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Abstract

Spike-timing dependent plasticity in biological neural networks has been proven to be
important during biological learning process. On the other hand, artificial neural networks use a
different way to learn, such as Back-Propagation or Contrastive Hebbian Learning. In this work we
introduce approximate STDP, a new neural networks learning framework more similar to the
biological learning process. It uses only STDP rules for supervised and unsupervised learning,
every neuron distributed learn patterns and don’t need a global loss or other supervised
information. We also use a numerical way to approximate the derivatives of each neuron in order
to better use SDTP learning and use the derivatives to set a target for neurons to accelerate
training and testing process. The framework can make predictions or generate patterns in one
model without additional configuration. Finally, we verified our framework on MNIST dataset for
classification and generation tasks.

1. Introduction

All animals with brains has the ability to learn, but how they learns is still being studied by
neuroscientists. Spike-timing dependent plasticity (STDP) [4, 13, 16] is believed to be the
fundamentals of brain's learning process. Although it can also be described in very simple
mathematical forms [1], but which is very different from common learning algorithms for
artificial neural networks (ANN), like Back-Propagation (BP) [2], Contrastive Hebbian Learning
(CHL) [5] or Simulated Annealing [18].

There are many differences between biological learning and learning algorithms of ANN.
Some properties that biological learning has but ANN learning algorithms don’t are: (i) All the
information a neuron needs for learning comes from the neuron itself, like input and output of
the neuron or derivatives. They don’t require other neuron's behavior or a global loss, neither the
information to tell them when to learn, like clamped phase or free phase in CHL. (ii) They don't
distinguish between supervised learning or unsupervised learning, just use one learning rule for
all situations. They also don't distinguish between training and testing. (iii) Some observed
biological characteristics, like feedback connections, asymmetric weights and temporal dynamics
of neurons.

There are many ANN Learning algorithms that can satisfy some of the properties above.
Contrastive Hebbian learning (CHL) [5, 14, 15] does not require knowledge of any other neurons
or a global loss, but CHL has to tell the network to do different algorithms in clamped phase and
free phase and it also requires synaptic symmetries. Target propagation [12] computes local
errors at each layer of the network using information about the target, which not need a global
loss but still need the derivatives of other neurons to propagated error signal. The recirculation
algorithm [11] don’t need any other information but the derivatives of the neurons,
unfortunately it need symmetries weight. The framework in [17] use difference as a target to
perform back-propagation. It doesn’t require global loss and has asymmetries weight, but the



learning method is different from real neurons like STDP or Hebbian rules.
In this paper, we proposed a new learning framework called aSTDP, which satisfy all those

properties above and it has the same performance as existing ANN learning algorithms. Our
method requires only the input of the neuron and derivative of the neuron to perform learning
algorithms, which has the same formula as STDP. On the other hand, we can also treat it as a
special CHL without free phase. CHL use clamped phase and free phase to approximate the
neuron's derivative, but biological neural networks react to input all the time and don't have a
free phase. So we use a weakly clamped phase and a strongly clamped phase to approximate the
neuron's derivative at each moment to remove the free phase.

We apply our framework on a continuous hopfield neural network (CHNN) for supervised
learning and unsupervised learning. As an energy-based model, CHNN also has the problem of
getting stuck in local minima. To solve this problem, we add a fake target to each hidden neuron
of the network, it performs a random search-like algorithm to help the network find a better
state, which makes the network perform better at test time.

Artificial neural networks commonly use different learning algorithms for supervised or
unsupervised learning, but we think there is no real supervise learning in biological learning.
Animals learn their environment to survive and evolve, but they doesn't have a teacher or any
supervise information. Human babies may learn how to talk from their parents, but parents can’t
teach them how to see and hear. They just learn to adapt to the environment like a unsupervised
way. Motivated to create a more biologically plausible learning, we converting supervised
learning to unsupervised learning by concatenate the input data and the labels as new data to do
unsupervised learning. This automatically make prediction problem an in-painting problem by
clamped the input data to get the labels. We can also generate samples from the model by
clamped the label to get the input data. And this making input neurons also output neurons,
which is consistent with biological observations that photoreceptor neurons also has feedback
connections.

