second example, but this time when k ∈ C

Let k = −0.4− 7i:

This time we will tabulate the results and compare with ζ(0.4 + 7i):

n
∑n

n=1 n
−0.4−7i S∗

−0.4−7i(n) ∆0.4+7i

10 0.57811497 + 0.019131365i −0.441562086− 0.398323033i 1.019677056 + 0.417454399i
100 2.847975959 + 1.750845166i 1.82847357 + 1.333500916i 1.019502389 + 0.417344249i
1000 36.34167952− 5.123159998i 35.32217705− 5.540504261i 1.01950247 + 0.417344263i

If we calculate the value of ζ(0.4+7i) by some numerical method we obtain the approximate value of 1.01950247+
0.417344263i, and comparing with the value of ∆0.4+7i we again verify that ∆0.4+7i = ζ(0.4 + 7i).

6 The related function S∗
−k(n), the sum series of k-th power inverses,

the function ζ(k), and its conjugates.

6.1 The related function S∗
−k(n) to the sum series of k-th power inverses.

Since the function S∗
−k(n) is the function appearing in equation (24) it is necessary to rewrite the equation (22):

S∗
−k(n) =

∞∑
p=1

(−1)p−1

(1− k)(p− 1)!

p−1∏
m=1

(2− k −m)Bp−1n
2−k−p (26)

Developing and rearranging expression:

S∗
−k(n) =

1

(1− k)0!
B0n

1−k − 1

1!
B1n

−k − k

2!
B2n

−1−k − k(k + 1)

3!
B3n

−2−k − k(k + 1)(k + 2)

4!
B4n

−3−k − · · ·

S∗
−k(n) =

∞∑
p=1

Bp−1

(1− k)(p− 1)!

p−1∏
m=1

(k +m− 2)n2−k−p =

∞∑
p=1

Bp−1(k + p− 3)!

(k − 1)!(p− 1)!
n2−k−p (27)

Since k ∈ C, and let a, b ∈ R, it is convenient to use the product operator, to avoid factorials and the Gamma
function, so that: k = a+ bi, and introduce it in equation (26):

S∗
−k(n) =

∞∑
p=1

Bp−1

(1− a− bi)(p− 1)!

p−1∏
m=1

(a+m− 2 + bi)n2−a−p−bi (28)
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Applying properties of complex numbers:

S∗
−k(n) =

∞∑
p=1

(1− a+ bi)Bp−1

[(1− a)2 + b2] (p− 1)!

p−1∏
m=1

(a+m− 2 + bi)n2−a−pe−ib lnn (29)

Where Cp(−a− bi) is:

Cp(−a− bi) =
(1− a+ bi)Bp−1

[(1− a)2 + b2] (p− 1)!

p−1∏
m=1

(a+m− 2 + bi) (30)

Let up y vp defined as:
up(−a− bi) = Re [Cp(−a− bi)] (31)

vp(−a− bi) = Im [Cp(−a− bi)] (32)

Then:
Cp(−a− bi) = up + vpi (33)

The function can be written in its polar form:

S∗
−k(n) =

∞∑
p=1

n2−a−p [up + vpi]e
−ib lnn (34)

It can also be expressed in its Cartesian form:

S∗
−k(n) =

∞∑
p=1

n2−a−p [up + vpi] [cos(b lnn)− i sin(b lnn)]

S∗
−k(n) =

∞∑
p=1

n2−a−p {[up[cos(b lnn) + vp sin(b lnn)] + i [vp cos(b lnn)− up sin(b lnn)]} (35)

6.2 S∗
−k(n) conjugated.

Applying the conjugate property of the product of two complex numbers:

z ∗ w ∗ y = z ∗ w ∗ y

Since we know that Cp(−a − bi) is a product of complex numbers that have in common the same imaginary
part bi, the following deduction can be made:

Cp(−a− bi) =
Bp−1

[(1− a)2 + b2] (p− 1)!
(1− a+ bi) ∗ (a− 1 + bi) ∗ (a+ bi)(a+ 1 + bi) ∗ (a+ 2 + bi) ∗ · · ·

Applying the conjugate product property:

Cp(−a− bi) =
Bp−1

[(1− a)2 + b2] (p− 1)!
(1− a+ bi) ∗ (a− 1 + bi) ∗ (a+ bi) ∗ (a+ 1 + bi) ∗ (a+ 2 + bi) ∗ · · ·

