
A Hundred Attacks in Distributed Systems

ARASH VAEZI∗, SARA AZARNOUSH∗, and PARSA MOHAMMADIAN∗, Sharif University of Technology,

The objective of any security system is the capacity to keep a secret. It is vital to keep the data secret when it is stored as well as when
it is sent over a network. Nowadays, many people utilize the internet to access various resources, and several businesses employ a
dispersed environment to give services to their users. As a result, a more secure distributed environment is required, in which all
transactions and processes can be effectively completed safely. It is critical in a distributed system environment to deliver reliable
services to users at any time and from any place. As an example of a distributed system, Blockchain is a unique distributed system that
has confronted lots of attacks despite its security mechanism. Security is a top priority in a distributed setting. This paper organizes
many attacks that byzantine users may apply to take advantage of the loyal users of a system. A wide range of previous articles dealt
considered diverse types of attacks. However, we could not find a well-organized document that helps scientists consider different
attacking aspects while designing a new distributed system. A hundred various kinds of most essential attacks are categorized and
summarized in this article.

Additional Key Words and Phrases: Decentralized Systems, Attacks, Distributed Systems, Blockchain

∗All authors contributed equally to this research.

Authors’ address: Arash Vaezi, avaezi@ce.sharif.edu; Sara Azarnoush, sa.azarnoush@sharif.edu; Parsa Mohammadian, pmohammadian@ce.sharif.edu,
Sharif University of Technology,

© 2022

1

2 A. Vaezi, S. Azarnoush, P. Mohammadian

Contents

Abstract 1
Contents 2
1 Introduction 6
2 Attacks and Vulnerabilities 7
2.1 Service 7
2.1.1 Attack 1: Double-Spending 7
2.1.2 Attack 2: Race 8
2.1.3 Attack 3: Finney 8
2.1.4 Attack 4: Vector76 8
2.1.5 Attack 5: Nothing-At-Stake 8
2.1.6 Attack 6: Goldfinger 8
2.1.7 Attack 7: Refusal To Sign 9
2.2 Network 9
2.2.1 Attack 8: Routing 9
2.2.2 Attack 9: BGP Hijack 9
2.2.3 Attack 10: Module-Enabling 9
2.2.4 Attack 11: Piracy 9
2.2.5 Attack 12: Steal Mining Reward 10
2.3 DNS 10
2.3.1 Attack 13: DNS 10
2.3.2 Attack 14: DNS Hijacking 10
2.3.3 Attack 15: DNS tunneling 10
2.3.4 Attack 16: DNS Cache Poisoning 11
2.4 DoS 11
2.4.1 Attack 17: DDoS 11
2.4.2 Attack 18: DoS 11
2.4.3 Attack 19: DoS Attacks On Connectivity 11
2.4.4 Attack 20: DoS Attacks On Local Resources 12
2.4.5 Attack 21: Smart Contract DoS 12
2.4.6 Attack 22: Resource Exhaustion 12
2.5 Gas 12
2.5.1 Attack 23: Gas Limit Block Stuffing 12
2.5.2 Attack 24: Forcible Balance Transfer 13
2.6 Adversarial Centralization of Consensus Power 13
2.6.1 Attack 25: Byzantine 13
2.6.2 Attack 26: Collusion 51% 13
2.6.3 Attack 27: Consensus 34% 14
2.6.4 Attack 28: Punitive And Feather Forking 14
2.6.5 Attack 29: Bribery 14

A Hundred Attacks in Distributed Systems 3

2.6.6 Attack 30: Consensus Delay 14
2.7 Time 14
2.7.1 Attack 31: Timejacking 14
2.7.2 Attack 32: Time-Validation 15
2.7.3 Attack 33: Time-Spoofing 15
2.8 Iterative False Generation 15
2.8.1 Attack 34: Sybil 15
2.8.2 Attack 35: Spam 16
2.8.3 Attack 36: Peer Flooding 16
2.8.4 Attack 37: Peer Flooding Attack Slowloris Variant 16
2.9 Disconnecting Node 16
2.9.1 Attack 38: Eclipse 16
2.9.2 Attack 39: Triangle 16
2.9.3 Attack 40: Partitioning 16
2.9.4 Attack 41: Balance 16
2.10 Change Block 17
2.10.1 Attack 42: Tampering 17
2.10.2 Attack 43: Modification 18
2.10.3 Attack 44: Transaction Malleability 18
2.11 History 18
2.11.1 Attack 45: Grinding 18
2.11.2 Attack 46: Keeping Secrets Exploit 18
2.11.3 Attack 47: Front-running 18
2.11.4 Attack 48: Long Range 18
2.11.5 Attack 49: Stake Bleeding 19
2.11.6 Attack 50: Alternative History 19
2.12 Identity 19
2.12.1 Attack 51: Replay 19
2.12.2 Attack 52: Impersonation 19
2.12.3 Attack 53: Identity Revealing 19
2.12.4 Attack 54: Deanonymization 19
2.13 Key Attack 20
2.13.1 Attack 55: Hashing Operation Vulnerability 20
2.13.2 Attack 56: Cryptography Key Vulnerability 20
2.13.3 Attack 57: Certificate Authority 21
2.14 Reputation-based 21
2.14.1 Attack 58: Hiding Blocks 21
2.14.2 Attack 59: Whitewashing 21
2.15 Mining Pool 21
2.15.1 Attack 60: Pool Hopping 21
2.15.2 Attack 61: Selfish Mining 21

4 A. Vaezi, S. Azarnoush, P. Mohammadian

2.15.3 Attack 62: Baseline 22
2.15.4 Attack 63: Fork-After-Withhold (FAW) 22
2.15.5 Attack 64: Liveness 22
2.15.6 Attack 65: Block Withholding 23
2.15.7 Attack 66: Block Reordering 23
2.15.8 Attack 67: Block Discarding Attack and Difficulty Raising 23
2.16 Wallet 23
2.16.1 Attack 68: Wallet Theft 23
2.16.2 Attack 69: Wallet Malware 24
2.16.3 Attack 70: Wallet Phishing 24
2.16.4 Attack 71: Etherdelta 24
2.16.5 Attack 72: Attacks On Cold Wallets 24
2.16.6 Attack 73: Attacks On Hot Wallets 24
2.16.7 Attack 74: Passphrase Extraction 25
2.16.8 Attack 75: Passphrase Sniffing 25
2.16.9 Attack 76: Packet Sniffing 25
2.16.10 Attack 77: Brute Force 25
2.16.11 Attack 78: Dictionary 26
2.16.12 Attack 79: Private key Recovery 26
2.16.13 Attack 80: Dusting 26
2.16.14 Attack 81: Refund 26
2.17 Splitting 27
2.17.1 Attack 82: Orphaned Blocks 27
2.18 Design Flaw 27
2.18.1 Attack 83: Re-entrancy 27
2.19 Code Flaw 27
2.19.1 Attack 84: Coindash 28
2.19.2 Attack 85: Overflow 28
2.19.3 Attack 86: Underflow 28
2.19.4 Attack 87: Cryptojacking 28
2.19.5 Attack 88: False Data Injection 28
2.19.6 Attack 89: Man In The Middle 29
2.19.7 Attack 90: SQL-Injection 29
2.20 Smart Contracts And Ethereum Virtual Machine (EVM) 29
2.20.1 Attack 91: Tx.Origin 29
2.20.2 Attack 92: Fake Receipt 29
2.20.3 Attack 93: Fake EOS 30
2.20.4 Attack 94: Selfdestruction 30
2.20.5 Attack 95: Immutable Defects 30
2.20.6 Attack 96: Cryptocurrency Lost In Transfer 30
2.20.7 Attack 97: Bugs 30

A Hundred Attacks in Distributed Systems 5

2.20.8 Attack 98: Short Address 31
2.21 Attacks on Shards 32
2.21.1 Attack 99: Single Shard Takeover (aka 1% Attack) 32
2.21.2 Attack 100: Transaction Forging 32
2.22 Other Attacks 32
3 Discussion 33
References 33

6 A. Vaezi, S. Azarnoush, P. Mohammadian

1 INTRODUCTION

In today’s networked world, computers collaborate with each other for the purposes of communication, processing, data
transfer, data storage, etc. Researchers in the literature have used a variety of definitions to describe what a distributed
system is. A distributed system, according to Coulouris et al., is one in which the hardware and software components are
installed on geographically dispersed computers that coordinate and collaborate on their actions by passing messages
between them [30]. A distributed system, according to Tanenbaum and Van Steen, is a collection of systems that appear
to users as a single system [8]. According to Tanenbaum’s definition, a distributed system is a transparent system that
tries to hide the complexities from its users. Combining these definitions, a distributed system is a middleware which
connects with a variety of distributed hardware and software to coordinate the activities of several processes running
on various platforms of computers over a communication network, so that all components cooperate to perform a set
of related tasks aimed at a common goal [54]. The Blockchain is a well-known distributed system. A blockchain is a
distributed data storage that is shared by computer network nodes. A blockchain, like a database, stores information
electronically in digital format. Blockchains are best known for playing an important role in the cryptocurrency system.

Due to the wide range of applicability of Blockchain technology (BT), it has been gaining popularity in many domains.
Bitcoin was the first cryptocurrency to employ blockchain technology, and it has now been utilized in a variety of
different applications, including e-commerce, trade and business, manufacturing and production, finance, and gaming.
BT employs a peer-to-peer system, which is a more decentralized approach to storing transactions and data records.
Since there is not any single point of failure or third-party centralized control of transactions, BT distinguishes itself
from other emerging technologies [96]. It employs a chain of blocks in which each block is locked using the hash of the
preceding block to which it is linked, resulting in an immutable database of all transactions maintained as a digital
ledger that cannot be altered without impacting all the blocks linked together in the chain [13]. A block is, in fact, a
permanent store of records that, once written, cannot be altered or removed. Figure 1 illustrates a block structure [34].

Ethereum is a BT platform that can be used to write algorithms expressed in a general-purpose programming
language, enabling developers to create tons of applications, from basic wallet apps to complicated financial systems for
the banking sector. These programs, which are called Smart Contracts, are written in a Turing-complete byte-code
language, called EVM byte-code1.

EOSIO is a blockchain intended to support the running of a new kind of software known as a decentralized application
(dapp). Its technology tries to address prior challenges with utilizing blockchains to host dapps, since popular applications
have even blocked capacity on bigger, more mature blockchains like Ethereum (ETH), resulting in performance concerns
for all users2. The EOSIO blockchain, one of the most prominent Delegated Proof-of-Stake implementations3 (DPoS)
blockchain platforms have grown rapidly recently. Meanwhile, a number of high-profile vulnerabilities and attacks
targeting top EOSIO DApps and their smart contracts have been discovered and observed in the wild, resulting in
significant financial losses. Because the majority of EOSIO smart contracts are not open-source and are often compiled
to WebAssembly (Wasm) bytecode, it is difficult to examine and identify the existence of potential vulnerabilities.

Remark.We expect the reviewers of this article to be familiar with the overall concept of distributed and blockchain-
based systems. Most of the attacks mentioned in this paper consider a blockchain system as a target.

1“Ethereum home page,” Accessed on 01-10-2019. [Online]. Available:https://www.ethereum.org/
2https://www.kraken.com/learn/what-is-eosio
3Proof-of-Stake is a cryptocurrency consensus mechanism for processing transactions and creating new blocks in a blockchain. See https://www.
investopedia.com/terms/p/proof-stake-pos.asp for more details.

https://www.ethereum.org/
https://www.kraken.com/learn/what-is-eosio
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp

A Hundred Attacks in Distributed Systems 7

Fig. 1. The structure of a block in a blockchain system is illustrated. The figure is designed by [34].

2 ATTACKS AND VULNERABILITIES

Because of the substantial economic potential, decentralized systems have become primary targets for attackers. This
section covers a summary of the concepts of a large variety of different types of attacks.

2.1 Service

2.1.1 Attack 1: Double-Spending. The double-spending problem refers to a single money unit being spent more than
once. This results in a discrepancy between spending history and accessible currency4.

In other words, double spending happens when a particular node announces the same transaction with a different
destination to two different nodes. Since these two nodes are not necessarily in sync, they both add the transaction to
the ledger.

In practice, networks overcome this attack by introducing a consensus algorithm that decides which transaction
to be included in the main ledger (for example, by accepting the longest chain). In this case, users should wait for
confirmation to be confident about a transaction [34].

The former introduced method can only detect double-spending; in addition, we can use tamper-resistant hardware
to prevent double-spending rather than just detect it. These devices are usually called wallets and keep track of the
balance in a tamper-free manner [81].

Another way to avoid double-spending is using green addresses. Green addresses are some known third parties that
provide financial services [81].

4https://www.sofi.com/learn/content/double-spending/

https://www.sofi.com/learn/content/double-spending/

8 A. Vaezi, S. Azarnoush, P. Mohammadian

Articles related to this attack [28, 31, 34, 37, 59, 61, 79, 90].

2.1.2 Attack 2: Race. The race attack allows for a situation in which an attacker creates two transactions, one genuine
and one fraudulent. The target is any node that accepts transactions with 0-unconfirmed status, meaning the transaction
is visible but not included in any block yet. The attacker connects directly to the target as a network peer. The attacker
also tries to connect closely or directly to a mining pool. By sending the fraudulent transaction to the target and the
legitimate transaction to the mining pool, the attack may succeed if the target accepts the fraudulent transaction and
provides some goods or services before seeing the legitimate transaction. This is why it is advised to wait for a minimum
number of confirmations before considering a transaction valid [34].

Articles related to this attack [34, 88].