The main contributions of this paper is as follows:
1. We propose a new artificial neural networks learning framework that is very similar to
biologically learning process, which based on CHNN, and can be used for both supervised
and unsupervised learning.
2. We propose a modified STDP learning algorithms and approximate it with a numerical
method.
3. By add fake targets to neurons, we help the network getting better results and increasing
speed for both training and testing.
Finally, we verified it on MNIST dataset for classification and generation tasks.

2. Model andMethods

2.1 Model
We use a CHNN in our framework, as a neural network model with feedback connections

and lateral connections instead of just feedforward connections, it is more similar to a biological
neural network than other models.

2.1.1 CHNN



The CHNN we use is same as [6]. Suppose there are several neurons in the network, every
neuron has an internal state s, every two neurons are connected with a weight, and every
neurons has a bias. Classical leaky integrator neural equation is used to calculate neurons
behaviors. It follows:

))((1 iiii ssRss   (1)

where Ri(s) represents the pressure on neuron i from the rest of the network, while ε is the

time constant parameter. Moreover, suppose Ri(s) is of this form:
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Where Wj,i is the weight from the jth neuron to the ith neuron, bi is the bias of the ith neuron
and ρ is a nonlinear function. The purpose of this formula is to go down the energy function,
which is also defined by [6]:
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Where θ is the parameters in the model, in this caseW and b. Derive E with respect to s and
with (1), we can get:
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So the dynamics of the network is to perform gradient descent in E, each fix point for s will
correspond to a local minimum in E.

2.1.2 Add inputs
We split s into two parts s = (svis, shid), visible neurons svis and hidden neurons shid. Where

visible neurons contain input and output neurons, and others are hidden neurons. For the input
and output neurons svis, we add another pressure to push it towards a target t which is set to the
input or output data:
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Where datai is the input or output data for the ith visible neuron. β is the parameter of the
degree to which the network is affected by the data. This is also equivalent to add another term
in the energy function E:
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Which is the same idea as [7], the different between us is that β in this paper is not infinite
for input neurons, and we don’t distinguish input and output.

So the training process is to make C smaller, and we can define:
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2.2 STDP Learning
STDP is considered the main form of learning in brain, it relates the change in synaptic

weights with the timing difference between spikes in postsynaptic neurons and presynaptic
neurons. Experimental in [1] show that the STDP rule can also be form as:
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Where α is the learning rate. If we change the form of STDP rule to:
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Which is more similar to the CHL rule since:
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Where ρc is the clamped phase fix point and ρf is the free phase fix point, we ignore the
small term Δρ(si)Δρ(sj) and we can get (9) for two interconnected neurons.

We can find that STDP and CHL have the same form, but neither is biologically plausible
learning. CHL usually randomly initialize the state each time new data is input which biological
neural networks don't. And CHL needs free phase, while biological neural networks also don't.
STDP on the other hand is more biologically plausible, it don’t have any phases and learn at every
moment. But STDP will have a zero ds when the state of the network is stable, so it can’t even
learn a dataset with one data in it. A more biologically plausible should always on clamped phase
with a β and learn at every moment. When new data is input they will move from the old state to
the new state by β instead of reinitialize the state.

2.2 Calculate derivative
From (7) we can have the derivative:
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Unfortunately s is not a free parameter so we can’t directly calculate it. Also from (7) we can
know, when increase β, the network will stop in a state with smaller C and bigger E, so decreasing
C is equivalent to increasing β. And whenW is fixed, s is a function of β. So we can use numerical
methods approximate the derivative of ∂C/∂β by:
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Treat Δs as an intermediate bridge we can replace ∂s in ∂s/∂β with ∂s in ∂s/∂W, if we define
Δsβ = ∂s/∂β*Δβ and ΔsW = ∂s/∂W*ΔW, we can get ∂C/∂W by:
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Where ΔC/Δsβ is calculate with numerical methods use a small Δβ, and ∂sw/∂W can get by
analytical methods:
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So by calculating the ∂s/∂β corresponding to each s, we can reduce the C of the network.

2.2.1 Approximate derivative
We add another network in order to more efficiently use numerical methods to approximate

∂s/∂β. So there are two networks netl and nets in our framework, they have the same structure
and parameters W and B, but different states s and β. One with a small βs and other with a large
βl, this will make the network have two different states ss and sl. So by calculate the difference
between ss and sl , we can estimate dβ/ds by:
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Let z = ρ(s), then we can get a new STDP rule:
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Since βs and βl are constants, we can merge Δβ to α. In training process, we will use (15) to
updateW and B at every iteration.