Cp(−a− bi) =
Bp−1

[(1− a)2 + b2] (p− 1)!
(1− a− bi) ∗ (a− 1− bi) ∗ (a− bi)(a+ 1− bi) ∗ (a+ 2− bi) ∗ · · ·

Since:

Cp(−a+ bi) =
Bp−1

[(1− a)2 + b2] (p− 1)!
(1− a− bi) ∗ (a− 1− bi) ∗ (a− bi)(a+ 1− bi) ∗ (a+ 2− bi) ∗ · · ·

We infer that:
Cp(−a− bi) = Cp(−a− bi) = up − vpi (36)

Replacing equation (36) in equation (34) and finding its conjugate:

S∗
−a−bi(n) =

∞∑
p=1

n2−a−p[up + vpi] e−ib lnn

Finally:
S∗
−a−bi(n) = S∗

−a−bi
(n) = S∗

−a+bi(n) (37)
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6.3 The series of k-th power inverse Conjugate.

Applying the conjugate property of the sum of complex numbers to the inverse power series:

z + y + w = z + y + w

It is inferred that:
∞∑

n=1

1

na+bi
=

∞∑
n=1

1

na−bi
(38)

6.4 Conjugate of the function ζ(k).

From the conjugates of S∗
k(n) and

∑∞
n=1

1
nk the conjugate of ζ(k) can be deduced:

ζ(k) =

∞∑
n=1

1

nk
− lim

nto∞
S∗
−k(n) =

∞∑
n=1

1

nk
− lim

nto∞
S∗
−k(n) =

∞∑
n=1

1

nk
− lim

nto∞
S∗
−k

(n)

ζ(k) = ζ(k) (39)

7 Graphical interpretation of the function ζ(k).

7.1 Logarithmic spirals.

A logarithmic spiral is described in its polar form as follows:

r = a bθ

-40-40 -30-30 -20-20 -10-10 1010 2020 3030 4040 5050 6060

-40-40

-30-30

-20-20

-10-10
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3030

4040

00

Real

IImaginary

Real

Figure 3: Example of logarithmic spiral Cpn
2−a−pe−ib lnn when k = −1 + 10i and p = 2

And the sum of logarithmic spirals is also a logarithmic spiral, although with certain degeneracies, for example,
if one of the spirals converges to its center and another diverges from its center, the resulting spiral will try to
converge to its center, but then it will move away again.
Logarithmic spirals appear very often in nature, as for example in the snail shell, the shape of galaxies, the

spider web, or the turbulence of a fluid in the form of a tornado. It is not surprising that it also appeared in
the study of the sum of power series and the function ζ(k).

16



-40-40 -30-30 -20-20 -10-10 1010 2020 3030 4040 5050 6060

-40-40

-30-30

-20-20

-10-10

1010

2020

3030

4040

00

Real

Imaginary

Real

Figure 4: Example of logarithmic spiral Cpn
2−a−pe−ib lnn when k = −1 + 10i and p = 1

Considering that k = a+ bi, equation (34) shows us that the function S∗
−k(n) is a sum of functions of the family

of logarithmic spirals within the complex plane, and that it results in another spiral of the family of logarithmic
spirals, and the center of this spiral is at the origin. SpiralCenter = (0 + 0i) = 0:

S∗
−k(n) =

∞∑
p=1

n2−a−p [up + vpi]e
−ib lnn

If you would like to move the center of the function S∗
−k(n) you just have to add a complex number to the

function z:

S∗
−k(n) =

∞∑
p=1

n2−a−p [up + vpi]e
−ib lnn + z

Then the graph of the spiral would shift and its new center would be: Re(z)+Im(z). That is just what happens
in the limit of the of Eq.(24) when the inverse k-th power sum series is cleared:

∞∑
n=1

1

nk
= lim

n→∞
S∗
−k(n) + ζ(k)

This shows us that the series: sum of k-th power inverses is graphed as a sequence of points that are part of a
function of the family of logarithmic spirals whose center has coordinates ζ(k) in the complex plane.
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Figure 5: Example of logarithmic spiral C1n
2−a−pe−ib lnn + C2n

2−a−pe−ib lnn when k = −1 + 10i

1.30551.3055 1.3061.306 1.30651.3065 1.3071.307 1.30751.3075 1.3081.308 1.30851.3085 1.3091.309 1.30951.3095 1.311.31 1.31051.3105 1.3111.311

0.19250.1925

0.1930.193

0.19350.1935

0.1940.194

0.19450.1945

0.1950.195

0.19550.1955

0.1960.196

0.19650.1965

dd

Real

Imaginary

Real

ζ(2+27i)=1.3083 + 0.1946i

Real

Figure 6: Example of a logarithmic spiral of the series
∑∞

n=1
1
nk for k = 2 + 27i where ζ(k) is the center of

the spiral.

