Integer Sequences in the Collatz Graph Wiroj Homsup May 17, 2022

Abstract

Let G be a graph with node V(G) represented by a sequence of odd integer constructed from the inverse iteration defined by $a_n = (2^{e(a_n)} a_{n+1} - 1)/3$, where $e(a_n) \in N$ is the highest exponent for which $2^{e(a_n)}$ exactly divide $3a_n + 1$. This graph is called the Collatz graph. The odd integer sequences inferred from the Collatz graph provide new insights into the validity of the Collatz conjecture.

1. Introduction: the Collatz conjecture

Denote by $N = \{1, 2, 3, \dots, N_0 = \{0, 1, 2, 3, \dots, N_0\}$, and

 $\mathbf{D}^+ = 2N_0 + 1$ the set of positive odd number. Let $[r]_q$ represents

r(mod q), where r is least nonnegative residue modulo q. Define the recursive function introduced by Crandall [1] and Batang [2]:

$$a_{n+1} = (3a_n + 1)/2^{e(a_n)} \tag{1}$$

where $e(a_n) \in N$ is the highest exponent for which $2^{e(a_n)}$ exactly divide $3a_n + 1$. For an initial a_0 , any k iteration on a_0 generate a sequence of odd integer, $\{a_0, a_1, \ldots, a_k\}$. The collatz conjecture asserts that for every odd integer $a_0 > 1$, there exists $k \in N$ such that $a_k = 1$

2. The Collatz graph

The Collatz graph G = (V,E), with node V(G) and edge set E(G), based on the inverse iteration defined by

$$a_n = (2^{e(a_n)} a_{n+1} - 1)/3,$$
 (2)

where $e(a_n)$ is any positive integer such that $(2^{e(a_n)} a_{n+1} - 1) \equiv [0]_3$. One can show that $e(a_n) = 2n$ if $a_{n+1} \equiv [1]_3$ and $e(a_n) = 2n-1$ if $a_{n+1} \equiv [2]_3$ for $n \in \mathbb{N}$, while $a_n = \emptyset$ if $a_{n+1} \equiv [0]_3$. Obviously a_{n+1} produces a sequence of odd integer starting with $(2^2 a_{n+1} - 1)/3$ or $(2^1 a_{n+1} - 1)/3$.

Starting from the trivial node $q_0 = \{1\}$, each sequence obtained by (2) corresponds to a node in G. The first node in the Collatz graph is obtained

by $(2^{2n}(1) - 1)/3$, $n \in N$. Thus, the first sequence or the first node is $\{1, 5, 21, 85, 341, 1365, \dots\}$.

Obviously each element in the sequence is obtained by the iteration

$$s_{n+1} = 4s_n + 1$$
, (3)

where s_0 is the first element or a seed of the sequence ,e.g., $s_0 = 1$ is the seed of $\{1, 5, 21, 85, ...\}$. The graph G is a directed graph in which there is only one directed path from any node to the trivial node $q_0 = \{1\}$ as shown in Figure 1. Each node is represented as $q_i \equiv \{s_{n+1} = 4s_n + 1, n \in N_0 | s_0 = i, i \in D^+\}$, e.g., $q_1 = \{1, 5, 21, 85, ...\}$. There are infinite levels in G. There is only one node in level 1 but there are infinite nodes in level 2,3,...∞. Let A be the union of all nodes in G. The aim is to show that

A- \mathbf{D}^+ is an empty set to validate the Collatz conjecture.

Figure 1. Stucture of G

3. Special subsets of D⁺

Let $q_0 = \{1\}$, obtain $q_i, i \in D^+$, $q_i \subset D^+$ as follows:

 $q_i \equiv \{ s_{n+1} = 4s_n + 1, n \in N_0 | s_0 = i, i \in D^+. i \neq 5 + 8n, n \in N_0 \}$. The reason that any $s_0 \neq 5 + 8n$ is that odd integer 5 + 8n is already in some q_i , $i \neq 5 + 8n$, $n \in N_0$. q_i is represented as node in \hat{G} and their relations among them are shown in Figure 2. Define B as the union of all q_i in \hat{G} , obviously B is equal to \mathbf{D}^+ .

```
q_0 \leftarrow q_1 \Leftarrow \text{ infinite nodes: } q_3, q_{113}, \dots, q_1 \leftarrow q_3 \Leftarrow \text{ infinite nodes: } q_{17}, q_{35}, \dots, q_{11} \leftarrow q_7 \Leftarrow \text{ infinite nodes: } q_9, q_{19}, \dots, q_7 \leftarrow q_9 \Leftarrow \text{ infinite nodes: } q_{49}, q_{99}, \dots, q_{17} \leftarrow q_{11} \Leftarrow \text{ infinite nodes: } q_7, q_{241}, \dots, q_{23} \leftarrow q_{15} \Leftarrow \text{ infinite nodes: } q_{81}, q_{163}, \dots, q_3 \leftarrow q_{17} \Leftarrow \text{ infinite nodes: } q_{11}, q_{369}, \dots, q_3 \leftarrow q_{17} \Leftarrow \text{ infinite nodes: } q_{11}, q_{369}, \dots, q_{163} \leftarrow q_{11} \leftarrow
```

The validity of Collatz conjecture is established by proving that A-B is an empty set. This assertion will be proved by contradiction as follows:

Assume A-B = { q_{n1} , q_{n2} ,..., q_{nm} } is not an empty set. Since each q_{ni} , i=1,2,...m, m \in N connects to an infinite number of nodes as shown in Figure 2 then it is impossible to have a finite number of nodes among q_{ni} connected to each q_{ni} , i=1,2,...m. Thus, A-B is an empty set.

References

- [1] R. E. Crandall, "On the "3x+1" problem", Math. Of Comp. Vol. 32, NO. 144, October 1978, p. 1281-1292.
- [2] Z. B. Batang, "Integer patterns in Collatz sequence", arXiv: 1907.07088v2 [math.GM] 17 Jul 2019.