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ABSTRACT. I found an alternative form of Hardy-Littlewood Conjecture using a corollary of 

Mertens’ 2nd theorem. This new form would be more useful since it has a theoretical background and is 

more likely to be proved.  

 

 

1. Introduction 

 

Though it is not proved yet if there are infinitely many twin primes, here is a proposition stating what 

the number of twin primes would be.  

Proposition 1. (Hardy-Littlewood Conjecture) Let π2(x) denote the number of prime numbers p less 

than or equal to x such that p+2 is also a prime number. Then, this satisfies  

π2(x) ~ 2𝐶2

𝑥

(log 𝑥)2
 

      (1) 

where C2 is the twin prime constant, 0.6601618⋯ 

To make an alternative form of this similarity, the following theorem would be used.  

Theorem 1. (Mertens’ 2nd Theorem) Let “p≤x” mean all prime numbers not exceeding x, then,  

lim
𝑥→∞

[∑
1

𝑝
− log (log 𝑥)

𝑝≤x

] = 𝑀 

    (2) 

where M is Meissel-Mertens constant 0.2614972⋯ 

 

 



2. An Alternative Form of Hardy-Littlewood Conjecture 

 

Mertens’ 2nd Theorem gives the following corollary.  

Corollary 1. For a real number x and prime numbers p, the following limit exists.  

lim
𝑥→∞

[(log 𝑥)2 × ∏ (1 −
2

𝑝
 )

2<𝑝≤𝑥

] 

(3) 

Proof. Let’s consider the logarithm of (3) without limit.  

log [(log 𝑥)2 × ∏ (1 −
2

𝑝
 )

2<𝑝≤𝑥

] 

= 2log(log 𝑥) + ∑ log (1 −
2

𝑝
 )

2<𝑝≤𝑥

 

(using Maclaurin’s series) 

= 2log(log 𝑥) + ∑ [−
2

𝑝
−

1

2
(

2

𝑝
)

2

−
1

3
(

2

𝑝
)

3

−
1

4
(

2

𝑝
)

4

− ⋯ ]

2<𝑝≤𝑥

 

= −2 [ ∑
1

𝑝
2<𝑝≤𝑥

− log (log 𝑥)] − ∑ ∑
1

𝑟
(

2

𝑝
)

𝑟∞

𝑟=22<𝑝≤𝑥

 

= −2 [ ∑
1

𝑝
2≤𝑝≤𝑥

− log (log 𝑥)] + 1 − ∑ ∑
1

𝑟
(

2

𝑝
)

𝑟∞

𝑟=22<𝑝≤𝑥

 

→ −2𝑀 + 1 − ∑ ∑
1

𝑟
(

2

𝑝
)

𝑟∞

𝑟=2

∞

𝑝>2

 

(as x →  ∞) 

The last term converges since it is a summation of positive terms and has an upper bound.  

∑ ∑
1

𝑟
(

2

𝑝
)

𝑟∞

𝑟=2

∞

𝑝>2

< ∑ ∑ (
2

𝑝
)

𝑟∞

𝑟=2

∞

𝑝>2

= ∑
(

2
𝑝)

2

1 −
2
𝑝

∞

𝑝>2

= ∑
4

𝑝(𝑝 − 2)

∞

𝑝>2

< ∑
4

(𝑝 − 2)2

∞

𝑝>2

< 4 ∑
1

𝑛2

∞

𝑛=1

= 4 ×
𝜋2

6
 

Let H be the given limit of Corollary 1.  

lim
𝑥→∞

[(log 𝑥)2 × ∏ (1 −
2

𝑝
 )

2<𝑝≤𝑥

] = 𝑒
−2𝑀+1−∑ ∑

1
𝑟

(
2
𝑝

)
𝑟

∞
𝑟=2

∞
𝑝>2 = 𝐻 

(4) 



Using equation (4), the right side of Hardy-Littlewood Conjecture can be written as below.  

2𝐶2

𝑥

(log 𝑥)2
=  2𝐶2

𝑥

(2 log √𝑥)
2 =  

𝐶2

2

𝑥

(log √𝑥)
2  

~ 
𝐶2

2
×

𝑥

𝐻
∏ (1 −

2

𝑝
 )

2<𝑝≤√𝑥

 =  
𝐶2

2
×

𝑥

𝐻
× (1 −

2

3
) ∏ (1 −

2

𝑝
 )

3<𝑝≤√𝑥

 =  
𝐶2

𝐻
×

𝑥

6
∏ (1 −

2

𝑝
 )

3<𝑝≤√𝑥

 

This is the main theorem.  

Theorem 2. (An alternative form of Hardy-Littlewood Conjecture)  

2𝐶2

𝑥

(log 𝑥)2
 ~ 

𝐶2

𝐻
×

𝑥

6
∏ (1 −

2

𝑝
 )

3<𝑝≤√𝑥

 

(5) 

Now, the meaning of this alternative form will be stated including why it is square root of x, which 

is larger or equal to p, instead of x, and why p starts from 5 instead of 3 giving x divided by 6.  

 

 

3. Significance of the Alternative Form 

 

All prime numbers except 2 and 3 are of form 6k-1 or 6k+1, so all twin primes except (3, 5) are of 

form 6k ± 1. Tables below consist of numbers of the form 6k-1, 6k, and 6k+1 with multiples of each 

prime numbers highlighted by blue.  

 

 

 

 



There is a pattern which composition numbers appear. This can be examined in two cases.  

Case 1 : p is a prime number of form 6k-1 

 

Case 2 : p is a prime number of form 6k+1 

 

  Here, n is an arbitrary natural number. Both cases give same conclusion.  

Theorem 3. ∀ m ∈ N, a pair of two numbers 6m-1 and 6m+1 are not twin primes if and only if  

m = np ± k for some n ∈ N and prime number p. (k depends on p by k = round (
𝑝

6
)) 

Regarding the tables above, the number of columns under a given quantity x is 
𝑥

6
 and for all prime 

number p > 3 (since multiples of 2 and 3 are already excluded considering only numbers of form 6x ±

1), two columns among every-continuous-p-columns are not twin primes. In addition, it is enough to 

consider prime numbers less than or equal to a given quantity x. Therefore, we can compute the number 

of twin primes under a given quantity x by  

𝑥

6
∏ (1 −

2

𝑝
 )

3<𝑝≤√𝑥

 

This is how the new form of Hardy-Littlewood Conjecture has a theoretical background. The only 

left point is the constant in front of this term, 
𝐶2

𝐻
. The value is about 0.793. It seems that the Twin Prime 

Conjecture and the Hardy-Littlewood Conjecture might be solved if we find the meaning or the reason 

why this constant appears.  

 

 

4. Conclusion 

 

Here, I suggest a new conjecture stating the number of twin primes less than a given quantity which 

is equivalent to Hardy-Littlewood Conjecture but more intuitive, convincing, and so more helpful to 

prove the conjecture.  

π2(x) ~ 
𝐶2

𝐻
×

𝑥

6
∏ (1 −

2

𝑝
 )

3<𝑝≤√𝑥

 

(C2 is the twin prime constant and H is the constant defined in equation (4)) 
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