2.1.3 Attack 3: Finney. An attacker pre-mined one transaction into a block and spent the same coins before releasing
the block to the public network to invalidate that transaction. This is called a Finney attack. The Finney attack is a
fraudulent double-spend that requires the participation of a miner once a block has been mined. An adversary can only
perform a double-spending (see Section 2.1.1) in the presence of one-confirmation vendors [88].

Articles related to this attack [5, 16, 34, 88].

2.1.4 Attack 4: Vector76. Vector76 is a variation of double-spending (see Section 2.1.1). The name came from the
username that introduced this attack in the Bitcoin talk forum5. The targets of this attack are usually exchanging
websites. In this attack, the attacker first announces a relatively significant transaction to the network; after transaction
validation in a block, the attacker withdraws the currency from the destination account. Then the attacker takes
advantage of well-positioned nodes (which he must identify before the attack) and sends them a relatively small
transaction, which will be validated and invalidate the first transaction [60].

Articles related to this attack [60].

2.1.5 Attack 5: Nothing-At-Stake. The nothing-at-stake issue is a security hole in proof-of-stake systems. The problem
can arise whenever there is a fork in the blockchain, which means two honest validators propose blocks simultaneously,
whether maliciously or accidently6.

When a fork arises, it is in everyone’s self-interest to continue mining both chains. This is for two reasons:

(1) Because mining is without cost, mining both chains does not affect the miner’s bottom line.
(2) If miners continue mining only one fork while one of the other forks becomes longer, the miners will receive no

benefit from the time spent mining the shorter chain. In other words, mining all forks ensures that the miner
receives their payment regardless of which fork is successful.

This may make double-spending (see Section 2.1.1) more plausible. An attacker wishing to perform a double-spending
attack might do so by forking the blockchain one block before spending the coins. If the attacker mines just their fork
while the other miners mine both forks, the attacker’s fork will ultimately become the longest chain, even if the attacker
has a small stake in the network.

Articles related to this attack [16].

2.1.6 Attack 6: Goldfinger. In a market setting where shorting is brutal, 51% (see Section 2.15.2) attacks on the blockchain
are often a negative approach, as the miner is also attempting to undermine the value of the asset he is attempting to

5https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
6ethereum/wiki. GitHub. https://github.com/ethereum/wiki/wiki/Problems

https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
https://github.com/ethereum/wiki/wiki/Problems

A Hundred Attacks in Distributed Systems 9

purchase or double-spend. It is more profitable to operate ethically and merely race to verify blocks. This alignment of
incentives between miners, holders, and spenders is one of the factors that contribute to Bitcoin functioning better in
practice than in theory. Users may now take a position in the derivatives and futures markets that rewards them for
attacking the blockchain. This is referred to as the Goldfinger attackfootnote7.

To see more information on this attack see the web address in the footnote.

2.1.7 Attack 7: Refusal To Sign. A malicious agent may choose not to sign a transaction that is not advantageous to
him. While avoiding this attack is impossible, punitive actions against the refusal agents are available [44].

Articles related to this attack [44].

2.2 Network

2.2.1 Attack 8: Routing. Routing attacks include traffic route diversion, hijacking, and denial-of-service (DoS) attacks.
(see section 2.4.2). Besides simple data eavesdropping or modification, these attacks may lead to network partitioning,
which in turn raises the risks of 51% attacks (see section 2.6.2) or selfish mining attacks(see section 2.15.2). Countermea-
sures include multi-homing nodes (or the use of VPNs) for route variety, as well as selecting additional peers whose
connections do not run via the same autonomous systems (ASes), preference of peers hosted on the same AS within the
same /24 prefix (to reduce risk of partitions), and fetching the same block from multiple peers [12]. Another mitigation
is SABRE [11], a secure relay network that runs alongside the Bitcoin network. The BGPsec [68] is a security extension
for BGP used between neighboring ASes, and it provides assurance of route origin and propagation by cryptographic
verification [58].

Articles related to this attack [11, 12, 58, 68].

2.2.2 Attack 9: BGP Hijack. BGP hijacking is sending traffic to a different destination than the real intended one
to intercept the packets. Again, the purpose is to steal user credential by phishing. It can also be used to show host
unwanted ads in a webpage.

Articles related to this attack [1].

2.2.3 Attack 10: Module-Enabling. Go-version Ethereum client (geth)8 does not provide APIs to dynamically enable
modules while providing the Remote Procedure Call (RPC) / Web Socket (WS) service. Modules can be enabled by
stopping and then restarting RPC/WS, on the condition that the geth provides RPC/WS service with the admin module
enabled. Without identity authentication, anyone, including the adversary, can enable any module once the geth node
provides RPC/WS service and enables the admin module [118].

Articles related to this attack [118].

2.2.4 Attack 11: Piracy. Piracy attack refers to the attack in, the adversary signs data or sends transactions through
Remote Procedure Call (RPC) or Web Socket (WS) services in the name of the target accounts after the adversary
remotely unlocks accounts or discovers unlocked accounts. This attack can be fulfilled with three conditions, i.e., the
adversaries have access to unlocked accounts; the geth (see subsection 2.2.3) node provides RPC/WS service and enables
the eth module; geth node has the target user’s key file.

Articles related to this attack [118].

7https://soundcrypto.com/blog/2017/11/16/crypto-options-and-goldfinger-attacks
8https://github.com/ethereum/go-ethereum

https://soundcrypto.com/blog/2017/11/16/crypto-options-and-goldfinger-attacks
https://github.com/ethereum/go-ethereum

10 A. Vaezi, S. Azarnoush, P. Mohammadian

2.2.5 Attack 12: Steal Mining Reward. In Ethereum, a reward is given to the coinbase specified by the block miner,
which can be an arbitrary Ethereum account. This attack can be fulfilled in the case that the geth (see subsection 2.2.3)
provides Remote Procedure Call (RPC) or Web Socket (WS) service and enables the miner module. Adversaries call the
miner setEtherbase to change the coinbase to a designated address. The designated address is used as the receiver of
the mining reward and does not need the private key. After setting the coinbase, adversaries can start the block mining
by calling the miner start function on the target node to earn rewards [118].

Articles related to this attack [118].

2.3 DNS

2.3.1 Attack 13: DNS. DNS attacks are frequently the result of cache poisoning [102] (see section 2.3.4), which affects
not only nodes that use DNS bootstrapping 9 to connect to online peers but also users of online blockchain explorers.One
countermeasure is DNSSEC, a DNS security extension that offers authentication and data integrity. In addition to
standard DNS, name resolution can also be made using alternate DNS servers [58]. This attack can block new nodes
from participating in blockchain by tampering with DNS. A nice gathering of information about the DNS attacks are
mentioned in the nxlog.co10. Security was not even a consideration when the Domain Name System was designed.
Nefarious actors are now utilizing DNS for data theft, distributed denial-of-service assaults, command-and-control, and
other malicious activities. According to an EfficientIP survey conducted in 2018, the average cost of a DNS assault in
201811 was $715,000 (57 percent more than in 2017), and 77% of firms experienced a DNS attack.

Articles related to DNS attacks [58, 102].

2.3.2 Attack 14: DNS Hijacking. DNS hijacking can be accomplished by influencing user workstations or DNS servers.
In the first scenario, malware is used to change the name servers configured on a workstation, causing DNS requests to
be sent to hostile servers instead. On the other hand, a DNS server may be hacked and modified to send out erroneous
responses. Users are routed to an attacker’s site in either case, which allows the attacker to steal user credentials
(phishing), generate traffic (pharming), transmit malware, or publish a defaced version of the website.

In early 2019, FireEye12 discovered an "unprecedented scale" DNS hijacking effort that had a "high degree of success,"
targeting victims worldwide. Soon after, the US Cybersecurity and Infrastructure Security Agency issued Emergency
Directive 19-0113, which details steps to prevent DNS hijacking, including DNS audits and monitoring. The recent
Sea Turtle14 campaign is a state-sponsored DNS hijacking attack that used man-in-the-middle attacks to capture user
credentials from at least 40 different companies in 13 different countries15.

To see more information on this attack, see the web address in the footnote16.

2.3.3 Attack 15: DNS tunneling. DNS queries and responses can include data payloads capable of carrying malware,
unauthorized access, Command and control information, or bidirectional protocols like SSH. DNS traffic is frequently
regarded as safe and unmonitored. This means that an attacker could use DNS tunneling in order to communicate
secretly.
9https://bitcoinj.github.io/-model
10https://nxlog.co/whitepapers/dns-logging
11https://www.efficientip.com/resources/dns-threat-report-2018/, EfficientIP, retrieved 2019-05-14
12https://www.mandiant.com/resources/global-dns-hijacking-campaign-dns-record-manipulation-at-scale, FireEye, Threat Research, retrieved 2019-05-
14
13https://cyber.dhs.gov/ed/19-01/
14https://blog.talosintelligence.com/2019/04/seaturtle.html, Cisco Talos Intelligence Group, Talos Blog, retrieved 2019-05-14
15https://nxlog.co/whitepapers/dns-logging
16https://encyclopedi.kaspersky.com/glossary/dns-hijacking/

https://bitcoinj.github.io/-model
https://nxlog.co/whitepapers/dns-logging
https://www.efficientip.com/resources/dns-threat-report-2018/
https://www.mandiant.com/resources/global-dns-hijacking-campaign-dns-record-manipulation-at-scale
https://cyber.dhs.gov/ed/19-01/
https://blog.talosintelligence.com/2019/04/seaturtle.html
https://nxlog.co/whitepapers/dns-logging
https://encyclopedi.kaspersky.com/glossary/dns-hijacking/

A Hundred Attacks in Distributed Systems 11

Point of sale (PoS) malware such as MULTIGRAIN is among the many types of client malware that use DNS
tunneling17, remote backdoors such as DNSMessenger18 and DNSpionage 19. Heyoka, dnscat2, and iodine are several
implemented examples of open-source DNS tunnels.

To see more information on this attack, see the web addresses in the footnote.

2.3.4 Attack 16: DNS Cache Poisoning. When a DNS resolver accepts an invalid resource record as a result of a
vulnerability, this is referred to as cache poisoning (or spoofing). An intruder could use a long TTL (time-to-live) number,
which causes the data to be retained in the resolver’s cache and the resolver to be regarded "poisoned." The effect is
comparable to DNS hijacking. Cryptographic signatures, like those introduced by the Domain Name System Security
Extensions (DNSSEC), prevent DNS cache poisoning. However DNSSEC is not yet widely deployed.

To see more information on this attack, see the web addresses in the footnote.

2.4 DoS

2.4.1 Attack 17: DDoS. DDoS attacks are not unique to blockchain networks, but they can be used to target blockchain
and asset exchange networks with certain additional modifications. In this type of attack, an attacker uses a network of
hijacked devices to flood a network with a large number of requests, causing the network’s capacity to handle legitimate
traffic to be harmed. At its inception, Bitcoin Gold, one of the forks of Bitcoin, was subjected to a massive DDoS attack,
receiving 10 million false requests per minute20 [34].

To see more information on this attack see the web address in the footnote. Articles related to this attack [16, 34, 117].

2.4.2 Attack 18: DoS. Adversaries can leverage the private key protection mechanism to perform a Denial-of-Service
(DoS) attack by widening the brute force attack. The scrypt algorithm, which is employed to safeguard the private key,
requires a lot of memory and processing power. Adversaries can send unlocking requests continuously and concurrently
to delay or stop other attempts from benign users. The geth (see subsection 2.2.3) node must provide the RPC/WS
service and enable the individual module for this attack to work. It takes a long time to unlock the account. With the
number of unlocking requests, the time consumption grows linearly. A single unlocking request takes around a second
on the MacBook Pro. The result of a DoS attack is that the attacker calls the personal unlock account function 40 times
in a row. The geth instance barely used roughly 65MB of memory and 0.1 percent of the CPU before the DoS attack.
The geth uses roughly 7.8GB of memory and 213 CPU cycles during the DoS attack (more than two cores). The time it
takes to unlock an account has been considerably increased, from seconds to minutes or longer [118].

Articles related to this attack [118].

2.4.3 Attack 19: DoS Attacks On Connectivity. DoS attacks on the connectivity of nodes may lead to loss of consensus
power, thus preventing consensus nodes from being rewarded21. For validating nodes, this attack leads to a disruption
of some blockchain-dependent services22. Countermeasures: One mitigation is to peer only with white-listed nodes.
Methods to prevent volumetric DDoS, include on-premise filtering (i.e., with an extra network device), cloud filtering
(i.e., redirection of traffic through a cloud when DDoS is detected or through a cloud DDoS mitigation service), or
hybrid filtering [57]. Articles related to this attack [57].

17https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html, FireEye, Threat Research,retrieved 2019-05-14
18https://trust.titanhq.com/acton/media/31047/webtitan-web-filter-up-21-01-2022-form
19https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
20https://assignmenthelp4me.com/article-advantages-and-disadvantages-of-cybersecurity-342.html
21https://www.coindesk.com/markets/2015/03/12/bitcoin-mining-pools-targeted-in-wave-of-ddos-attacks/
22https://news.bitcoin.com/ddos-attacks-bitcoin-com-uncensored-information/

https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://trust.titanhq.com/acton/media/31047/webtitan-web-filter-up-21-01-2022-form
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://assignmenthelp4me.com/article-advantages-and-disadvantages-of-cybersecurity-342.html
https://www.coindesk.com/markets/2015/03/12/bitcoin-mining-pools-targeted-in-wave-of-ddos-attacks/
https://news.bitcoin.com/ddos-attacks-bitcoin-com-uncensored-information/

12 A. Vaezi, S. Azarnoush, P. Mohammadian

2.4.4 Attack 20: DoS Attacks On Local Resources. DoS attacks on local resources, including memory and storage, have
the potential to degrade nodes peering and consensus capabilities23. An example attack is flooding the network with low
fee transactions (a.k.a., penny-flooding), which may cause memory pool depletion, resulting in a system crash. A possible
mitigation is raising the minimum transaction fee and rate limit to the number of transactions. Several mitigating
techniques are applied to Bitcoin24 nodes including scoring DoS attacks and banning misbehaving peers25 [58].