CHL will make each data corresponds to a state, ignoring the relationship between the states,
but the relationship between data is important in some tasks like video detection or object
tracking. So we also update W and B when changing the state of the network, reducing the
energy on the path. Therefore, modeling the relationship between states to a certain extent.



Figure 1 left: biological STDP. Middle: simulation results in [1]. right our simulation result

Our version of STDP rule also can fit the biological observations. Figure 1 left shows the
observation of STDP rule in biological nerve cells, and figure 1 middle shows the simulation result
by [1] use (8). Notice that the biological STDP is obviously not symmetrical up and down, while
the simulation results in [1] are symmetrical up and down. Figure 1 right shows our simulation
results, which are also asymmetric up and down since our two β has a bias, and more closely with
biological observations. The detailed simulation process will be described in section 3.

2.2.2 Fake Target
As an energy-based model, CHNN has many stats, each corresponds to a local minima in

space of s. If the state can interpret the data well, that means the value of the visible neuron is
equal to the data. C will be zero and β will no longer functional, so the ss and sb will also be same,
which mean dz of each neuron will becomes zero. On the other hand if the state can’t interpret
the data, that means the value of the visible neuron is different to the data. βs and βl will cause
different ss and sl for every neuron in the network and dz will be nonzero for each neuron. So, by
that dz becomes an indicator of network’s certainty, finding a good state with small dz is critical
to the performance of the network.

binocular rivalry [20] is a biologically phenomenon of visual perception in which perception
alternates between different images presented to each eye. Biological neural network changes in
different states if it can't interpret the data. But as an energy-based model, CHNN will stay in a
local minima forever if data don’t change.

For a more biologically similar framework, we add a temporary fake target to each hidden
neuron to help the network jump out of bad local minima. The value of the fake target is as
fallow:

cf tdzsignt *)( (16)

Where sign(dz) is a function equal to 1 when dz is positive and -1 when dz is negative, tc is a
constant hyper-parameter. The probability Pf of fake target to acting on neuron i is proportional
to the magnitude of dz, which fits a Bernoulli distribution, for neuron i:
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Where k is a scale factor, therefore, the larger the dz, the more likely the network will jump
out of the current local minimum. How to choose a suitable k is a tricky problem, if k is too small,
fake target will be no effect. If k is too large, the network will tend to learn the fake target for
hidden neurons instead of the real target for visible neurons, and bring instability to training
process. To solve these problems, we use a adaptive method to get k.



Finding the global minimum in a non-convex space is a hard problem, one method is first
use random search to find multiple initial values, then use the gradient-based method to find the
local optimum value, and finally compare all the results to find the smallest value. Borrow this
idea, we use fake target to jump out of a local minima, and use gradient descent to go to a new
local minima, while recording the smallest dz. If dz in the new local minima is larger than the
smallest dz, we keep jumping, otherwise we stay.

We keep record smallest dz by calculate moving average of dz, because network will stay
longer in a local minima with a small dz than other, it make moving average of dz a biased
estimate of smallest dz. So the probability of adaptive fake target is as:
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Still, k is a scale factor andm is moving average factor.
We can also think of this process as a kind of random annealing, where dz can be thought of

as another form of energy. Each neuron randomly reduces its own dz to make the overall C
smaller. Moving average of dz can be seen as the temperature.

There are some other benefits by adding fake target:
(1) In order to correctly estimate ds/dβ, dβ = βl - βs should be small, but in practice dβ

cannot be very small. For very deep networks, even a small dβ can cause the s in the higher
layers of netl and nets to fall into completely different states, this will collapses the training
process. By add a fake target, when dz is too large, it will force netl and nets to fall into same
states, to fix the training problem.

(2) Due to vanishing gradients, deeper network takes more time to reach a stable state.
Fake target will amplify the gradient, which solves the vanishing gradients problem and makes
the network reach a stable state faster.

(3) Batch Normalization is a widely used technique for training neural networks, which
allowing neurons to have a better dynamic range, make the network to converge faster. But this
technique cannot be directly applied to CHNN, because it will make the network unstable. Fake
target will also make neurons to have a better dynamic range from -tc to tc, plays a similar role as
Batch Normalization.