Now we understand that for values of Re(k) > 1 the spiral of the series
∑∞

n=1
1
nk converges to its center,

that is why it coincides with the Riemann Zeta function ζ(k), but when Re(k) < 1 the spiral diverges from its
center, so it is necessary to calculate it with equation (24).
When: Re(k) = 1 the spiral becomes a quasi-circumference:

S∗
−1−bi(n) =

bi

b20!
[cos (b lnn)− i sin (b lnn)]n0

S∗
−1−bi(n) =

i

b 0!
[cos (b lnn)− i sin (b lnn)]

S∗
−1−bi(n) =

1

b
[sin (b lnn) + i cos (b lnn)] (40)

Graphing the series
∑∞

n=1
1

n1+bi yields a quasi-circumference spiral with center at ζ(1 + bi).

If we plot the functions of S∗
−k(n) and

∑∞
n=1

1
nk in the space R → C we observe two similar helices, but the

first with its axis at n and the second shifted where ζ(k) is its axis. The domino of the functions is: D = ]0,∞[
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Figure 7: Example of a quasi-circumferential logarithmic spiral of the series
∑∞

n=1
1

n1+5i where ζ(1 + 5i) is the
center of the spiral.

When n → ∞ and Re(k) > 1 , the helices converge to their axis (Figure 8), if Re(k) = 1 the helices tend to be
circular (Figure 9), and if Re(k) < 1 the helices diverge from their axis (Figure 10).

When k is a “Nontrivial zero”, both helixs coincide and their axis coincides with the axis n (Figure 11).

Figure 8: Example of logarithmic helixs in the space C → R of
∑∞

n=1
1
nk (Series of points in light blue) and

the related function S∗
−k(n) ( purple) for Re(k) > 1.
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Figure 9: Example of logarithmic helix in the space C → R of
∑∞

n=1
1
nk (Series of points in light blue) and the

related function S∗
−k(n) (purple) for Re(k)( = 1.

Figure 10: Example of logarithmic helixs in the space C → R of
∑∞

n=1
1
nk (Series of points in light blue) and

the related function S∗
−k(n) (purple) for Re(k) < 1.

8 Period and variable amplitude curves.

Now that it is known that the function ζ(k) is the center of a spiral in the complex plane, we can also plot
separately the sum of powers in both the real part and the imaginary part:

Re [ζ(k)] = lim
n→∞

{
n∑

n=1

1

na
cos(b lnn)−

∞∑
n=1

[up cos(b lnn) + vp sin(b lnn)]n
2−p−a

}
(41)

Im [ζ(k)] = lim
n→∞

{
n∑

n=1

1

na
sin(−b lnn)−

∞∑
n=1

[vp cos(b lnn)− up sin(b lnn)]n
2−p−a

}
(42)
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Figure 11: Example of logarithmic helix in the space C → R of
∑∞

n=1
1
nk (Series of points in light blue) and

the related function S∗
−k(n) (purple) for k = 0.5 + 14.13 first non-trivial zero. The spirals coincide.

Reordering:

lim
n→∞

{ ∞∑
n=1

[up cos(b lnn) + vp sin(b lnn)]n
2−p−a

}
=

∞∑
n=1

1

na
cos(b lnn)−Re [ζ(k)] (43)

lim
n→∞

{ ∞∑
n=1

[vp cos(b lnn)− up sin(b lnn)]n
2−p−a

}
=

∞∑
n=1

1

na
sin(−b lnn)− Im [ζ(k)] (44)

From equations (43) and (44), it is observed that the functions Re
[
S∗
−k(n)

]
and Im

[
S∗
−k(n)

]
oscillate about

the horizontal n-coordinate axis, on the other hand the series
∑∞

n=1
1
na cos(b lnn) and

∑∞
n=1

1
na sin(−b lnn)

oscillate about their mean value −Re [ζ(k)] and −Im [ζ(k)] respectively:

Figure 12: Graphical representation of functions: Re
[
S∗
−k(n)

]
(purple) and serie

∑∞
n=1

1
na cos(b lnn) (Series

of points in light blue) that oscillates with respect to its mean value −Re [ζ(k)]
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Figure 13: Graphical representation of functions: Im
[
S∗
−k(n)

]
(purple)y la serie

∑∞
n=1

1
na sin(−b lnn) (Series

of points in light blue) that oscillates with respect to its mean value −Im [ζ(k)]

By the mean value theorem it can be written:

ζ(k) = − 1

d− c

∫ d

c

k+1∑
n=1

1

nk
dn (45)

ζ(k) = − 1

d− c

∫ d

c

S−k(n)dn (46)

Where d− c is the period of the series.

Equation (46) is the general form of equation (2) which will be demonstrated below:

Demonstration of equation (2) If we integrate the function Sk(n) on the interval [−1, 0] we obtain:

−
∫ 0

−1

Sk(n)dn = −
∫ 0

−1

k+1∑
p=1

(−1)p−1Bp−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)nk+2−pdn

−
∫ 0

−1

Sk(n)dn = −
k+1∑
p=1

∫ 0

−1

(−1)p−1Bp−1

(k + 1)(p− 1)!

p−1∏
m=1

(k + 2−m)nk+2−pdn

−
∫ 0

−1

Sk(n)dn = −
k+1∑
p=1

[
(−1)p−1Bp−1

(k + 1)(p− 1)!(k + 3− p)

p−1∏
m=1

(k + 2−m)nk+3−p

]0

−1

−
∫ 0

−1

Sk(n)dn =

[
k+1∑
p=1

(−1)p−1Bp−1

(k + 1)(p− 1)!(k + 3− p)

p−1∏
m=1

(k + 2−m)(−1)
k+3−p

]

−
∫ 0

−1

Sk(n)dn =

[
k+1∑
p=1

(−1)k+2Bp−1

(k + 1)(p− 1)!(k + 3− p)

p−1∏
m=1

(k + 2−m)

]

−
∫ 0

−1

Sk(n)dn = −

[
k+1∑
p=1

(−1)k+2Bp−1

(k + 1)(p− 1)!(k + 3− p)
∗ (k + 1)!

(k + 2− p)!

]

−
∫ 0

−1

Sk(n)dn = − (−1)k+2

(k + 1)

[
k+1∑
p=1

Bp−1(k + 1)!

(p− 1)!(k + 3− p)!

]
(47)
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On the other hand, if from the known equation to find the Bernoulli numbers

Bk = − 1

k + 1

k−1∑
m=0

(
k + 1

m

)
Bm

we can find Bk+1:

Bk+1 = − 1

k + 2

k+1∑
p=1

(
k + 2

p− 1

)
Bp−1

Bk+1 = − 1

k + 2

k+1∑
p=1

(k + 2)!

(p− 1)!(k + 3− p)!
Bp−1

Bk+1 = −
k+1∑
p=1

(k + 1)!

(p− 1)!(k + 3− p)!
Bp−1 (48)

Substituting equation (48) into (47):

−
∫ 0

−1

Sk(n)dn = (−1)k+1 Bk+1

(k + 1)

And the second term is: −ζ(−k) :

−ζ(−k) = −
∫ 0

−1

Sk(n)dn

Finally:

ζ(−k) =

∫ 0

−1

Sk(n)dn (49)

Equation (2) has been proved

9 Proof of the Riemann Hypothesis.

Let k be a complex number such that k = a+ bi where a, b ∈ R ∧ ζ(k) = 0.
From the Riemann functional equation:

ζ(a+ bi) = 2a+biπa+bi−1 sin

(
π(a+ bi)

2

)
Γ(1− a− bi)ζ(1− a− bi)

It is known that for the critical band range 0 < a < 1, the terms:

2a+biπa+bi−1 sin

(
π(a+ bi)

2

)
Γ(1− a− bi) ̸= 0

Therefore, it must comply:
ζ(a+ bi) = ζ(1− a− bi) = 0 (50)

On another hand, from the property of conjugates of ζ(k), it must be fulfilled:

ζ(a+ bi) = ζ(a+ bi) = ζ(a− bi) = 0 (51)

Therefore it can be written:
ζ(a− bi) = ζ(1− a+ bi) = 0 (52)