For more information related to these attacks see [58], and the web addresses in the footnote.

2.4.5 Attack 21: Smart Contract DoS. A Denial of Service (DoS) attack occurs when an attempt is made to interfere
with a service so that it becomes less or unavailable. Simply put, normal service requests that the system cannot process
a user needs. For example, it is a DoS when a computer system is unable to provide regular service because of a lack of
bandwidth or a full hard drive.

On the Internet, DoS attacks can be roughly divided into three categories: the use of software implementation defects
Exploiting loopholes in the protocol; Use of resources to suppress. In the blockchain, DoS attacks disrupt, suspend, or
freeze the execution of a normal contract, or even the logic of the contract itself26.

A DoS vulnerability can be understood as “unrecoverable malicious manipulation, or uncontrolled, unlimited resource
consumption,” i.e., a DoS attack on an Ethereum contract that could result in massive consumption of Ether and Gas
and, worse, render the original contract code logic unworkable.

Ethereum Smart Contracts are programs deployed as decentralized applications, using the building blocks of the
blockchain consensus protocol. Thanks to this technology, consumers can reach agreements in a transparent and
conflict-free environment. Security flaws in these smart contracts pose a risk to applications and their users, as has been
demonstrated in the past, and they have the potential for huge losses. Denial of Service vulnerabilities in Ethereum
Smart Contracts can be detected using a framework that is a combination of static and dynamic analysis. Noama Fatima
Samreen proposed this framework, Manar H. Alalf [94].

Articles related to this attack [94].

2.4.6 Attack 22: Resource Exhaustion. Computer security exploits that cause a program or system to crash, freeze, or
otherwise interfere with the intended target are known as resource exhaustion attacks. Even though they are denial-of
service attacks, they are not the same as distributed denial of service attacks, which aim to take down an entire network
host, for example, by flooding it with requests from various places simultaneously[71].

Articles related to this attack [71].

2.5 Gas

2.5.1 Attack 23: Gas Limit Block Stuffing. Block stuffing is a blockchain attack in which an attacker sends transactions
that purposefully exceed the block’s gas limit, causing other transactions to halt. The attacker might pay more
outstanding transaction fees to guarantee that their transactions are included by miners. The attacker can impact the
number of transactions included in the block by influencing how much gas is used by their transactions. 27.

A Block Stuffing attack can be used against any contract that requires a specific action to be done within a specified
duration. However, like with any attack, it is only profitable if the predicted benefit outweighs the cost. The cost of this

23https://bitcointalk.org/index.php?
24https://en.bitcoin.it/wiki/Weaknesses#
25https://blog.radware.com/20security/2018/04/choosing-the-right-ddos-solution-hybrid-protection/
26https://medium.com/@Knownsec_Blockchain_Lab/in-depth-understanding-of-denial-of-service-vulnerabilities-dd437b1d7a1c
27https://solmaz.io/2018/10/18/anatomy-block-stuffing/

https://bitcointalk.org/index.php?
https://en.bitcoin.it/wiki/Weaknesses#
https://blog.radware.com/20security/2018/04/choosing-the-right-ddos-solution-hybrid-protection/
https://medium.com/@Knownsec_Blockchain_Lab/in-depth-understanding-of-denial-of-service-vulnerabilities-dd437b1d7a1c
https://solmaz.io/2018/10/18/anatomy-block-stuffing/

A Hundred Attacks in Distributed Systems 13

assault is related to the number of blocks that must be filled. If a substantial payoff can be acquired by stopping other
parties from acting, the contract will almost certainly be attacked28.

To see more information on this attack see the web address in the footnote.

2.5.2 Attack 24: Forcible Balance Transfer. Without a fallback method, coercive balance transfers to the contract can
occur in insecure smart contract scripts. This can be used to deplete the gas supply and prevent the final transaction
from taking place [93].

Articles related to this attack [93].

2.6 Adversarial Centralization of Consensus Power

A design premise about the decentralized distribution of consensus power is violated in these attacks. 51% attack 2.6.2
for PoR and PoS protocols, as well as 1

3 of Byzantine nodes 2.6.3 for BFT protocols, are examples of this category
(and their combinations). Whenever an attacker has a majority of the consensus power, they influence the protocol’s
outcome [57].

2.6.1 Attack 25: Byzantine. Byzantine attackers submit "fake reports" in order to disrupt the system’s usual report
aggregation process. For example, a Byzantine attacker could report a very high passing time for a particular road
section, causing the aggregated passing time to be much higher than it is, forcing other users to utilize alternative routes
while they speed through the road. A Byzantine attacker, on the other hand, can report a a meager passing time for a
road section, leading other users to utilize a road segment that is already congested, inflating traffic congestion [116].

A quorum of 13 adversarial consensus nodes could cause the protocol to be degraded or even terminated in Byzantine
attacks. It is critical to foster decentralization through incentive systems that reward honest participation while
discouraging [75] or punishing protocol [21, 33] violations as a design-oriented countermeasure [57].

Articles related to this attack [21, 33, 57, 75, 116].

2.6.2 Attack 26: Collusion 51%. A 51% assault is a type of consensus algorithm attack carried out by a group of
miners with more than 50% of the network’s mining hash rate or computer power. New transactions can be blocked,
and transactions between certain users or all users can be halted. They’d also be able to undo previously completed
transactions that hadn’t been confirmed, allowing them to double-spend(see 2.1.1). The attacker is unable to create
new coins or change existing blocks. So, even if a 51% attack proved severely devastating, it is unlikely that Bitcoin or
another blockchain-based money would be wrecked.

In August 2016, two Ethereum-based blockchains, Krypton and Shift, were subjected to a 51% attack. Bitcoin Gold,
the26𝑡ℎ-largest cryptocurrency at the moment, was hit by a 51% attack in May of 2018. The attackers had sufficient
control over Bitcoin Gold’s hash power that they could double-spend for several days despite Bitcoin Gold’s repeated
attempts to raise the exchange thresholds, finally stealing more than eighteen million dollars in Bitcoin Gold. In the
year 2020, Bitcoin Gold was hit once more. The Bitcoin SV (BSV) network was recently attacked in August 202129.

The article [97] outlined a solution for countering the 51% attack. They talked about the five most advanced defense
tactics for preventing this attack, as well as their significant drawbacks. They also found that, in most circumstances,
security methods fail to provide effective protection against the 51% assault since the flaws are passed down from

28https://bui-duc-huy.github.io/posts/smart-contract-best-practice-3/
29https://www.investopedia.com/terms/1/51-attack.asp

https://bui-duc-huy.github.io/posts/smart-contract-best-practice-3/
https://www.investopedia.com/terms/1/51-attack.asp

14 A. Vaezi, S. Azarnoush, P. Mohammadian

consensus protocols. Similarly, n confirmation and selfish mining 2.15.2 are two attack approaches similar to the 51
percent assault tactic.

Articles related to this attack [5, 59, 97].

2.6.3 Attack 27: Consensus 34%. The BFT network was targeted for a 34% Consensus Majority Attack, which is a type
of Consensus Majority Attack30. It is a type of potential attack on a blockchain that employs the "Tangle" Consensus
method, in which an individual or organization gains control of at least 34% of the overall network mining power (hash
rate) and then manipulates the general ledger to approve or disapprove selected transactions via majority approval31.

To see more information on this attack see the web address in the footnote.

2.6.4 Attack 28: Punitive And Feather Forking. The purpose of punitive forking is to blacklist or censor Bitcoin addresses
held by specific persons (e.g., those who do not pay a fee) so that they cannot spend any of their bitcoins.

When the attacker possesses the majority of the hash power, this works. The attacker declares that any chain
containing blacklisted transactions will not be extended and if blocks containing such transactions do emerge, the
attacker forks and establishes a longer chain. In feather forking, the attacker declares a similar purpose but also says
that after a while, they will give up trying to fork (say falling k confirmations behind the main chain).

Other miners are nonetheless motivated to block blacklisted transactions because doing so increases the chances of
losing their reward. An attacker who performs feather forking can also use it to blackmail a customer by threatening to
ban all of her transactions unless she pays the ransom coins demanded [29].

Articles related to this attack [29, 57]. To see more information on this attack see the web address in the footnote.32

2.6.5 Attack 29: Bribery. One of the most basic and widespread concerns is double-spending. Even if they don’t have
a lot of hash power, attackers can bribe other miners to break the consensus agreement and raise the chances of
double-spending. Bribery is the term for this type of attack. The lack of systematic quantitative methodologies makes
evaluating and comparing bribery attack models difficult. The costs and advantages of attackers, in particular, are rarely
evaluated and are modified by a variety of factors [105]. Bribery attacks, in contrast to feather forking attack(), include
the provision of direct rewards to miners, whereas feather forking involves adversaries attempting to influence miners’
behavior by threatening to harm their profits [57].

Articles related to this attack [19, 39, 40, 57, 105].

2.6.6 Attack 30: Consensus Delay. A consensus delay attack is another approach to extending the transaction’s accepting
time [50]. While a block’s latency is increased by the memory pool due to the transactions queue, consensus delay is
caused by the majority of users’ propagation time. When a new block is available, it should be confirmed by the most of
blockchain participants [42].

Articles related to this attack [42, 50].

2.7 Time

2.7.1 Attack 31: Timejacking. Computers and machinery separated by great distances must usually be synced to work
together. If the time and date are not synced, problems with security, usability, and overall reaction time can arise.

30https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses
31https://www.coitok.com/34-attack-407
32https://bitcointalk.org/index.php?topic=312668.0

https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses
https://www.coitok.com/34-attack-407
https://bitcointalk.org/index.php?topic=312668.0

A Hundred Attacks in Distributed Systems 15

Time should continue to advance even if users switch from one computer to another if they have communicative
programs operating on various systems. If one system is forward of the others, the rest are behind it. Switching between
these systems would cause the time to leap forward and back, which would be undesirable from the standpoint of an
outside observer. As a result, isolated networks may run on schedule, but the consequences will be obvious as soon as
they connect to the Internet. When time goes backward, even on a single machine, some apps experience issues.

An attacker can manipulate a node’s network time counter and trick it into accepting another blockchain by
broadcasting incorrect timestamps while connecting to it. This could raise the likelihood of a successful double-spend,
deplete a node’s processing resources, or reduce transaction confirmation rates.

The Bitcoin network’s nodes keep an internal counter that indicates network time. During the bootstrapping phase,
the node requests network time from surrounding nodes calculate the median, and stores it. If the median is longer
than 70 minutes, the system time will be used. An eclipse attack, for example, would continue to allow surrounding
nodes to submit incorrect timestamps. Because their timestamp exceeds the network timestamp by 120 minutes, such
an attack could cause the node to reject the blocks. Such a targeted node will eventually be disconnected from the
network [46, 62].

Articles related to this attack [16, 46, 62].

2.7.2 Attack 32: Time-Validation. In PoW and PoS, nodes keep network time, which is computed as the median value of
the time collected from peers. Time-Validation attacks, also known as time de-Synchronization attacks, usually keep
network time in addition to system time. This time is frequently included in the block header, and when nodes receive a
block, they check to see if it meets the freshness requirements. An attacker can take advantage of this method by joining
a large number of nodes and propagating inaccurate timestamps, which can cause the target node’s network time to be
slowed or sped up33. Due to freshness limits, when such a desynchronized node creates a block, the network may discard
it. A node can construct a reputation list of trusted peers or use a timestamping authority to avoid de-synchronization
attacks [58, 108].

Articles related to this attack [58, 108].

2.7.3 Attack 33: Time-Spoofing. Time-spoofing attacks aim to reduce the complexity of the problem and hence the
effort required to earn the same reward by targeting a time-based difficulty computation mechanism in a PoR protocol.
The attacker is a consensus node that mines blocks with delayed timestamps, indicating that the puzzle is too complex
to satisfy the block generation rate and that the difficulty should be reduced. Countermeasures: To improve the accuracy
of the timestamps, a solution that incorporates partial solutions obtained by all nodes into an averaged timestamp
computation may be used [109]. It’s worth noting that a time spoofing attack might have a significant impact on the
application layer, particularly in use cases that rely on timestamp accuracy [57].

Articles related to this attack [57, 109].

2.8 Iterative False Generation

2.8.1 Attack 34: Sybil. The attacker subverts the service’s recommendation system by generating a large number of
pseudonymous identities and leveraging them to gain disproportionately large influence. Sybil, the subject of the book
Sybil, a case study of a woman with dissociative identity disorder, inspired this attack 34. In other words, a Sybil attack
is described as a small number of individuals impersonating several peer identities to compromise a disproportionately

33http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
34https://www.npr.org/2011/10/20/141514464/real-sybil-admits-multiple-personalities-were-fake

http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
https://www.npr.org/2011/10/20/141514464/real-sybil-admits-multiple-personalities-were-fake

16 A. Vaezi, S. Azarnoush, P. Mohammadian

large amount of the system. In other words, an adversary tries to make a large number of nodeIds appear and function
as distinct nodes, which may or may not be generated randomly. The adversary can get closer to a specific object or a
group of objects in the P2P overlay by using numerous identities. It improves the ability to intercept message routing
and operate an overlay network. It’s even possible for a bad actor to take over the P2P overlay network [20].

Articles related to this attack [16, 20].

2.8.2 Attack 35: Spam. By slowing the network and delaying block formation, a spam attack affects a committed
transaction [16].

Articles related to this attack [16, 80, 91].