2.3 Training and testing
For training, we first initialize W and b randomly, and set ss and sb to a same randomly

selected s and as initial. Than we choose a data sample, do a few iteration use (1). We calculate
dz and update W and b use (15) at every iteration and also use dz to set fake target at every
iteration. We loop this process for each data until convergence. The whole algorithms is
demonstrate in algorithms 1.

Algorithms 1: Approximate Spike-timing Dependent Plasticity, D is date set, ε is the iteration step
for s to decrease E, βs and βl is the iteration step for s to decrease C, α is learning rate, T is
iteration times in each relaxation, k is scale factor,m is moving average factor.



Require: D, ε, βs, βl, α, k,m, T
InitializeW, b, ss, sl randomly
for n ← 1, . . . , |D| do

data = Dn

for t ← 1, . . . , T do
dz = ρ(sl) - ρ(ss)
dzm = dz*m+dzm*(1-m)
Set target for visible neurons by data: ti = datai, βs,i=βs, βl,i=βl

ui = U(0,1)
If,i = dzi > ui*k*dzm,i

Set fake target for hidden neurons: tf,i = sign(dzi)*tc*If,i, βs,i=βs*If,i, βl,i=βl*If,i
Update ss use (1) and (5): ss = ss + ε(Rs-ss) + εβs(t-ss)
Update sl use (1) and (5): sl = sl + ε(Rl-sl) + εβl(t-sl)
UpdateW, b use (15): w = w + α*dz*ρ(ss)

end for
end for

Notice that we don’t reinitialize s after data changed, so there is not any global signal for
neurons. We only change the input of the network, and the rest is left to the network to learn by
itself, which is consistent with biological neural networks.

2.3.1 Unsupervised learning
Set visible neurons to data, and we can do unsupervised learning. The framework works like

an auto encoder, the algorithms is same to algorithms 1.

2.3.2 Supervised learning
For supervised learning we split visible neurons into input neurons and output neurons. For

each data we first clamp input neurons, hidden neurons and let free output neurons to do a few
iterations, we call this free phase. After if iterations we clamp input neurons, output neurons and
hidden neurons and do another few iterations, we call this champed phase. The algorithm is very
similar to algorithms 1, except a little modification.

Algorithms 2: Supervised learning version of Approximate Spike-timing Dependent Plasticity, D is
dateset, L is label dataset, ε is the iteration step for s to decrease E, βs and βl is the iteration step
for s to decrease C, α is learning rate, Tf is free phase iteration times in each relaxation, T is total
iteration times in each relaxation, k is scale factor,m is moving average factor.

Require: ε, βs, βl, α,k,m, Tf, T
InitializeW, b, ss, sl randomly
for n ← 1, . . . , |D| do

data = Dn

label = Ln
for t ← 1, . . . , T do

dz = ρ(sl) - ρ(ss)



dzm = dz*m+dzm*(1-m)
Set target for input neurons by data: ti = datai, βs,i=βs, βl,i=βl

if t > Tf then
Set target for input neurons by label: ti = labeli, βs,i=βs, βl,i=βl

end if
ui = U(0,1)
If,i = dzi > ui*k*dzm,i

Set fake target for hidden neurons: tf,i = sign(dzi)*tc*If,i, βs,i=βs*If,i, βl,i=βl*If,i
Update ss use (1) and (5): ss = ss + ε(Rs-ss) + εβs(t-ss)
Update sl use (1) and (5): sl = sl + ε(Rl-sl) + εβl(t-sl)
UpdateW, b use (15): w = w + α*dz*ρ(ss)

end for
end for

In free phase, the network will move to a state sf with low C of input data, and in clamped
phase, the network will move to a state sc with low C of input data and output data. If sf is equal
to sc, it is the result we want, but if sf is different from sc, the movement from sf to sc will lower
the energy of sc and rise the energy of sf. With enough training, sf will be replaced by sc.

2.3.3 Self-supervised learning
Models such as BERT [21] demonstrate the effectiveness of self-supervised learning in

natural language processing. But self-supervised learning in computer visions has not been very
successful due to ambiguity in images. BiET [22] uses sparse coding method to convert the image
problem into a sequence problem, but the model who used is not a convolutional neural network
which is more suitable for processing images.

