Integer Sequences in the Collatz Graph
 Wiroj Homsup

May 17, 2022

Abstract

Let G be a graph with node $V(G)$ represented by a sequence of odd integer constructed from the inverse iteration defined by $\mathrm{a}_{\mathrm{n}}=\left(2^{e\left(a_{n}\right)} \mathrm{a}_{\mathrm{n}+1}-1\right) / 3$, where $\mathrm{e}\left(\mathrm{a}_{\mathrm{n}}\right) \in \mathrm{N}$ is the highest exponent for which $2^{e\left(a_{n}\right)}$ exactly divide $3 a_{n}+1$. This graph is called the Collatz graph. The odd integer sequences inferred from the Collatz graph provide new insights into the validity of the Collatz conjecture.

1. Introduction: the Collatz conjecture

Denote by $N=\{1,2,3 \ldots \ldots \ldots \ldots\}, \mathrm{N}_{0}=\{0,1,2,3, \ldots \ldots \ldots \ldots .$.$\} , and$ $\mathbf{D}^{+}=2 \mathrm{~N}_{0}+1$ the set of positive odd number. Let $[\mathrm{r}]_{q}$ represents $r(\bmod q)$, where r is least nonnegative residue modulo q. Define the recursive function introduced by Crandall [1] and Batang [2]:

$$
\begin{equation*}
a_{n+1}=\left(3 a_{n}+1\right) / 2^{e\left(a_{n}\right)} \tag{1}
\end{equation*}
$$

where $\mathrm{e}\left(\mathrm{a}_{\mathrm{n}}\right) \in \mathrm{N}$ is the highest exponent for which $2^{e\left(a_{n}\right)}$ exactly divide $3 a_{n}+1$. For an initial a_{0}, any k iteration on a_{0} generate a sequence of odd integer, $\left\{a_{0}, a_{1}, \ldots \ldots \ldots a_{k}\right\}$. The collatz conjecture asserts that for every odd integer $\mathrm{a}_{0}>1$, there exists $\mathrm{k} \in \mathrm{N}$ such that $\mathrm{a}_{\mathrm{k}}=1$

2. The Collatz graph

The Collatz graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with node $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G})$, based on the inverse iteration defined by

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}}=\left(2^{e\left(a_{n}\right)} \mathrm{a}_{\mathrm{n}+1}-1\right) / 3, \tag{2}
\end{equation*}
$$

where $e\left(a_{n}\right)$ is any positive integer such that $\left(2^{e\left(a_{n}\right)} \mathrm{a}_{n+1}-1\right) \equiv[0]_{3}$. One can show that $e\left(a_{n}\right)=2 n$ if $a_{n+1} \equiv[1]_{3}$ and $e\left(a_{n}\right)=2 n-1$ if $a_{n+1} \equiv[2]_{3}$ for $n \in N$, while $a_{n}=\emptyset$ if $a_{n+1} \equiv[0]_{3}$. Obviously a_{n+1} produces a sequence of odd integer starting with $\left(2^{2} a_{n+1}-1\right) / 3$ or $\left(2^{1} a_{n+1}-1\right) / 3$.

Starting from the trivial node $\mathrm{q}_{0}=\{1\}$, each sequence obtained by (2) corresponds to a node in G. The first node in the Collatz graph is obtained
by $\left(2^{2 n}(1)-1\right) / 3, \mathrm{n} \in \mathrm{N}$. Thus, the first sequence or the first node is $\{1,5,21,85,341,1365, \ldots \ldots \ldots \ldots\}$.

Obviously each element in the sequence is obtained by the iteration

$$
\begin{equation*}
\mathrm{s}_{\mathrm{n}+1}=4 \mathrm{~s}_{\mathrm{n}}+1, \tag{3}
\end{equation*}
$$

where s_{0} is the first element or a seed of the sequence ,e.g., $\mathrm{s}_{0}=1$ is the seed of $\{1,5,21,85, \ldots\}$. The graph G is a directed graph in which there is only one directed path from any node to the trivial node $\mathrm{q}_{0}=\{1\}$ as shown in Figure 1. Each node is represented as $q_{i} \equiv\left\{s_{n+1}=4 s_{n}+1, n\right.$ $\left.\left.\in \mathrm{N}_{0}\right|_{\mathrm{s}_{0}=\mathrm{i}, \mathrm{i}} \in \mathrm{D}^{+}\right\}$, e.g., $\mathrm{q}_{1}=\{1,5,21,85, .$.$\} . There are infinite levels in$ G. There is only one node in level 1 but there are infinite nodes in level $2,3, \ldots \infty$. Let A be the union of all nodes in G. The aim is to show that A- \mathbf{D}^{+}is an empty set to validate the Collatz conjecture.