2.8.3 Attack 36: Peer Flooding. An attacker can cause actual nodes to slow down or become unresponsive as they seek
to connect to the freshly announced false peers by generating a large number of fake peers in a network (peer to peer
or otherwise)35

To see more information on this attack see the web address in the footnote.

2.8.4 Attack 37: Peer Flooding Attack Slowloris Variant. An attacker might cause actual nodes to slow down or become
unresponsive when they attempt to connect to the newly announced peers by generating a large number of sluggish
peers (natural systems that reply very slowly to network requests) in a network. Slowloris peers, unlike fake peers, are
actual but communicate slowly enough to keep sockets and resources available for minutes or hours36. To see more
information on this attack see the web address in the footnote.

2.9 Disconnecting Node

2.9.1 Attack 38: Eclipse. Eclipse attacks are a form of attack in which the attacker monopolizes all of the victim’s
incoming and outgoing connections to isolate the target from the rest of the network. This allows the attacker to tamper
with the target’s blockchain view, force it to waste compute power or use the target’s compute power for malicious
purposes [34, 56].

Articles related to this attack [16, 34, 56]

2.9.2 Attack 39: Triangle. This attack occurs when three nodes are in a triangular position, and only one can reach out
to other nodes in a distributed network such as blockchain. Figure 2 illustrates this attack with three nodes denoted
by 𝐴, 𝐵, and 𝐶 and rectangle as a schema of a distributed network. In such a situation, 𝐶 has complete control over
transactions between 𝐴 and 𝐵.

Articles related to this attack [119].

2.9.3 Attack 40: Partitioning. A partition attack aims to isolate a group of nodes from the network entirely. The attacker
must reroute and cut all connections between the set of nodes and the rest of the network to do this [12].

Articles related to this attack [12].

2.9.4 Attack 41: Balance. It enables a low-mining-power attacker to interrupt communications between subgroups
with equivalent mining power for a short period. They represent blockchain as a DAG (Directed Acyclic Graph) tree,
with DAG = B, P >. B are the nodes that represent the information in the blocks, and they are connected by directed
edges P. The attacker issues transactions in one subgroup (called "transaction subgroup") and mines blocks in another
35https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/
36https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/

https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/
https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/

A Hundred Attacks in Distributed Systems 17

C

Rest of the Network

A B

Fig. 2. Triangle Attack on Blockchain.

subgroup (called "block subgroup") after introducing a delay between correct subgroups of equivalent mining power.
This ensures that the tree of block subgroup outweighs the tree of transaction subgroup. Even though the transactions
have been committed, the attacker can outweigh the transaction tree and alter blocks with a high probability.

The balanced attack breaks the main branch prefix’s persistence and allows duplicate spending. The attacker must
first identify the merchants who are active in the subgroup and then create transactions to purchase goods from them.
The attacker then sends transactions to this subgroup and propagates the mined blocks to the group’s remaining nodes.
The attacker stops delaying messages as long as the merchant ships items. The attacker could successfully reprint
another transaction using the same coins if the DAG tree seen by the merchant is outweighed by another tree.

The balanced attack demonstrates that a PoW-based blockchain is blocked agnostic. When a transaction is written to
themain chain, there is a chance that the attackerwill be able to override or remove the block that contains the transaction.
In a separate experiment, the authors set up an Ethereum private chain with R3 consortium-like characteristics37 and
demonstrated that they could successfully carry out a balancing attack that requires just approximately 5% of total
computer power [70].

Articles related to this attack [70].

2.10 Change Block

2.10.1 Attack 42: Tampering. An unintentional but unlawful act that results in the change of a system, its components,
its intended behavior, or its data38. Attackers can interfere with block delivery [50], in a blockchain network, but the
ledger itself is impenetrable.

Articles related to this attack [50].

37https://www.r3.com/
38https://csrc.nist.gov/glossary/term/tampering

https://www.r3.com/
https://csrc.nist.gov/glossary/term/tampering

18 A. Vaezi, S. Azarnoush, P. Mohammadian

2.10.2 Attack 43: Modification. Modification attacks may be classified as integrity attacks; however, they might equally
be called availability attacks. They have ruined the integrity of the data contained in a file if they get unauthorized
access to it and alter the data it contains. However, if the file in question is a configuration file that controls how a
particular service behaves, such as a Web server, changing the contents of the file may impact the service’s availability.
Continuing with this approach and the configuration changed in the file for the Web server affects how the server
handles encrypted connections. This could even be considered a confidentiality attack [7].

Articles related to this attack [2, 7, 66, 122].

2.10.3 Attack 44: Transaction Malleability. The transaction ID is modified after it is made but before it is mined in the
blockchain network in a transaction malleability attack. The source and destination addresses, and the transaction
amount, cannot be changed. Still, other aspects of the transaction can result in a transaction ID (TXID) different from
the original. Typically, the goal is to duplicate the original transaction that could not be mined first using this actual
malleable transaction [10]. Double-spending can occur as a result of a successful transaction malleability attack [34, 63].

Articles related to this attack [10, 34, 63].

2.11 History

2.11.1 Attack 45: Grinding. If the leader or committee responsible for producing a block is known before the round
begins, the attacker can manipulate the process to improve her chances of being chosen in the future. For instance,
if a PoS protocol uses the hash of the previous block to determine the risk. If an attacker gathers enough keys with
sufficient stake in the past, he can restart the consensus protocol and alter the blockchain’s history. [57].

Articles related to this attack [57].

2.11.2 Attack 46: Keeping Secrets Exploit. Fields in contracts can be public (i.e., everyone can see them) or private (i.e.,
only other users/contracts can see them). Even yet, designating a private field does not ensure its privacy. Users must
transmit a valid transaction to miners, who will subsequently broadcast it on the blockchain to set the value of a field.
Because the blockchain is open to the public, anyone may examine the contents of the transaction and infer the field’s
new value. As a result, an attacker can readily exploit confidential data.

In such circumstances, the contract can use appropriate cryptographic techniques, such as timed commitments, to
ensure that a field remains secret until a specific event occurs [13].

Articles related to this attack [9, 13, 18].

2.11.3 Attack 47: Front-running. Front-running is an attack where a compromised node sees a transaction after it has
been broadcast but before it has been finished and tries to have its own transaction verified before or instead of the
observed transaction [41]. Any type of distributed network can be used for front-running.

Articles related to this attack [41].

2.11.4 Attack 48: Long Range. A Long-Range attack is one in which the attacker returns to the genesis block and forks
the network. The new branch has a history that is either partially or entirely separate from the main chain. The attack
succeeds when the adversary’s manufactured branch is longer than the main chain, and therefore it overtakes it [35].

Articles related to this attack [16, 35, 57].

A Hundred Attacks in Distributed Systems 19

2.11.5 Attack 49: Stake Bleeding. When using the proof of stake consensus algorithm, an adversary in a forking chain
can accumulate the rewards associated with the creation of new blocks (which are initially created by honest users in
the main chain) in order to inflate its stake until it reaches a sufficient level to take over the network [14].

Articles related to this attack [49].

2.11.6 Attack 50: Alternative History. An alternate history attack, also known as a blockchain reorganization attack,
can occur even with numerous confirmations. However, it needs a significant amount of computing power on the part
of the hacker. A malevolent user in this example sends a transaction to a recipient while simultaneously mining an
alternative fork with another transaction that yields the same currency. Even if the recipient accepts the transaction
after n confirmation and delivers a product, the recipient may lose a lot of money if the attacker publishes a longer
chain and recovers the coins. In August 2020, one of the most recent blockchain rearrangement attacks occurred when
a miner employed obsolete software and lost internet access for some time while mining Ethereum Classic. When two
versions of the blockchain contended for legitimacy from network nodes, a restructuring occurred, resulting in around
a 3000-block insertion39.

To see more information on this attack see the web address in the footnote.

2.12 Identity

2.12.1 Attack 51: Replay. A replay attack happens when an intruder takes a packet from the network and sends it
to a service or application as though the intruder was the user who provided the packet in the first place. When the
packet is an authentication packet, the intruder can use the replay attack to authenticate on another person’s behalf
and thereby access that person’s resources or data [3].

A Replay Attack does not imply that someone else has access to money. Only a Replay Attack may replicate an
existing transaction from the new split blockchain and duplicate it on the old blockchain (or the other way around)4041.

Articles related to this attack [3, 24].

2.12.2 Attack 52: Impersonation. An attacker attempts to impersonate a genuine user to carry out unlawful actions.
Articles related to this attack [34, 44, 115].

2.12.3 Attack 53: Identity Revealing. Identity-revealing attacks are carried out by associating a node’s IP address
with the identity conveyed in transactions42 [17, 76]. The use of Sybil listeners to analyze traffic can show the
relationship between node IP addresses and transactions43. VPNs and anonymization services, such as Tor, are examples
of countermeasures [58].

Articles related to this attack [58].

2.12.4 Attack 54: Deanonymization. An adversary tries to deduce the identity of a specific individual from a set of
mobility traces in a de-anonymization attack. More exactly, assume that throughout the training phase, the opponent
watched the actions of select individuals for a significant period (e.g., many days or weeks). Later, the adversary has
access to a second geolocated dataset that contains the mobility traces of some of the people seen during the training
phase, as well as maybe some unknown people. The adversary’s goal is to de-anonymize this dataset (dubbed the testing

39https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
40https://support.exodus.com/article/168-what-is-a-replay-attack
41https://www.itprotoday.com/security/understanding-how-kerberos-authentication-protects-against-replay-attacks
42https://www.linkedin.com/pulse/deep-dive-security-reference-architecture-blockchains-kumar-giri-/
43https://www.coindesk.com/markets/2015/03/14/chainalysis-ceo-denies-sybil-attack-on-bitcoins-network/

https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
https://support.exodus.com/article/168-what-is-a-replay-attack
https://www.itprotoday.com/security/understanding-how-kerberos-authentication-protects-against-replay-attacks
https://www.linkedin.com/pulse/deep-dive-security-reference-architecture-blockchains-kumar-giri-/
https://www.coindesk.com/markets/2015/03/14/chainalysis-ceo-denies-sybil-attack-on-bitcoins-network/

20 A. Vaezi, S. Azarnoush, P. Mohammadian

dataset) by associating it with the appropriate persons in the training dataset. It’s worth noting that just changing
people’s real names to pseudonyms before publishing a dataset isn’t always enough to keep their identities anonymous.
The mobility traces contain information that may be uniquely traced back to a person. Furthermore, while a dataset can
be cleaned before being released by adding geographical and temporal noise, there is still a danger of re-identification
through a de-anonymization attack. As a result, developing a way to quantify this risk is critical to determine its
relevance [47].

S. Gambs et al. [47] created a mobility model called Mobility Markov Chain for implementing this attack(MMC).
The mobility traces obtained during the training phase are utilized to create an MMC, then used to execute the attack
during the testing phase.

Facebook, LinkedIn, and Xing, among other social networking sites, have reported exponential growth rates and
millions of registered members. G. Wondracek et al. [120] presented a unique de-anonymization technique that takes
advantage of group membership data accessible on social networking sites.

Articles related to this attack [38, 47, 83, 89, 120].

2.13 Key Attack

2.13.1 Attack 55: Hashing Operation Vulnerability. SHA-256 is widely used in the blockchain Hashing function, though
other hashing algorithms, such as Ripemd160 and sCrypt, are also utilized in the operation and construction of blockchain
Hashing functions. The SHA-256 algorithm is currently thought to be unbreakable. It is, nevertheless, vulnerable to the
length extension attack. Without knowing the shared secret, a hash of a signed message can be modified by appending
some attacker-controlled data to the original message. To avoid the length extension attack, Ferguson and Schneier
recommend using double SHA-256 [43]. Birthday attacks, which are probabilistic attacks that break collision resistance
via repeated evaluations, are likewise vulnerable to these hash algorithms. This type of attack’s effectiveness in the
real world was recently proved for the SHA-1 algorithm [104]. As a result, algorithms such as MD5 and SHA-1 are
effectively flawed and should never be used for cryptographic operations [34].

Articles related to this attack [34].

2.13.2 Attack 56: Cryptography Key Vulnerability. ECDSA, the elliptic curve variation of DSA, is widely utilized in
blockchain implementations because it has various advantages over other discrete logarithm-based algorithms and
factoring modulus techniques, including smaller key size and faster processing. Specific domain parameters define
which elliptic curves are acceptable for cryptographic operations. Many of these standardized elliptic curves have flaws
in theory or were created with problematic parameters. Some cryptographers, for example, are wary about the NIST
P-256 curve since the derivation of the curve parameters is not correctly described and leaves open the possibility
of manipulation, resulting in the curve including intentional flaws or "backdoors." This type of deliberate flaw has
been seen before, as NIST previously issued Dual-EC-DRBG, a standard for a cryptographically secure random number
generator based on elliptic curve operations. The backdoor was suspected even before the standard was published,
and it was later disclosed in a Reuters piece that RSA Security was paid $10 million to use this method as the default
random number generator in the RSA BSAFE library, despite RSA’s denial44. The backdoor enables anyone with access
to a secret set of numbers to decrypt any message with only 32 bits of ciphertext45 [34].

Articles related to this attack [34].

44https://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
45https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html

https://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html

A Hundred Attacks in Distributed Systems 21

2.13.3 Attack 57: Certificate Authority. A certificate authority, also called as a certification authority (CA), is a crypto-
graphic body that issues digital certificates. A digital certificate verifies that the named subject of the certificate owns a
public key. Others (relying parties) can trust signatures and assertions about the private key that matches the certified
public key. A CA serves as a trusted third party, trusted by both the certificate’s subject (owner) and the party relying
on the certificate4647.

