Collatz Directed Graph

Wiroj Homsup
May 23, 2022

Abstract

We present the construction of a directed graph based on the iterating $\mathrm{T}(\mathrm{n})=(2 \mathrm{n}-\mathrm{b}) / 3^{b}$, where $\mathrm{b}=0$ and $\mathrm{b}=1$ if $\mathrm{n} \equiv 2 \bmod (3)$. Let G be a directed graph with nodes $\mathrm{V}(\mathrm{G})$ represented by integers generated from $\mathrm{T}(\mathrm{n})$ starting with $\mathrm{n}=1$. This graph is called the Collatz directed graph. Let A be a set consists of all nodes in G and $N=\{1,2,3, \ldots$.$\} the set of all natural numbers .$ It is proved that $(N-A)$ is an empty set.

\section*{1. Introduction}

Define the iterating function introduced by R. Terras[1] : $$
\begin{equation*} \mathrm{T}(\mathrm{n})=(2 \mathrm{n}-\mathrm{b}) / 3^{b}, \tag{1} \end{equation*}
$$ where $\mathrm{b}=0$ and $\mathrm{b}=1$ if $\mathrm{n} \equiv 2 \bmod (3)$

\section*{2. The Collatz directed graph}

Let G be a directed graph with nodes $\mathrm{V}(\mathrm{G})$ represented by integers generated from (1) starting with $n=1$. This graph is called the Collatz directed graph as shown in Figure 1.

Figure 1. Some part of G starting at $6,20,21,64$

Define a recursive equation on N by setting $\mathrm{b}=1$ when a_{n} is odd and $\mathrm{b}=0$ when a_{n} is even,

$$
\begin{equation*}
a_{n+1}=\left(3^{b} a_{n}+b\right) / 2 \tag{2}
\end{equation*}
$$

Denote each natural number as node in a graph \hat{G}, by eq.(1) each node in \hat{G} can have one or two incoming node, and by (2) each node can have only one outgoing node as shown in Figure 2.

$$
\begin{aligned}
& 2 \leftarrow 1 \leftarrow 2 \\
& 1 \leftarrow 2 \leftarrow 4 \\
& 5 \leftarrow 3 \leftarrow 6 \\
& 2 \leftarrow 4 \leftarrow 8 \\
& 8 \leftarrow 5 \leftarrow 3,10 \\
& 3 \leftarrow 6 \leftarrow 12 \\
& 11 \leftarrow 7 \leftarrow 14 \\
& 4 \leftarrow 8 \leftarrow 5,16 \\
& : \quad: \quad:
\end{aligned}
$$

Figure 2 Structure of \widehat{G}
The Collatz conjecture asserts that by using (2) repeatedly always lead to 1 for any $\mathrm{a}_{0} \in N$. Let B be a set consists of all nodes of \hat{G} then $\mathrm{B}=N$. The validity of the Collatz conjecture is established by proving that $(N-A)$ is an empty set, where A is a set of all nodes in G . This assertion will be proved by contradiction as follows:

Assume $(N-A)=\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}\right.$, \qquad . $\left.\mathrm{n}_{\mathrm{m}}\right\}$ is not an empty set. Since each n_{i}, $\mathrm{i}=1,2, \ldots \mathrm{~m}, \mathrm{~m} \in \mathrm{~N}$ always has $2 \mathrm{n}_{\mathrm{i}}$ as its incoming node, but $2 \mathrm{n}_{\mathrm{i}}$ is not in ($N-\mathrm{A}$). Thus, $(N-\mathrm{A})$ is an empty set.

References

[1] R . Terras, (1976). "A stopping time problem on the positive integers".
Acta Arithmetica, 30(3), 241-252.