Replacing (24) in (50) and (52) the following 4 equations can be written:

lim
n→∞

[
n∑

n=1

1

na+bi
− S∗

−a−bi(n)

]
= 0 (53)

lim
n→∞

[
n∑

n=1

1

na−bi
− S∗

−a+bi(n)

]
= 0 (54)
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lim
n→∞

[
n∑

n=1

1

n1−a−bi
− S∗

a−1+bi(n)

]
= 0 (55)

lim
n→∞

[
n∑

n=1

1

n1−a+bi
− S∗

a−1−bi(n)

]
= 0 (56)

If we make a change of variable from a = 1
2 + δ we can rewrite the four equations:

lim
n→∞

[
n∑

n=1

1

n
1
2+δ+bi

− S∗
− 1

2−δ−bi(n)

]
= 0 (57)

lim
n→∞

[
n∑

n=1

1

n
1
2+δ−bi

− S∗
− 1

2−δ+bi(n)

]
= 0 (58)

lim
n→∞

[
n∑

n=1

1

n
1
2−δ−bi

− S∗
− 1

2+δ+bi(n)

]
= 0 (59)

lim
n→∞

[
n∑

n=1

1

n
1
2−δ+bi

− S∗
− 1

2+δ−bi(n)

]
= 0 (60)

Figure 14: Graphical representation in the complex plane of values of k for which the function ζ(k) = 0.

Applying power properties:

lim
n→∞

[
n∑

n=1

1

n
1
2+δ

e−ib lnn − S∗
− 1

2−δ−bi(n)

]
= 0 (61)

lim
n→∞

[
n∑

n=1

1

n
1
2+δ

eib lnn − S∗
− 1

2−δ+bi(n)

]
= 0 (62)

lim
n→∞

[
n∑

n=1

1

n
1
2−δ

eib lnn − S∗
− 1

2+δ+bi(n)

]
= 0 (63)

lim
n→∞

[
n∑

n=1

1

n
1
2−δ

e−ib lnn − S∗
− 1

2+δ−bi(n)

]
= 0 (64)

24



Transforming the equations to Cartesian mode:

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

[cos(b lnn)− i sin(b lnn)]− S∗
− 1

2−δ−bi(n)

}
= 0 (65)

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

[cos(b lnn) + i sin(b lnn)]− S∗
− 1

2−δ+bi(n)

}
= 0 (66)

lim
n→∞

{
n∑

n=1

1

n
1
2−δ

[cos(b lnn) + i sin(b lnn)]− S∗
− 1

2+δ+bi(n)

}
= 0 (67)

lim
n→∞

{
n∑

n=1

1

n
1
2−δ

[cos(b lnn)− i sin(b lnn)]− S∗
− 1

2+δ−bi(n)

}
= 0 (68)

By separating the real part and the imaginary part, the following 8 equations are formed:

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

cos(b lnn)−Re
[
S∗
− 1

2−δ−bi(n)
]}

= 0 (69)

lim
n→∞

{
−

n∑
n=1

1

n
1
2+δ

sin(b lnn)− Im
[
S∗
− 1

2−δ−bi(n)
]}

= 0 (70)

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

cos(b lnn)−Re
[
S∗
− 1

2−δ+bi(n)
]}

= 0 (71)

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

sin(b lnn)− Im
[
S∗
− 1

2−δ+bi(n)
]}

= 0 (72)

lim
n→∞

{
n∑

n=1

1

n
1
2−δ

cos(b lnn)−Re
[
S∗
− 1

2+δ+bi(n)
]}

= 0 (73)

lim
n→∞

{
n∑

n=1

1

n
1
2−δ

sin(b lnn)− Im
[
S∗
− 1

2+δ+bi(n)
]}

= 0 (74)

lim
n→∞

{
n∑

n=1

1

n
1
2−δ

cos(b lnn)−Re
[
S∗
− 1

2+δ−bi(n)
]}

= 0 (75)

lim
n→∞

{
−

n∑
n=1

1

n
1
2−δ

sin(b lnn)− Im
[
S∗
− 1

2+δ−bi(n)
]}

= 0 (76)

By properties of conjugates in complex numbers, the following equivalences are verified:

(69) ≡ (71)

(70) ≡ (72)

(73) ≡ (75)

(74) ≡ (76)