The security and utility of the Internet public-key infrastructure (PKI) have been jeopardized by recent attacks on
certification authorities (CAs) and fraudulently issued certificates. Such attacks are anticipated to recur on a regular
basis, necessitating the development, implementation, and implementation of appropriate responses [82].

Articles related to this attack [51, 82].

2.14 Reputation-based

An agent manipulates his reputation by rebranding himself as a good guy [44].

2.14.1 Attack 58: Hiding Blocks. Under this attack, an agent only In this assault, an agent selectively displays transactions
that have a positive influence on his reputation while concealing transactions that have a negative impact[44].

Articles related to this attack [44, 62].

2.14.2 Attack 59: Whitewashing. To clear history, create a new account. The defense is simple: while executing the
allocation policy, give new identity agents lesser priority [22].

Articles related to this attack [22, 44].

2.15 Mining Pool

2.15.1 Attack 60: Pool Hopping. The pool hopping attack reduces the mining pool’s and honest miners’ expected
profits in Blockchain. The mainstream countermeasures, namely PPS (pay-per-share) and PPLNS (pay-per-last-N-share),
can hedge pool hopping but need to charge miners some fees when they join in a pool. The higher fee charged the
higher cost of joining the pool, the less motivation of a miner to mine in the pool. In an article written by Hongwei
Shi et al. [99], they applied the zero-determinant (ZD) theory to design a novel pooled mining that offers an incentive
mechanism for motivating miners not to switch in pools strategically by economic means without a fee charged.

A pool hopping attack occurs when miners leave a pool when the financial rewards are lower and rejoin when the
financial rewards of mining are higher in blockchain networks. By leaving and rejoining the pool only during profitable
periods, the miner earns more than the computational power they contribute. Miners leaving the pool deprive the
pool’s collective hash power, yielding the pool incapable of successfully mining the block. As a result, its competitors
begin mining the block before they can complete mining. Existing research shows pool hopping resistant measures
and detection strategies; however, they do not offer any robust preventive solution to discourage miners from leaving
the mining pool. To prevent pool hopping attacks, a smart contract-based pool hopping attack prevention model is
proposed by [101].

Articles related to this attack [57, 98, 99, 101].

2.15.2 Attack 61: Selfish Mining. Even if the fair majority assumption holds, the selfish mining (SM) attack gives a
miner more than her fair share by straying from real mining (i.e., following the publicly acknowledged correct method).

46https://en.wikipedia.org/wiki/Certificate_authority
47https://datahack4fi.org/what-is-certificate-authority-in-network-security

https://en.wikipedia.org/wiki/Certificate_authority
https://datahack4fi.org/what-is-certificate-authority-in-network-security

22 A. Vaezi, S. Azarnoush, P. Mohammadian

The attack’s fundamental idea is to keep the mined blocks secret so that they can be extended individually and then
release them later to eliminate other blocks from the main chain. Because honest miners always choose the chain with
the most blocks, and the difficulty adjusts over time, the attack succeeds. In truth, none of these causes appear to be
avoidable, as the former is a preventative mechanism against network partitions and propagation delays, while the
latter is an early design decision to ensure the main chain’s projected inter-block duration remains constant [23].

Articles related to this attack [23, 57].

2.15.3 Attack 62: Baseline. The baseline attack approach is a selfish miner 2.15.2 making two blocks, BS1 and BS2, then
forking the main blockchain to invalidate the block BH of an honest miner. For ten minutes, the attacker rents half of
NiceHash’s Bitcoin hash power. The attack process is divided into two rounds. In the first round, the attacker uses his
own hashing power to compute the first block, BS1. It then withholds the block and waits for the network to accept the
honest miner’s block BH. The attacker utilizes the hired hash power in the second round to compute the next block BS2
before anybody else on the network. After computing the block, the attacker forks the main blockchain with his or her
own private chain. As a result, the network shifts to the selfish miner who has branched private chains and discards the
honest miner’s block. The selfish miner succeeds in his attack and receives more rewards than the attack cost [92].

Articles related to this attack [92].

2.15.4 Attack 63: Fork-After-Withhold (FAW). A fork after withholding (FAW) attack is not just a different form of
attack. The reward for a FAW attacker is always equal to or greater than the reward for a BWH attacker, and it can be
used up to four times more frequently per pool than the reward for a BWH attacker. When several pools are taken
into account, the current state of the Bitcoin network, the additional reward for a FAW attack is approximately 56%
greater than that for a BWH attack. Additionally, when two pools launch FAW attacks against one another, the miner’s
dilemma may not hold: under some conditions, the larger pool can continuously win. More crucially, unlike selfish
mining, while using intentional forks, a FAW attack does not suffer from practical concerns 2.15.2. FAW attacks are
expected to be seen among mining pools [67].

Articles related to this attack [67].

2.15.5 Attack 64: Liveness. The liveness attack, proposed by Aggelos et al. [64], can delay the confirmation time of a
target transaction as much as feasible. They also demonstrate two variants of the attack on Bitcoin and Ethereum. The
attack preparation phase, transaction denial phase, and blockchain retarder phase are the three steps of an aliveness
attack:

• Attack preparation phase: An attacker gains an edge over honest miners in some way before the target transaction
TX is broadcasted to the public chain, similar to a selfish mining attack(see 2.15.2). The attacker creates a longer
private chain than the public chain.

• Transaction denial phase: In order to prevent TX from being published into the public chain, the attacker keeps
the block containing TX privately.

• Blockchain retarder phase: At some point during the public chain’s expansion, TX will no longer be able to be
privately kept. In this situation, the attacker will make the block containing TX public. Whenever the depth of
the block that contains TX is larger than a constant in various blockchain systems, TX is considered genuine.
As a result, in order to gain an advantage over the public chain, the attacker will continue to establish private
chains. The attacker will then post her privately owned blocks into the public chain at the appropriate time to

A Hundred Attacks in Distributed Systems 23

slow down the rate of growth of the public chain. When TX is verified as legitimate in the public chain, the
liveness attack will be over48 [70].

Articles related to this attack [56, 64, 69, 70, 100, 125, 126].

2.15.6 Attack 65: Block Withholding. A block mining attack was constructed by a few pool components in the general
block withholding assault, although they did not express any blocks [16]. In this example, the attacker constructs a
legal block but does not broadcast it; instead, transaction X is broadcast as a payment for goods or services. When
a retailer notices transaction X, he or she may accept this 0-confirmation transaction. The attacker will then begin
broadcasting the previously created block containing transaction Y, which is in conflict with transaction X, and the
Bitcoin network will accept his block and invalidate transaction X49 [113].

Participants in the Bitcoin system are rewarded for solving cryptographic riddles. Some users form mining pools and
distribute the pool’s benefits according to each participant’s input in order to get more constant payouts over time.
Several attacks, however, put the ability to participate in pools in jeopardy. By allowing malevolent players to get unjust
pay while merely seeming to provide work, the block withholding (BWH) attack makes the pool reward structure
unfair. When two pools conduct BWH assaults against one other, the miner’s dilemma arises: in a Nash equilibrium,
both pools’ income is reduced[67]. An attacker can unjustly gain more rewards by purposely constructing forks in
another attack known as selfish mining 2.15.2.

Articles related to this attack [16, 57, 67, 111, 113].

2.15.7 Attack 66: Block Reordering. Specific cryptographic techniques (such as erroneously employing CBC or ECB)
allow blocks to be re-ordered while correctly decrypting50. For example, in such algorithms, an attacker can swap two
blocks and know that the second block will be decrypted to the same plaintext as the original.

To see more information on this attack see the web address in the footnote.

2.15.8 Attack 67: Block Discarding Attack and Difficulty Raising. According to a widely held security claim made
in the original Bitcoin white paper, the Bitcoin system is secure as long as no attacker controls half or more of the
total computational power used to maintain the system. However, this claim is supported by theoretically erroneous
assumptions. Lear Bahack [15] analyzes two types of attacks based on two theoretical weaknesses: Block Discarding
and Difficulty Raising. They argue that the theoretical limit on an attacker’s fraction of total computational power
required for system security is currently not 1

2 but slightly less than 1
4 , and outline protocol changes that can raise this

limit to as close to 1
2 as possible.

Articles related to this attack [15].

2.16 Wallet

Since private keys can be stored in lots of fashions, many attacks can be used to obtain access to them.

2.16.1 Attack 68: Wallet Theft. Wallets are mainly used to store private keys. Wallets of many forms, including paper
wallets, mobile wallets, desktop wallets, hardware wallets, and web wallets, have all been used. It is critical to protect
private keys from loss or theft. These wallets, however, are vulnerable to failure or attacks and, in some cases, are
not irreversible. Damage resistance may be possible with introducing multi-signature addresses and cloud storage

48https://www.sciencedirect.com/topics/engineering/liveness
49https://jheusser.github.io/2013/02/03/satcoin.html
50https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/

https://www.sciencedirect.com/topics/engineering/liveness
https://jheusser.github.io/2013/02/03/satcoin.html
https://cloudsecurityalliance.org/blog/2020/10/26/blockchain-attacks-vulnerabilities-and-weaknesses/

24 A. Vaezi, S. Azarnoush, P. Mohammadian

systems unless cooperation occurs[78]. A hardware wallet is a collection of physical devices linked to a private key. It is
impervious to digital attacks since it lacks complicated components (such as an operating system). A paper wallet is a
written piece of paper with a private key. This method is deemed secure because the private key is kept away from the
internet. Although it is impervious to digital threats, the paper wallet is vulnerable to lose, misreading, or damage. As a
result, it is no more widely utilized5152 [45].

Articles related to this attack [45, 78].

2.16.2 Attack 69: Wallet Malware. Malware is software that infects, examines, steals, or performs nearly any behavior
an attacker desires. It is often sent through a network. Malware has the ability to steal the private key from a victim’s
wallet53.

To see more information on this attack see the web address in the footnote.

2.16.3 Attack 70: Wallet Phishing. Phishing attacks trick users into providing personal information by sending them
legitimate-looking but phony emails and web pages [121]. Wallet phishing entails revealing secret information about a
crypto wallet, such as the private key.

Articles related to this attack [121].

2.16.4 Attack 71: Etherdelta. EtherDelta is a decentralized exchange that lists almost every Ethereum-based coin
currently available. Although it does not have the same volume as more extensive exchanges, it is a vital first step for
traders after a new token is created in an ICO (initial coin offering) The smart contracts that regulate EtherDelta’s
behavior were apparently unaffected by the hack. Instead, the attacker was able to take control of EtherDelta’s DNS
server and redirect visitors to a phony version of the site. This is significantly more harmful than the typical phishing
attempt, in which a fake website creates a domain name that looks similar to the actual one (such as etherrddeltta.com).
Users who visited the official EtherDelta website on Wednesday afternoon (ET time) were given a partially working
but convincing version of the site. The attack appears to have been stopped within a few hours, and the legitimate
EtherDelta site has been restored, although anyone connected with the false site may have sent ether or other tokens to
the hacker54.

Articles related to this attack [51].

2.16.5 Attack 72: Attacks On Cold Wallets. Hardware wallets, also known as cold wallets, can be hacked as well. For
example, researchers used flaws in the Nano S Ledger wallet to launch an Evil Maid attack. Researchers received the
victims’ private keys, as well as their PINs, recovery seeds, and passwords, as a result of this incident55.

To see more information on this attack see the web address in the footnote.

2.16.6 Attack 73: Attacks On Hot Wallets. Hot wallets are web-based applications that store private cryptographic keys.
Though cryptocurrency exchange owners maintain that their users’ data is kept in wallets that aren’t connected to the
internet, a $500 million attack on Coincheck in 2018 demonstrated that this isn’t always the case56.

To see more information on this attack see the web address in the footnote.

51https://crypto-current.co/what-is-paper-wallet/
52https://www.investopedia.com/terms/p/paper-wallet.asp
53https://www.paloaltonetworks.com/cyberpedia/what-is-malware
54https://mashable.com/article/etherdelta-hacked
55https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
56https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

https://crypto-current.co/what-is-paper-wallet/
https://www.investopedia.com/terms/p/paper-wallet.asp
https://www.paloaltonetworks.com/cyberpedia/what-is-malware
https://mashable.com/article/etherdelta-hacked
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

A Hundred Attacks in Distributed Systems 25

2.16.7 Attack 74: Passphrase Extraction. A passphrase 57 protects the private key; adversaries with the passphrase
can use the private key on the account owner’s behalf, such as signing data and sending transactions. Two different
methods are present to extract a passphrase [118]: Passphrase Sniffing is mentioned in subsection 2.16.8, and Brute
Force is discussed in subsection 2.16.10.

Articles related to this attack [118].

2.16.8 Attack 75: Passphrase Sniffing. A user can remotely call the personal unlock-Account function to unlock its
account. However, the function and the parameters, including the passphrase, are transmitted in plaintext, which
provides adversaries opportunities to sniffer the passphrase. This attack requires two conditions: the adversary has the
ability to capture the traffic between the geth (see subsection 2.2.3) node and the remote user; and the user calls the
personal unlock-Account [118].

Articles related to this attack [118].

2.16.9 Attack 76: Packet Sniffing. Packet Sniffing can be seen as a more general version of the Passphrase Sniffing.
Sniffing attacks refer to the theft or interception of data by capturing the network traffic using a packet sniffer. Sniffing
attacks are also called “packet sniffing” or “network sniffing” attacks because cybercriminals sniff data packets within a
network. A data packet is a logical unit of data transmitted and received over a network.

The sniffing attack is the act of intercepting or capturing data as it traverses a network. This perception is similar to
law enforcers wiretapping a suspect’s phone line to gather essential information58.