Since energy-based models are inherently able to resolve ambiguity, we can directly use
convolutional neural network-like models for self-supervised learning in our framework. By use
part of data as input and rest of data as label, self-supervised learning is same to supervised
learning in our framework. The algorithms is same to algorithms 2.

We cover parts of the image and let the network predict the covered parts from the
uncovered parts. In free phase, the network may move to a state in one of three situations:

(1) The output is the covered part.
(2) The output is meaningless.
(3) The output is not the covered part, but also some meaningful result.
If in situation 1, this is what we want. If in situation 2, the clamped phase will rise the energy

of the state to remove it. If in situation 3, the clamped phase will also rise the energy of the state,
but since it is some meaningful state, there must be a data corresponding to the state that can
lower it’s energy back. So after training, only meaningless state is disappear.

2.3.4 Generation
By randomly initializing s and do a few iterations, we can generate data in our framework. By

swapping input and output data of some classification task, we can do conditional generation in
our framework. The algorithms is same to algorithms 2 except input and output are swapped.



2.3.5 Testing
The testing process is same to training process, except the learning rate is zero and could

have more iterations.

2.4 Other tricks
The are some other tricks use in our framework:

2.4.1 Momentum inference
We use momentum to help iterative inference, so we change (1) into:

i
i v
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Where vi is the velocity for si , and we update vi use:
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Wherem is the inertia parameter.

2.4.2 Smoothing derivative
We also smoothing the path between different states by make gradients of every point on

the path smaller, in order to make the network easier to jump from one state to another state.
We perform this by calculate the derivative of ds toW, adjustW to make ds smaller.

We have:
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So the derivative of ds toW, b is:
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And the learning rule will be:
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This will make the path between states flatter and easier to jump.

3. Experiments

3.1 MNIST
In this section, we will verify our algorithm on classification tasks and generation tasks. The

dataset we use is the MNIST Handwritten Digit and Letter Classification dataset. We train our
model on 60000 numbers for 500000 times and test on 10000 numbers with batch size 128.

The learning rate we use is 0.0001, and we set βl to 0.4, βs to 0.25, εl to 0.5 and εs to 0.4 for



netl and nets. Though we can use the same ε for both networks, but we use different ε to
accelerates the training speed. The scale factor k for fake target is 50 and tc of fake target is 0.25.
We use sigmoid4 as activate function to speed up the training process, sigmoid4(x) = sigmoid(4x).
Parameters W and b are initialized with a uniform distributions U(−x, x), x is Xavier initialization
parameters (6/n)-2, where n is input dims of neuron, and our initialization is not symmetric.

3.1.1 Classification
The neural network we use has 784 + 10 visible neurons for images and labels and the

number of hidden neurons is 512. Each input and output neuron is connected to hidden neurons,
and all hidden neurons are interconnected, but input and output neurons don’t connected to
each other.

We test unsupervised learning, supervised learning and self-supervised learning on the
MNIST dataset. For unsupervised learning, we treat both images and labels as input, and use
algorithm 1 for training. In testing time we clamped only input neurons with images and let the
network get the label of output neurons, make it works like an in-painting problem. We iterate
160 times for each data in training and testing times. For supervised learning we use algorithm 2
to training the network, and same testing process with unsupervised learning. We iterate 80
times for free phase and 160 times for clamped phase, so there total 240 iterations for each data.
For self-supervised learning we first only use images to train the network by cover part of the
images by a gray square with 10 pixels in random position, and let network predict the covered
part use supervised learning algorithm, the iterations times is same to supervised learning. After
that we fix W and b for input neurons and hidden neurons, add output neurons and training only
output neurons with algorithm 2, the result is showed in table 1.
Learning method Network structure Accuracy
Unsupervised learning 784-512-10 91%
Supervised learning 784-512-10 92%
Self-supervised learning 784-512-10 92%
Back-propagation MSE 784-512-10 93%
Back-propagation cross entropy 784-512-10 97%

Table 1. Classification result with different learning algorithms

We also use supervised learning to training different network with 1, 2 and 3 hidden layers.
Due to the vanishing gradient problem, the inference time of the network will increases
exponentially with the depth of the network [7]. But with Fake target the inference time of the
network only increases linear with the depth of the network. Table 2 shows the result of different
depth of the network, the inference time records in number of steps from data changed to
network reach a stable state, which mean ds is less than 0.001.
Network architecture Inference time Accuracy
784-512-10 76 96%
784-512-512-10 95 95%
784-512-512-512-10 121 93%
784-500-500-500-10 no fake target [7] 500 97%

Table 2. testing time with different network architecture

We use mean-square error (MSE) loss in our framework instead of classification loss like
cross entropy, so the result is not as good as standard back-propagation neural network.