If we add the equations (69) with (75) and factoring:

lim
n→∞

{
n∑

n=1

1

n
1
2+δ

cos(b lnn) +

n∑
n=1

1

n
1
2−δ

cos(b lnn)−Re
[
S∗
− 1

2−δ−bi(n)
]
−Re

[
S∗
− 1

2+δ−bi(n)
]}

= 0

lim
n→∞

{
n∑

n=1

1

n
1
2

cos(b lnn)

[
1

nδ
+

1

n−δ

]
−Re

[
S∗
− 1

2−δ−bi(n)
]
−Re

[
S∗
− 1

2+δ−bi(n)
]}

= 0 (77)
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And similarly we add (70) with (76):

lim
n→∞

{
−

n∑
n=1

1

n
1
2+δ

sin(b lnn)−
n∑

n=1

1

n
1
2−δ

sin(b lnn)− Im
[
S∗
− 1

2−δ−bi(n)
]
− Im

[
S∗
− 1

2+δ−bi(n)
]}

= 0

lim
n→∞

{
−

n∑
n=1

1

n
1
2

sin(b lnn)

[
1

nδ
+

1

n−δ

]
− Im

[
S∗
− 1

2−δ−bi(n)
]
− Im

[
S∗
− 1

2+δ−bi(n)
]}

= 0 (78)

Now let us consider δ = 0 in equation (77):

lim
n→∞

{
2

n∑
n=1

1

n
1
2

cos(b lnn)− 2 Re
[
S∗
− 1

2−bi(n)
]}

= 0 (79)

Let us similarly consider δ = 0 in equation (78):

lim
n→∞

{
−2

n∑
n=1

1

n
1
2

sin(b lnn)− 2 Im
[
S∗
− 1

2−bi(n)
]}

= 0 (80)

Adding (79) with (80) and then simplifying we obtain the following expression:

lim
n→∞

{
2

n∑
n=1

1

n
1
2

[cos(b lnn)− i sin(b lnn)]− 2 S∗
− 1

2−bi(n)

}
= 0 (81)

2 lim
n→∞

{
n∑

n=1

1

n
1
2+bi

− S∗
− 1

2−bi(n)

}
= 0 (82)

lim
n→∞

{
n∑

n=1

1

n
1
2+bi

− S∗
− 1

2−bi(n)

}
= 0 (83)

And by properties of conjugates in complex numbers, the equation is also obtained:

lim
n→∞

{
n∑

n=1

1

n
1
2−bi

− S∗
− 1

2+bi(n)

}
= 0 (84)

Therefore, for all b that satisfy the equality:

ζ(a± b i) = 0 (85)

There exists a number a ∈ R such that a = 1
2 , and it satisfies the equality:

ζ(
1

2
± b i) = 0 (86)

Theorem 2 has been demonstrated:

Theorem 2 All non trivial zeros of the Riemann zeta function have real part equal to 1
2 .

Therefore, the Riemann Hypothesis is true.
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10 Conclusion and final comments.

There remained several findings to be shown, around the Euler-Riemann zeta function ζ(k), but these were far
from the objective of this work, which is to prove the Riemann Hypothesis. However, the proof of equation (11)
remained pending, which is achieved by making k = −1 in equation (9), from which we obtain:

Cp(−1) = −Bp−1

p− 1

With a change of variable of −k = 2− p, equation (11) is proved.

Cp(−1) = ζ(2− p)

This demonstrates that the values of ζ(k), Bk and Cp(k) are interdependent, so for example as Bk can be
calculated from a summation that depends on the Bernoulli numbers, similarly Cp can be written as a function
of ζ(k), Bk and the same function ζ(k) can be expressed as an infinite sum of values depending on ζ(−m) where
N.
Is interesting to know that equation (9) can also be expressed as a summation of higher order derivatives,
although we do not use it in this paper:

S∗
k(n) =

∞∑
p=1

(−1)p−1Bp−1

(k + 1)(p− 1)!
∗ dp−1

dnp−1

(
nk+2−p

)
(87)

Finally, this research work gives us insights to make the following two conjectures about the zeta function:

� If the amplitude and period of the function S∗
−k(n) could be computed, ζ(k) could be computed exactly

with the mean value integral.

� One can write Bk as a continuous function in the complex plane, which depends on ζ(k). This function
has “trivial zeros” when K is an odd integer greater than 1, and has “nontrivial zeros” that coincide with
the “nontrivial zeros” of ζ(k).
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