Sniffer is a network traffic monitoring and analysis program. It is intended to identify network bottlenecks and
problems. A network administrator can use this information to maintain traffic flow efficiently. A sniffer can also be
used to capture data being transmitted on a network. A sniffing attack is when a sniffer is used to capture the data in
transit [1].

Sniffing attacks enable common network threat types such as man-in-the-middle attacks, insider threats etc59.
For more information related to these attacks see [1], and footnote.

2.16.10 Attack 77: Brute Force. There is no limitation on retrying the unlock account calls because the RPC and WS
services are stateless60. The personal unlock-Account function is realized in the source code of“/internal/ethapi/api.go”.
The code does not record the refused times nor the last failure time. As a result, the adversaries can keep on trying
passphrases to find the correct one. This attack requires that the geth node provides the RPC/WS service and enables
the personal module

Kerberos is vulnerable to password guessing since it cannot detect a dictionary attack [114]. Brute-force password-
cracking attacks target the encrypted timestamp that is embedded in the Kerberos pre-authentication data [36]. The
user’s password is used to encrypt the timestamp. Because timestamps are relatively easy to recognize, it is possible to
mount brute-force attacks against the encrypted pre-authentication data and derive the user’s password. There are
ways to protect against this attack; for example, using Windows smartcard login with Kerberos extension or encrypting
the network traffic between the client and the KDC using IP Security (IPSec) [3].

Articles related to this attack [3, 24, 24, 114, 118].

57A passphrase is a string of characters that is used to control access to the system, application, or data. It is similar to a password, but it is often lengthier
for increased protection.
58https://www.techslang.com/definition/what-is-a-sniffing-attack/
59https://cisomag.eccouncil.org/what-are-sniffing-attacks-and-how-to-defend-against-them/
60https://github.com/ethereum/wiki/wiki/JSON-RPC

https://www.techslang.com/definition/what-is-a-sniffing-attack/
https://cisomag.eccouncil.org/what-are-sniffing-attacks-and-how-to-defend-against-them/
https://github.com/ethereum/wiki/wiki/JSON-RPC

26 A. Vaezi, S. Azarnoush, P. Mohammadian

2.16.11 Attack 78: Dictionary. When an attacker uses a dictionary attack to guess a user’s password, they attempt each
word in the dictionary (a list of likely passwords) in the hopes that one of those guesses is the user’s real password.
This is known as a brute-force attack [4].

Attackers use common words and phrases, such as those from a dictionary, to try to guess passwords in a dictionary
attack. Dictionary attacks can be successful because people frequently use simple, easy-to-remember passwords for
multiple accounts.

A dictionary attack, as opposed to a traditional brute-force attack, uses a much smaller set of pre-selected words and
phrases to bypass authentication controls. While a dictionary attack takes less time and resources to perform, it reduces
the chances that a difficult password will be guessed correctly61.

Articles related to this attack [4].

2.16.12 Attack 79: Private key Recovery. A key-recovery attack is an attempt by an adversary to recover an encryption
scheme’s cryptographic key. This typically indicates that the attacker possesses a pair, or multiple pairs, of plaintext
messages and their associated ciphertext. Historically, cryptanalysis of block ciphers has concentrated on key recovery.
Still, security against these types of attacks is extremely weak, as it may not be essential to recover the key in order to
extract partial information about the message or to decrypt the message entirely62. This attack is also possible to occur
with the advancement of quantum computing so that the cryptographic keys can be cracked quickly [32].

Articles related to this attack [32].

2.16.13 Attack 80: Dusting. A dusting attack is a comparatively recent kind of malicious activity in which hackers and
fraudsters attempt to compromise the privacy of cryptocurrency users by sending them insignificant amounts of money
to their wallets. The attackers then monitor the wallets’ transactional behavior, doing a combined analysis of many
addresses in order to de-anonymize the individual or entity behind each wallet63.

In other words, a dusting assault is one in which a negligible quantity of cryptocurrency, referred to as dust, is
transmitted to thousands—and perhaps hundreds of thousands—of wallet addresses. This assault is being launched
with the goal of unmasking or de-anonymizing these addresses. Dust is found on the majority of public blockchains,
including but not limited to Bitcoin, Litecoin, Bitcoin Cash, and Dogecoin64.

Numerous groups conduct dusting assaults. Dusting attacks have been used to de-anonymize people with significant
cryptocurrency holdings. Individuals with substantial assets may be targeted in a variety of ways, including phishing
attacks and cyber-extortion. Users with significant bitcoin holdings in high-risk locations may also face physical attacks
or have a family member abducted for a cryptocurrency ransom.

Articles related to this attack [87].

2.16.14 Attack 81: Refund. BIP70 is a widely adopted Payment Protocol standard that defines how merchants and
customers handle Bitcoin transactions. This standard is supported by the majority of significant wallets and the two
largest payment processors, Coinbase and BitPay, which together provide the infrastructure for more than 100,000
merchants to accept Bitcoin as a form of payment. P. McCorry et al. [74] describe new Payment Protocol attacks
that affect all BIP70 merchants. The Silkroad Trader attack demonstrates a vulnerability in the Payment Protocol’s
authentication mechanism, whereas the Marketplace Trader attack takes advantage of current Payment Processors’

61https://www.csoonline.com/article/3568794/what-is-a-dictionary-attack-and-how-you-can-easily-stop-them.html
62https://en.wikipedia.org/wiki/Key-recovery_attack
63https://academy.binance.com/en/articles/what-is-a-dusting-attack
64https://www.gemini.com/cryptopedia/crypto-dusting-attack-bitcoin

https://www.csoonline.com/article/3568794/what-is-a-dictionary-attack-and-how-you-can-easily-stop-them.html
https://en.wikipedia.org/wiki/Key-recovery_attack
https://academy.binance.com/en/articles/what-is-a-dusting-attack
https://www.gemini.com/cryptopedia/crypto-dusting-attack-bitcoin

A Hundred Attacks in Distributed Systems 27

refund policies. Both attacks have been experimentally verified on real-world merchants with the aid of a customized
Bitcoin wallet. Both Coinbase and Bitpay have recognized the attacks and implemented interim mitigation measures.

Articles related to this attack [51, 52, 74].

2.17 Splitting

2.17.1 Attack 82: Orphaned Blocks. An orphaned block is one in which the hash field of its parent block points to an
unauthentic block that has been removed from the Blockchain [93]. Inconsistencies in the Blockchain are caused by
orphan blocks. It can be caused by race conditions in the miners’ work or introduced by an attacker.

Articles related to this attack [93].

2.18 Design Flaw

Because of flaws in system design, some systems are targets of specific attacks. The DAO attack is a well-known
example of a design flaw-related disaster. DAO is the acronym for Decentralized Autonomous Organization. The DAO is
a crowd-funding platform implemented using a smart contract released on Ethereum on May 28, 2016. Only after the
DAO contract had been deployed for 20 days was it attacked. DAO had raised $150 million before the hack, making it
the largest crowd-funding project ever. The thief made off with around $60 million in cash. In this situation, the attacker
made use of the Re-entrancy flaw. The following subsection defines the re-entrancy attack. First, the attacker creates a
malicious smart contract containing a call to DAO’s withdraw() function in its callback function. The callee, also called,
will receive Ether from the withdraw() function. As a result, it will call the malicious smart contract’s callback function
once more. In this technique, the attacker can take all of DAO’s Ether [70].

Articles related to this attack [70]. To see more information on this attack see the web address 65.

2.18.1 Attack 83: Re-entrancy. When an attacker recursively calls the target’s withdraw function, he or she is committing
a re-entrancy attack. The attacker can repeatedly execute the withdraw function to drain the contract’s funds if the
contract fails to update its status, such as a victim’s balance, before sending payments. The DAO hack, which resulted
in a $60 million loss, is a well-known real-world Re-entrancy attack [95].

Articles related to this attack [13, 16, 34, 70, 95]. To see more information on this attack see the web address 66.

2.19 Code Flaw

Due to coding issues, other wallet applications have also been attacked. Due to a fault in the Parity wallet software, an
individual using the handle devops199 "accidentally" destroyed 513,743 ether, worth around 355 million at the time of
writing. This was achieved because Parity encapsulated all contracts in a library, another Ethereum smart contract.
Unfortunately, this library fawned so that it was easy for someone to use the library to create a wallet, giving them
ownership of the library. Unfortunately, devops199 called this initialization code, then called a kill function built into
this library, either by accident or on purpose. Because all multi-sig wallets in the Parity system relied on this library
contract, terminating it effectively rendered the monies lost unrecoverable. One reviewer compares the occurrence to
strolling into a bank, finding the vault door is open, entering the vault, and burning all of the money [34].

Articles related to this attack [34].

65https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a
66https://quantstamp.com/blog/what-is-a-re-entrancy-attack

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a
https://quantstamp.com/blog/what-is-a-re-entrancy-attack

28 A. Vaezi, S. Azarnoush, P. Mohammadian

2.19.1 Attack 84: Coindash. During the initial coin offering67, the Ethereum address to which investments were
supposed to be delivered was moved to the hackers’ wallet. The perpetrators who hacked the Coindash website
carried out this attack. The victims were compensated, but the perpetrators were not identified, which is frequent in
blockchain-related crimes. The robbery was thought to have been started by an insider. This assault may have been
stopped if the website had adequate security, such as network-based threat detection and mitigation68. Furthermore,
keeping an eye out for malicious insiders may have reduced the chances of an insider breach[123].

Articles related to this attack [123]. To see more information on this attack see the web address in the footnote.

2.19.2 Attack 85: Overflow. When more value is submitted than the maximum value, an overflow error attack on a
smart contract happens. When this occurs, the value returns to zero, and this feature can be taken advantage of by
continuously activating the feature that increases the value68.

To see more information on this attack see the web address in the footnote.

2.19.3 Attack 86: Underflow. This mistaken attack works in the opposite direction as the overflow error. An underflow
mistake happens when going below the minimum amount rather than exceeding the maximum value. Instead of
reverting to zero, this causes the system to bring right back up to maximum value69.

To see more information on this attack see the web address in the footnote.

2.19.4 Attack 87: Cryptojacking. This attack uses web and cloud-based services to mine a block without permission. In
other words, the attacker steals the web server’s computing power to mine the blocks without the owner’s knowledge.
Turn it into a mining pool in other circumstances [62].

Articles related to this attack [62].

2.19.5 Attack 88: False Data Injection. False data injection attacks were recently identified as a significant class of
cyberattacks against large area measuring and monitoring systems of smart grids. These cyberattacks are designed to
manipulate the readings from several power grid sensors and phasor measuring units in order to deceive the operation
and control centers. Recent studies have shown that if an adversary has complete knowledge on the power grid topology
and transmission-line admittance values, he/she can adjust the false data injection attack vector such that the attack
remains undetected and successfully passes the residue-based bad data detection tests that are commonly used in power
system state estimation [86].

According to M. Ahmed and S. Kh. Pathan [6] , the concept of false data injection attack (FDIA) originated in the smart
grid domain. The term may sound comprehensive; however, it refers to the situation in which an attacker manipulates
sensor readings in such a way that undetected errors are introduced into state variable and value calculations. As the
Internet and accompanying complex adaptive systems continue to increase in popularity, cyber attackers are interested
in attempting similar attacks in additional application fields such as healthcare, finance, defense, and governance. FDIA
has become a primary priority in today’s more dangerous cyber environment of sophisticated adaptive systems. Today,
it is essential to have a stronger understanding of cyberattacks and a better system for defending against them.

Identifying a false data injection attack (FDIA) in power systems is difficult due to the complexity of the data and the
low detection accuracy. In view of the correlation and redundancy of the attack data’s main properties, a method for
detecting the FDIA in smart grids based on cyber-physical genes is proposed in [85].

67An initial currency offering or initial coin offering(ICO) is a sort of cryptocurrency-based fundraising. https://en.wikipedia.org/wiki/Initial_coin_offering
68https://cryptoadventure.com/understanding-overflow-and-underflow-attacks-on-smart-contracts/
69https://cryptoadventure.com/understanding-overflow-and-underflow-attacks-on-smart-contracts/

https://en.wikipedia.org/wiki/Initial_coin_offering
https://cryptoadventure.com/understanding-overflow-and-underflow-attacks-on-smart-contracts/
https://cryptoadventure.com/understanding-overflow-and-underflow-attacks-on-smart-contracts/

A Hundred Attacks in Distributed Systems 29

Articles related to this attack [6, 85, 86].

2.19.6 Attack 89: Man In The Middle. To accept payments in a cryptocurrency system like Bitcoin, users employ
string-hashes obtained from public keys. These string-hashes are similar to random strings. Users’ identities cannot be
verified because there is no authority to do so. For the most part, users can’t show that an address is linked to their
actual identity. It is possible that a victim could be provided with a fictitious address and be instructed to send money
to this fake location [48]. It is worth mentioning that with man in the middle attack, the attacker can not tamper the
transaction because it is signed by private key.

Articles related to this attack [48].

2.19.7 Attack 90: SQL-Injection. SQL injection is, in fact, a type of cyber attack in which a hacker manipulates a
database using SQL (Structured Query Language) code to obtain access to potentially important data.

SQL injections are also considered a type of code injection attack that targets applications and their data. They are
most commonly associated with website hacking, although ome may use SQL injections to attack a SQL database.
An attacker must first locate weak user inputs within the web page or application to initiate a SQL Injection attack.
Malicious SQL instructions are performed in the database when the attacker creates and sends input content. In this
way, an attacker can get complete control of the database. SQL injections have been around for quite some time and
most of them are automated70.

Allowing attackers to spoof identity, interfere with existing data, cause repudiation issues such as making changes
to the balances or canceling transactions, allow the complete disclosure of all data on the system, destroy or make
it unavailable, and even becoming administrators of the database server are all possible outcomes of SQL injection
attacks71.