3.1.2 Generation
We can generate samples by randomly pick a state and do a few iterations, but this usually

get meaningless samples. So we use conditional generation method to generate numbers by first
randomly pick s and then clamped output neurons with label. The label will constrain the
distribution of hidden neurons to get more reasonable result, so the network will jump to a
number looks image in that label. Figure 2 shows some samples generated by our model.

Figure 2 some numbers generated by our model

3.2 Toy experiments
We also testing on some features of our framework, like binocular rivalry, neural adaptation,

STDP simulations and relationship between states.

3.2.2 Binocular rivalry
When biological visual systems see ambiguous input, perception switches between two

possible interpretations. For example, when the left eye sees a cat and the right eye sees a dog, it
will sometimes perceive the cat and sometimes the dog, toggle back and forth between cat and
dog.

To test the binocular rivalry phenomenon in our network, we create a toy dataset with 4
data, the ith data is a four dimensional one-hot vector with ith dimension set to 1 and other set to
0. We train a small network with 4 input neurons and 8 hidden neurons. Then we combine the
first data [1, 0, 0, 0] with the second data [0, 1, 0, 0] to make an ambiguous data [1, 1, 0, 0] and
feed it into the network. The network starts to oscillate, and the input neurons switch states
between two data, as shown in the figure 3.

Figure 3 binocular rivalry simulations



Blue dot is the target, green line is ss, blue line is sl and orange line is dz. The first Line of
images is input neurons and second line of images is some hidden neurons. We can observe that
the main cause of the oscillate is fake target.

3.2.2 Neural adaptation
The biological neurons have neural adaptation, when a neuron is activated, it first violently

spikes and then drops to a value higher than the inactive state. Also, when a neuron is inactivated,
it first strongly suppressed and then increases to a value below the activation state. Faster
reflexes are important for wildlife survival, obviously this temporal dynamics can make neurons
jump from one state to another state faster. Fake target with momentum inference can lead to
the same result. When the input data changes, the network will have a large dz, it will trigger fake
target and make s get close to the target quickly. Some momentum builds up in the process,
when s gets closer to the target, fake target will disappear, but the accumulated momentum will
make s keep moving a certain distance in the direction of the target.

Figure 4 shows the similarity between our network and real neurons. Left is the simulation
in our paper, right [10] is the response of a real biological neuron to certain features. X axis
represents time and Y axis represents intensity, again, blue dot is the target, green line is ss,
blue line is sl and orange line is dz.

Figure 4 left: simulations by the model. right: response of a real neurons.

3.2.3 STDP simulations
To simulate STDP in our framework, we built a small network with only two neurons, one

input neuron and one output neuron. The W and b in the network is all zeros to remove the
influence between neurons. Biological experiments create presynaptic and postsynaptic
potentials through electrodes inserted into neurons, we simulate this behavior by adding a fixed
time window target t=1 to the input and output neuron. Figure 5 shows this process.

Figure 5. time relationship between input neurons and output neurons



First line of images is input neuron, with time window in center. Second line of image is
output neuron with same size window but different relative time, from a negative relative time to
a positive relative time. We can find that with the appearance and disappearance of the target t,
the changing of sl and ss causes a positive dz at first and then negative dz. So with (15) a positive
input before or after the window will bring a positive or negative change in W. With different
window size and different β, we can get different simulation result in figure 6.

Figure 6. simulation result with different window size and β. top left window size 5, top middle window size 10,

top right window size 15, bottom left βs 0.4 and βl 0.5, bottom middle βs 0.4 and βl 0.6, bottom right βs 0.4 and

βl 0.7

First line of images is same β but different window size, second line of images is same
window size but different β. We can see that as the time window shrinks, the target t getting
narrow and closer to emitting a single spike, while the curve getting sharper and more close to
biological experiments result. And when the proportion of β becomes larger, the curve becomes
more asymmetric.