Figure 1. Stucture of G

3. Special subsets of \mathbf{D}^{+}

Let $\mathrm{q}_{0}=\{1\}$, obtain $\mathrm{q}_{\mathrm{i}}, \mathrm{i} \in \mathrm{D}^{+}, \mathrm{q}_{\mathrm{i}} \subset \mathrm{D}^{+}$as follows:
$\mathrm{q}_{\mathrm{i}} \equiv\left\{\mathrm{s}_{\mathrm{n}+1}=4 \mathrm{~s}_{\mathrm{n}}+1, \mathrm{n} \in \mathrm{N}_{0} \mid \mathrm{s}_{0}=\mathrm{i}, \mathrm{i} \in \mathrm{D}^{+} . \mathrm{i} \neq 5+8 \mathrm{n}, \mathrm{n} \in \mathrm{N}_{0}\right\}$. The reason that any $s_{0} \neq 5+8 n$ is that odd integer $5+8 n$ is already in some $q_{i}, i \neq 5$ $+8 \mathrm{n}, \mathrm{n} \in \mathrm{N}_{0} . \mathrm{q}_{\mathrm{i}}$ is represented as node in \hat{G} and their relations among them are shown in Figure 2. Define B as the union of all q_{i} in \hat{G}, obviously B is equal to \mathbf{D}^{+}.

$$
\begin{aligned}
\mathrm{q}_{0} \leftarrow \mathrm{q}_{1} \Leftarrow \text { infinite nodes: } \mathrm{q}_{3}, \mathrm{q}_{113}, \ldots \ldots . \\
\mathrm{q}_{1} \leftarrow \mathrm{q}_{3} \Leftarrow \text { infinite nodes: } \mathrm{q}_{17}, \mathrm{q}_{35}, \ldots \ldots . \\
\mathrm{q}_{11} \leftarrow \mathrm{q}_{7} \Leftarrow \text { infinite nodes }: \mathrm{q}_{9}, \mathrm{q}_{19}, \ldots \ldots . . \\
\mathrm{q}_{7} \leftarrow \mathrm{q}_{9} \Leftarrow \text { infinite nodes: } \mathrm{q}_{49}, \mathrm{q}_{99}, \ldots \ldots \ldots . \\
\mathrm{q}_{17} \leftarrow \mathrm{q}_{11} \Leftarrow \text { infinite nodes }: \mathrm{q}_{7}, \mathrm{q}_{241}, \ldots \ldots . . \\
\mathrm{q}_{23} \leftarrow \mathrm{q}_{15} \Leftarrow \text { infinite nodes: } \mathrm{q}_{81}, \mathrm{q}_{163}, \ldots \ldots \ldots \\
\mathrm{q}_{3} \leftarrow \mathrm{q}_{17} \Leftarrow \text { infinite nodes: } \mathrm{q}_{11}, \mathrm{q}_{369}, \ldots \ldots . .
\end{aligned}
$$

Figure 2 Structure of \widehat{G}
The validity of Collatz conjecture is established by proving that $\mathrm{A}-\mathrm{B}$ is an empty set. This assertion will be proved by contradiction as follows:

Assume $A-B=\left\{q_{n 1}, q_{n 2}, \ldots \ldots . \mathrm{q}_{\mathrm{nm}}\right\}$ is not an empty set. Since each $\mathrm{q}_{\mathrm{ni}}, \mathrm{i}=1,2, \ldots \mathrm{~m}, \mathrm{~m} \in \mathrm{~N}$ connects to an infinite number of nodes as shown in Figure 2 then it is impossible to have a finite number of nodes among q_{ni} connected to each $\mathrm{q}_{\mathrm{ni}}, \mathrm{i}=1,2, \ldots \mathrm{~m}$. Thus, A-B is an empty set.

References

[1] R . E. Crandall, " On the " $3 x+1$ " problem", Math. Of Comp. Vol. 32, N0. 144, October 1978, p. 1281-1292.
[2] Z. B. Batang, "Integer patterns in Collatz sequence", arXiv: 1907.07088v2 [math.GM] 17 Jul 2019.