To truly bring security to the masses, R. Chandrashekhar et al. [25] propose a classification that not only enumerates
but also categorizes the various attack methodologies and also the testing frameworks and prevention mechanisms.

Articles related to this attack [25, 84].

2.20 Smart Contracts And Ethereum Virtual Machine (EVM)

Obviously, if the source code of a smart contract contains weaknesses, the parties that sign the contract are at risk.
Bugs in source code, a network’s virtual machine, the runtime environment for smart contracts, and the blockchain
itself are among the most common blockchain security vulnerabilities related to smart contracts. In the following, we
discuss a few smart contracts and EVM-related issues72.

To see more information on this attack see the web address in the footnote.

2.20.1 Attack 91: Tx.Origin. If a smart contract’s source code contains flaws, the parties who sign the contract are at
risk. The most prevalent blockchain security vulnerabilities connected to smart contracts are bugs in source code, a
network’s virtual machine, the runtime environment for smart contracts, and also the blockchain itself73 [77].

Articles related to this attack [77].

2.20.2 Attack 92: Fake Receipt. The key feature of this attack is that a phony notice of receiving tokens deceives a
vulnerable smart contract, while the actual token transfer takes place between two attacker accounts [55].
70https://www.neuralegion.com/protect-your-application-against-sql-injection/
71https://en.wikipedia.org/wiki/SQL_injection
72https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
73https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

https://www.neuralegion.com/protect-your-application-against-sql-injection/
https://en.wikipedia.org/wiki/SQL_injection
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

30 A. Vaezi, S. Azarnoush, P. Mohammadian

Articles related to this attack [51, 55].

2.20.3 Attack 93: Fake EOS. The most essential aspect of this attack is to defraud the susceptible smart contract of
official EOS tokens by employing fake EOS tokens, which can be identified by transaction records carrying token issuer
information. Initially, all token transfer transactions will be filtered out with the token symbol "EOS" based on the
observation. Then, these transactions will be grouped according to the following definitions:

• Fake-sending transactions that send fake EOS tokens.
• True-sending transactions that send true EOS tokens.
• True-receiving transactions that receive true EOS tokens.

As [55] mentions, a possible attack is defined as a series of fake-sending transactions followed by true-receiving
transactions. A fake-sending transaction A can be connected with a true-receiving transaction B if and only if they
both occur during the same period, with A preceding B. In all of these potential transactions, focus on those who have
gained more actual EOS tokens than they have spent. For this purpose, compare the attacker’s and vulnerable contracts’
input-output ratios to identify unusual attacks. Finally, depending on the suspicious attacks, see if the vulnerable smart
contracts will continue normal execution (for example, running a lottery for a real player) after receiving the phony
EOS tokens. If that’s the case, classify the transaction as a fake EOS attack.

Articles related to this attack [55].

2.20.4 Attack 94: Selfdestruction. Ethereum smart contracts provide a self-destruct mechanism that allows them to
terminate a contract on the blockchain system. It is, however, a two-edged sword for developers. On the one hand, the
self-destruct function allows developers to delete smart contracts (SC) from Ethereum and transfer Ethers in the event
of an emergency, such as an assault. On the other side, this function might add to the development’s complexity and
provide an attack channel for attackers [26].

Articles related to this attack [26, 27].

2.20.5 Attack 95: Immutable Defects. Because blockchain blocks are immutable by nature, a smart contract can’t be
modified once it’s been formed. However, if a smart contract’s code includes any defects, they are likewise impossible
to correct. As with the DAO assault, thieves may uncover and exploit code weaknesses in order to steal Ether or build a
new fork 74.

Articles related to this attack [13]. To see more information on this attack see the web address in the footnote.

2.20.6 Attack 96: Cryptocurrency Lost In Transfer. This is conceivable if Ether is sent to an orphaned address with no
owner or contract75, and the address is lost permanently. Because lost Ether cannot be retrieved, programmers must
manually verify that recipient addresses are valid [13].

Articles related to this attack [13].

2.20.7 Attack 97: Bugs.

Bugs in Access Control. In Ethereum smart contracts, there is a missed modifier bug (missing or wrongly utilized)
that allows a hacker to gain access to sensitive functionality76.

74https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
75https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
76https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors
https://www.apriorit.com/dev-blog/578-blockchain-attack-vectors

A Hundred Attacks in Distributed Systems 31

Other Smart Contract Bugs. Note that some kinds of bugs are caused by specific Solidity77 versions. Since it is possible
to use different versions of Solidity to develop smart contracts, we mention the Solidity version that cause these kinds
of bugs.

(1) Integer Sign
Converting int type to uint type may produce incorrect results [110].

(2) Wrong Operator78

Users can use =+ and =- operators in the integer operation without compiling errors (up to and including version
0.4.26).

(3) Uninitialized Storage Variables79

The uninitialized storage variable serves as a reference to the first state variable in a contract, which may cause
the state variable to be inadvertently modified (up to and including version 0.4.26).

(4) Transaction Order Dependence
Miners can decide which transactions are packaged into the blocks and the order in which transactions are
packaged. The current main impact of this kind of bugs is the approve function in the ERC20 token standard [112].

(5) Signature With Wrong Parameter80

When the parameters of the ecrecover()81 function are wrong, the ecrecover() function will return 0x082.
(6) Re-entrancy Vulnerability: See subsection 2.18.1.

When the call-statement is used to call other contracts, the callee can call back the caller and enter the caller
again [72].

(7) Short Address Attack: See subsection 2.20.8.
When Ethereum packs transaction data if the data contains the address type and the length of the address type is
less than 20 bits, subsequent data will be used to make up the length of the address type83.

For more information related to these attacks see [72, 110, 124], and footnote.

2.20.8 Attack 98: Short Address. There is a known flaw in the Ethereum Virtual Machine (EVM) that might make
transactions vulnerable to the "Short Address Attack" (SAA). Since the EVM CALL function pads arguments with 0s
up to 32 bytes in length, it was determined that Smart Contracts that transfer ERC20 tokens might be vulnerable to
the SAA. An SAA occurs when a contract gets less data than expected and there is insufficient or no validation of the
length of the transaction payload – this may have been exploited to "fool" smart contracts into conducting harmful
transactions. To reduce the danger of such attacks, the creator of a TKN ERC20 Contract implements protection that
verifies the legitimacy of transfers by examining the transaction duration84.

To see more information on this attack, see the web address in the footnote.

77Solidity is an object-oriented, high-level language for implementing smart contracts.
https://docs.soliditylang.org/en/v0.8.11/
78https://swcregistry.io/
79https://swcregistry.io/
80https://github.com/sec-bit/awesome-buggy-erc20-tokens/blob/master/ERC20_token_issue_list.md
81ecrecover() is a very useful Solidity function that allows the smart contract to validate that incoming data is properly signed by an expected party
https://docs.kaleido.io/faqs/why-ecrecover-fails/.
82When the attacker gives the wrong parameters and the value of the specified parameter id is 0x0, the attacker can pass the identity verification, which
eventually leads to the ethers in the contract being destroyed [124]
83https://github.com/doingblock/smart-contract-security
84https://medium.com/monolith/tkn-and-short-address-attack-mitigation-88cc895734ba

https://docs.soliditylang.org/en/v0.8.11/
https://swcregistry.io/
https://swcregistry.io/
https://github.com/sec-bit/awesome-buggy-erc20-tokens/blob/master/ERC20_token_issue_list.md
 https://docs.kaleido.io/faqs/why-ecrecover-fails/
https://github.com/doingblock/smart-contract-security
https://medium.com/monolith/tkn-and-short-address-attack-mitigation-88cc895734ba

32 A. Vaezi, S. Azarnoush, P. Mohammadian

2.21 Attacks on Shards

Sharding means that consensus nodes are distributed among subgroups (i.e., shards) such that each node only validates
the transactions in its group. Shards operate in parallel and can achieve higher scalability and throughput since each
shard has a throughput similar to an entire non-sharded blockchain. On the other hand, sharding has the potential to
harm security because each shard has a lower number of participating nodes than the entire blockchain, which means
that it may be easier for the attacker to compromise a single shard than the entire blockchain85’86. The main mitigation
technique is to achieve a truly random distribution of nodes among the shards, thus minimizing the potential for
adversaries to bias the randomness used for shard distribution. For example, Elastico [73] uses PoW to distribute nodes
among shards, whereas Omniledger [65] uses a bias-resistant distributed randomness protocol (e.g., RandHound [107]).
Poor design of sharding protocols may also lead to vulnerabilities such as replay attacks [57, 103].

Articles related to this attack [57, 65, 73, 103].

2.21.1 Attack 99: Single Shard Takeover (aka 1% Attack). The adversary can gather its corrupted nodes to the victim
shard and compromise the shard’s consensus. Since voting power is distributed among shards, compromising a single
shard is easier than compromising a non-sharded blockchain [53].

Articles related to this attack [53].

2.21.2 Attack 100: Transaction Forging. The adversary creates a fake cross-shard transaction for a shard, then convinces
other shards that this fake transaction has been included on that shard. Without cross-shard communication and the
knowledge of the shard’s ledger, other shards cannot determine whether this the cross-shard transaction is valid or
not [53].

Articles related to this attack [53].

2.22 Other Attacks

There happen to be quite a few attacks in the current world of distributed and decentralized systems. Here, we list
other types of attacks mentioned in several articles.

(1) Flawed Key Generation Exploit
(2) Unbounded Operations Exploit
(3) Trade-Off Attack
(4) Stack Size Exploit
(5) Opcode Exploit
(6) Delegate Function Exploit
(7) Exception Disorder Vulnerability Exploit
(8) Fake Deposit Exploit
(9) Fake Tokens Attack
(10) Gasless Send Exploit
(11) Multiple Withdrawal Attack
(12) Permission Check Exploit
(13) Rollback Vulnerability Exploit

85https://www.mangoresearch.co/1-shard-attack-explained-ethereum-shardingcontd/
86https://ethresear.ch/t/on-the-probability-of-1-attack/4009/6

https://www.mangoresearch.co/1-shard-attack-explained-ethereum-shardingcontd/
https://ethresear.ch/t/on-the-probability-of-1-attack/4009/6

A Hundred Attacks in Distributed Systems 33

(14) Blockchain Ingestion Attack
(15) Ransomware Network Attack
(16) Changing Systems Parameters Attack
(17) Timestamp Dependence Exploit
(18) Incorrect Transaction Attack
(19) Overlay Network DoS
(20) Breaking Network Assumptions
(21) Erebus Attack

3 DISCUSSION

Distributed consensus and anonymity are two essential characteristics of a distributed system such as the blockchain.
The digital world has been revolutionized by blockchain technology, which enables a distributed consensus system in
which all online transactions involving digital assets, both past, and present, can be confirmed at any time in the future.
However, we live in risk in the digital world because we rely on a third party to secure and protect our digital assets.
However, these third-party sources are susceptible to being hacked, altered, or infiltrated.

As defined by Neeraj Suri [106], a distributed system is typically a collection of geographically dispersed resources
(computing and communication) that collectively (a) provides services that connect dispersed data producers, and
consumers, (b) provides on-demand, highly reliable, highly available, and consistent resource access, frequently
through the use of replication schemas to handle resource failures, and (c) enables a collective aggregated capability
(computational or service-based) from the distributed resources. Distributed system security addresses the dangers
posed by exploiting vulnerabilities in the attack surfaces produced by the distributed system’s resource structure and
functionality. Vulnerabilities are design or operational flaws that allow an attacker to potentially compromise a system.
A threat is a measure of an attacker’s potential or likelihood of causing damage or compromising the system. A threat
is any behavior that has the potential to cause harm, whether foreseen or unexpected. The may or may not be resolved.

We focused on attack mechanisms in distributed systems. A distributed system may encounter various types of
attacks and threats. It would be nice if a system designer or a scientist could predict harmful behaviors and think
of a solution before using or designing a system. This article lists a wide range of types of attacks that may occur
in a distributed system. This information aggregation would surely help anyone who wants to research or design a
distributed system.

REFERENCES
[1] Chapter 4 - web-based mail issues. In E-Mail Virus Protection Handbook, Syngress, Ed. Syngress, Burlington, 2000, pp. 119–145.
[2] Chapter 3 - understanding threats. In Host Integrity Monitoring Using Osiris and Samhain, B. Wotring and B. Potter, Eds. Syngress, Burlington, 2005,

pp. 79–100.
[3] Abdullah, N., Hakansson, A., and Moradian, E. Blockchain based approach to enhance big data authentication in distributed environment. In

2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (2017), pp. 887–892.
[4] Adams, C. Dictionary Attack. Springer US, Boston, MA, 2011, pp. 332–332.
[5] Aggarwal, S., and Kumar, N. Chapter twenty - attacks on blockchain. In The Blockchain Technology for Secure and Smart Applications across

Industry Verticals, S. Aggarwal, N. Kumar, and P. Raj, Eds., vol. 121 of Advances in Computers. Elsevier, 2021, pp. 399–410.
[6] Ahmed, M., and Pathan, A.-S. K. False data injection attack (fdia): an overview and new metrics for fair evaluation of its countermeasure. Complex

Adaptive Systems Modeling (April 2020).
[7] Andress, J. The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd ed. Syngress Publishing, 2014.
[8] Andrew, T. S., and Steen, M. V. Distributed Systems: Principles and Paradigm., 2nd ed. Upper Saddle River, NJ, USA: Pearson Higher Education,

2007.

34 A. Vaezi, S. Azarnoush, P. Mohammadian

[9] Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on
Security and Privacy (2014), pp. 443–458.

[10] Andrychowicz, M., Dziembowski, S., Malinowski, D., and Łukasz Mazurek. On the malleability of bitcoin transactions. Financial Cryptography
and Data Securityg (2015), 1—-18.