3.2.4 Relationship between states
To test the ability of the network to model relationships between data, we create a toy

dataset with 8 data, the ith input data is a eight dimensional one-hot vector with ith dimension set
to 1 and other set to 0, the ith output data is same to ith input data. We train two network on this
dataset with same structure, the difference is the order of the data. For the first network we use
the adjacent data for the next data, assuming the current data is ith data, the next data is inext =
(ith±1) mod 8, we call it network81 and data order 81. For the second network we use the
adjacent 3 data for the next data, assuming the current data is ith data, the next data is inext =
(ith±3) mod 8, we call it network83 and data order 83.
Network Data order 81 Data order 83
Network81 100% 98%
Network83 99% 100%

Table 3. accuracy of different network and different data order with 160 iterations

We train it with 160 iterations for each data, and test on both network on both data order
with input data clamped and let network predict output data. When test on 160 iterations, due



to the existence of fake target, the accuracy of the two networks is similar, see Table 1. But when
we test on 80 iterations, both networks have better results in their own data order. Obviously,
training for a specific order can make the network reach the state faster in a certain data order.
Network Data order 81 Data order 83
Network81 100% 91%
Network83 87% 100%

Table 4. accuracy of different network and different data order with 80 iterations

4. Discussion

In this work, we introduced a framework for supervised learning and unsupervised learning,
the way it learns is very similar to biological learning. But there are still some possible doubts
about our framework.

4.1 Why this work
This paper does not prove the convergence of our learning algorithm, but the essence of the

learning algorithm in this paper is actually CHL, and the convergence of CHL is been proved. For
CHL, the training is mainly divided into two parts, find a fixed point with relatively small C for the
current data, then make the C of this fixed point smaller. This process will continuously bring the
fixed point of the network closer to the data, and our learning process is actually equivalent to
executing a CHL in each state of the network.

For example, suppose that we execute CHL N times for each data. When the current fixed
point does not correspond to the current data, by clamped the input neurons to data with some
β, CHL will make the network jump to a corresponding fixed point by one CHL clamped phase and
free phase. Then when the current fixed point is correspond to the current data, then the
standard CHL is executed for remain N - 1 times, it will make the free fix point has lower C. When
the jump is from one data’s fix point into another (for example from datai’s fix point to dataj’s fix
point), the opposite jump will cancellation the learning (from the dataj’s fix point to datai’s fix
point). So eventually we make every data’s fix point has smaller C.

Therefore, after training convergence, the network itself will have many fix points make
sense to data with or without input, like humans can imagine things with their eyes closed, which
is a property not find in other models [5, 11, 12, 14, 15].

4.2 About symmetric weights
We initialize the network with asymmetric weights, and no additional constraints are added

during training to make the weights symmetric. Although it has been proved that random
feedback can play the same role as back-propagation [8,9], symmetric weights in our framework
is important for network to correct propagation error and for fake target to work. However, our
framework seems to use a different approach to solve this problem. Observing the network after
training, we can find that the weights have changed from asymmetrical to some degree of
symmetry. Possible explanation is because positive s tend to have positive dz and negative s tend
to have negative dz, so the weights of neurons before and after the synapse will be strengthened
or weakened at the same time.

On the other hand, the math in (4) has some approximations, the derivative of E is actually:
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We useWij instead of (Wij+Wji)/2 to simplify the calculation.
If we consider s as a force, the space of s will become a force field. The curl of the field is

always zero when network has symmetric weights, it causes the particles in the force field to stop.
The curl of the field is not always zero when asymmetric weights, particles in the force field may
move forever. In each iteration, the learning rule will make the output of the neurons more like
the next iteration’s output. Because the data is static, the network will eventually tend to be
static, which also causes the network to have symmetrical weights.

4.3 Corresponding biological explanation
There are still some differences between the framework and real neurons: (i) real neurons

has sparse representations. (ii) real neurons respond decreasing to invariant features over time.
(iii) real neural networks don’t have another network for different β.

For (i), we can achieve a similar result by adding a sparse regularization term, but it is
unclear whether it is consistent with biological principles. For (ii), biological neural networks have
complex chemical processes, our framework is just a simple mathematical simulation, which is
somewhat different from reality. For (iii), we think that biological neural networks may have other
ways to estimate dz, maybe rely on LTP and STP, but the specific process needs future research.
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