[11] Apostolaki, M., Marti, G., Müller, J., and Vanbever, L. Sabre: Protecting bitcoin against routing attacks.
[12] Apostolaki, M., Zohar, A., and Vanbever., L. Hijacking bitcoin: Routing attacks on cryptocurrencies. IEEE Symposium on Security and Privacy

(2017), 375–392.
[13] Atzei, N., Bartoletti, M., , and Cimoli, T. A survey of attacks on ethereum smart contracts sok. Springer-Verlag New York, Inc. New York, NY,

USA (2017).
[14] Azouvi, S., Danezis, G., and Nikolaenko, V. Winkle: Foiling long-range attacks in proof-of-stake systems. pp. 189–201.
[15] Bahack, L. Theoretical bitcoin attacks with less than half of the computational power. arXiv:1312.7013 (December 2013).
[16] Begum, A., Tareq, A. H., Sultana, M., Sohel, M. K., Rahman, T., and Sarwar, A. H. Blockchain attacks, analysis and a model to solve double

spending attack. International Journal of Machine Learning and Computing 10, 2 (February 2020), 352––357.
[17] Biryukov, A., and Pustogarov, I. Bitcoin over tor is not a good idea., 02 2015.
[18] Boneh, D., and Naor, M. Timed commitments. In Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 20-24, 2000, Proceedings (2000), vol. 1880 of Lecture Notes in Computer Science, Springer, pp. 236–254.
[19] Bonneau, J. Why buy when you can rent? bribery attacks on bitcoin-style consensus. In Financial Cryptography and Data Security - International

Workshops, FC 2016, BITCOIN, VOTING, and WAHC, Revised Selected Papers (2016), K. Rohloff, J. Clark, S. Meiklejohn, D. Wallach, M. Brenner, and
P. Ryan, Eds., Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Springer Verlag, pp. 19–26. International Workshops on Financial Cryptography and Data Security, FC 2016 and 3rd Workshop on Bitcoin and
Blockchain Research, BITCOIN 2016, 1st Workshop on Advances in Secure Electronic Voting Schemes, VOTING 2016, and 4th Workshop on
Encrypted Computing and Applied Homomorphic Cryptography, WAHC 2016 ; Conference date: 26-02-2016 Through 26-02-2016.

[20] Buford, J. F., Yu, H., and Lua, E. K. P2P Networking and Applications. Morgan Kaufmann, Boston, 2009.
[21] Buterin, V., and Griffith, V. Casper the friendly finality gadget.
[22] Cai, Y., and Zhu, D. Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation 2, 20 (2016), 1–10.
[23] cer, O. B., and Kupcu., A. Fortis: Selfish mining mitigation by (for)geable (ti)me(s)tamps.
[24] Chalaemwongwan, N., and Kurutach, W. A practical national digital id framework on blockchain (nidbc). In 2018 15th International Conference

on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2018), pp. 497–500.
[25] Chandrashekhar, R., Mardithaya, M., Thilagam, S., and Saha, D. Sql injection attack mechanisms and prevention techniques. In Advanced

Computing, Networking and Security (Berlin, Heidelberg, 2012), P. S. Thilagam, A. R. Pais, K. Chandrasekaran, and N. Balakrishnan, Eds., Springer
Berlin Heidelberg, pp. 524–533.

[26] Chen, J., Xia, X., Lo, D., and Grundy, J. Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum., 2021.
[27] Chen, J., Xia, X., Lo, D., and Grundy, J. Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum. ACM Trans.

Softw. Eng. Methodol. 31, 2 (December 2021).
[28] Chohan, U. W., and Chohan, U. W. The double spending problem and cryptocurrencies.
[29] Conti, M., E, S. K., Lal, C., and Ruj, S. A survey on security and privacy issues of bitcoin. CoRR abs/1706.00916 (2017).
[30] Coulouris, G. F., Dollimoreand, J., and Kindberg, T. Distributed Systems-Concepts and Design, 4th ed. London, England: Addison, 2005.
[31] Courtois, N. T. Double-spending fast payments in bitcoin.
[32] Crosby, M., Pattanayak, P., Verma, S., and Kalyanaraman, V. Applied innovation review. Applied Innovation Review 2 (2016), 5–20.
[33] Daian, P., Pass, R., and Shi, E. Snow white: Robustly reconfigurable consensus and applications to provably secure proof of stake. In Financial

Cryptography (2019).
[34] Dasgupta, D., Shrein, J., and Gupta, K. D. A survey of blockchain from security perspective. Journal of Banking and Financial Technology 3

(January 2019).
[35] Deirmentzoglou, E., Papakyriakopoulos, G., and Patsakis, C. A survey on long-range attacks for proof of stake protocols. IEEE Access 7 (2019),

28712–28725.
[36] Dell’Amico, M., Michiardi, P., and Roudier, Y. Limitations of the kerberos authentication system. SIGCOMM Comput Commun Rev 20, 5 (10

1990), 119––132.
[37] Dey, S. Securing majority-attack in blockchain using machine learning and algorithmic game theory: A proof of work.
[38] Ding, X., Zhang, L., Wan, Z., and Gu, M. A brief survey on de-anonymization attacks in online social networks. In 2010 International Conference

on Computational Aspects of Social Networks (2010), pp. 611–615.
[39] Ebrahimpour, G., andHaghighi, M. S. Analysis of bitcoin vulnerability to bribery attacks launched through large transactions. CoRR abs/2105.07501

(2021).
[40] Ebrahimpour, G., and Haghighi, M. S. Analysis of bitcoin vulnerability to bribery attacks launched through large transactions, 2021.
[41] Eskandari, S., Moosavi, M., and Clark, J. Sok: Transparent dishonesty: Front-running attacks on blockchain. pp. 170–189.
[42] Fedotov, I., and Khritankov, A. Statistical model checking of common attack scenarios on blockchain. Electronic Proceedings in Theoretical

Computer Science 342 (September 2021), 65—-77.

A Hundred Attacks in Distributed Systems 35

[43] Ferguson, N., and Schneier, B. Practical cryptography. New York : Wiley, ©2003., 2003.
[44] Ferrag, M. A., Derdour, M., Mukherjee, M., Derhab, A., and Janicke, L. M. H. Blockchain technologies for the internet of things: Research

issues and challenges.
[45] Frankenfield, J. Paper wallet., August 2011.
[46] Fu, X., Wang, H., and Shi, P. A survey of blockchain consensus algorithms: mechanism, design and applications. Sci. China Inf. Sci. 64 (2021).
[47] Gambs, S., Killijian, M.-O., and Núñez del Prado Cortez, M. De-anonymization attack on geolocated data. Journal of Computer and System

Sciences 80, 8 (2014), 1597–1614. Special Issue on Theory and Applications in Parallel and Distributed Computing Systems.
[48] Garba, A., Guan, Z., Li, A., and Chen, Z. Analysis of man-in-the-middle of attack on bitcoin address. In ICETE (2018).
[49] Gazi, P., Kiayias, A., and Russell, A. Stake-bleeding attacks on proof-of-stake blockchains. pp. 85–92.
[50] Gervais, A., Ritzdorf, H., Karame, G. O., and Capkun, S. Tampering with the delivery of blocks and transactions in bitcoin. CCS ’15, Association

for Computing Machinery, pp. 692—-705.
[51] Guggenberger, T., Schlatt, V., Schmid, J., and Urbach, N. A structured overview of attacks on blockchain systems. Twenty-fifth Pacific Asia

Conference on Information System (2021).
[52] Gupta, B., and Sheng, Q. Machine Learning for Computer and Cyber Security: Principle, Algorithms, and Practices. Cyber Ecosystem and Security.

CRC Press, 2019.
[53] Han, R., Yu, J., Lin, H., Chen, S., and Esteves-Veríssimo, P. On the security and performance of blockchain sharding. Cryptology ePrint Archive,

Report 2021/1276, 2021. https://ia.cr/2021/1276.
[54] Harinath, D., Satyanarayana, P., and Murthy, M. V. R. A review on security issues and attacks in distributed systems. 1–9.
[55] He, N., Zhang, R., Wang, H., Wu, L., Luo, X., Guo, Y., Yu, T., and and, X. J. Eosafe: Security analysis of eosio smart contracts. 30th USENIX

Security Symposium (2021), 1271–1288.
[56] Heilman, E., Kendler, A., Zohar, A., and Goldberg., S. Eclipse attacks on bitcoin’s peer-to-peer network. 24th USENIX conference Security

Symposium (08 2015), 129—-144.
[57] Homoliak, I., Venugopalan, S., Hum, Q., Reijsbergen, D., Schumi, R., and Szalachowski, P. The security reference architecture for blockchains:

Towards a standardized model for studying vulnerabilities, threats, and defenses.
[58] Homoliak, I., Venugopalan, S., Hum, Q., and Szalachowski., P. A security reference architecture for blockchains.
[59] Iuon-Chang Lin, T.-C. L. A survey of blockchain security issues and challenges. International Journal of Network Security, 19, 5 (2017), 653–659.
[60] Joshi, J., and Mathew, R. A survey on attacks of bitcoin. In Proceeding of the International Conference on Computer Networks, Big Data and IoT

(ICCBI - 2018). (Cham, 2020), A. Pandian, T. Senjyu, S. M. S. Islam, and H. Wang, Eds., Springer International Publishing, pp. 953–959.
[61] Karame, G. O., Androulaki, E., and Capkun, S. Double-spending fast payments in bitcoin. In Proceedings of the 2012 ACM Conference on Computer

and Communications Security (New York, NY, USA, 2012), CCS ’12, Association for Computing Machinery, pp. 906—-917.
[62] Kausar, F., Senan, F. M., Asif, H. M., and Raahemifar, K. 6g technology and taxonomy of attacks on blockchain technology. Alexandria

Engineering Journal (2021).
[63] Khana, K. M., Arshadb, J., and Khanc, M. M. Simulation of transaction malleability attack for blockchain-based e-voting. Preprint submitted to

Computers & Electrical Engineering (November 2019).
[64] Kiayias, A., and Panagiotakos, G. On trees, chains and fast transactions in the blockchain.
[65] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and Ford, B. Omniledger: A secure, scale-out, decentralized ledger via

sharding. In 2018 IEEE Symposium on Security and Privacy (SP) (2018), pp. 583–598.
[66] Kraus, R., Barber, B., Borkin, M., and Alpern, N. J. Chapter 2 - active directory – escalation of privilege. In Seven Deadliest Microsoft Attacks,

R. Kraus, B. Barber, M. Borkin, and N. J. Alpern, Eds. Syngress, Boston, 2010, pp. 25–48.
[67] Kwon, Y., Kim, D., Son, Y., Vasserman, E., and Kim, Y. Be selfish and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin. CCS ’17:

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (October 2017), 195––209.
[68] Lepinski, M., and Sriram, K. Bgpsec protocol specification. RFC 8205 (2017), 1–45.
[69] Li, X., Zhao, M., Zeng, M., Mumtaz, S., Menon, V. G., Ding, Z., and Dobre, O. A. Hardware impaired ambient backscatter noma systems:

Reliability and security. IEEE Trans. Commun. (2021), 2723–2736.
[70] Lia, X., Jianga, P., Chenb, T., and Wenc, X. L. Q. A survey on the security of blockchain systems.
[71] Lindqvist, U., and Jonsson, E. How to systematically classify computer security intrusions. In Proceedings. 1997 IEEE Symposium on Security and

Privacy (Cat. No.97CB36097) (1997), pp. 154–163.
[72] Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., and Roscoe, B. Reguard: Finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion) (2018), pp. 65–68.
[73] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P. A secure sharding protocol for open blockchains. CCS ’16, Association

for Computing Machinery, p. 17–30.
[74] McCorry, P., Shahandashti, S. F., and Hao, F. Refund attacks on bitcoin’s payment protocol. In Financial Cryptography and Data Security

(Berlin, Heidelberg, 2017), J. Grossklags and B. Preneel, Eds., Springer Berlin Heidelberg, pp. 581–599.
[75] Miller, A., Kosba, A., Katz, J., and Shi, E. Nonoutsourceable scratch-off puzzles to discourage bitcoin mining coalitions. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA, 2015), CCS ’15, Association for Computing Machinery,
p. 680–691.

https://ia.cr/2021/1276

36 A. Vaezi, S. Azarnoush, P. Mohammadian

[76] Miller, A. K., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhattacharjee, B. Discovering bitcoin ’ s public topology and
influential nodes.

[77] Min, T., and Cai., W. A security case study for blockchain games .
[78] Moubarak, J., Filiol, E., and Chamoun, M. On blockchain security and relevant attacks. In 2018 IEEE Middle East and North Africa Communications

Conference (MENACOMM). (2018), pp. 1–6.
[79] Nakamoto., S. Bitcoin: A peer-to-peer electronic cash system.
[80] Nakayama, K., Moriyama, Y., and Oshima, C. An algorithm that prevents spam attacks using blockchain. International Journal of Advanced

Computer Science and Applications 9 (01 2018).
[81] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction.

Princeton University Press, USA, 2016.
[82] Oppliger, R. Certification authorities under attack: A plea for certificate legitimation. IEEE Internet Computing 18, 01 (January 2014), 40–47.
[83] Peng, W., Li, F., Zou, X., and Wu, J. A two-stage deanonymization attack against anonymized social networks. IEEE Transactions on Computers 63,

2 (2014), 290–303.
[84] Ping-Chen, X. Sql injection attack and guard technical research. Procedia Engineering 15 (2011), 4131–4135. CEIS 2011.
[85] Qu, Z., Dong, Y., Qu, N., Li, H., Cui, M., Bo, X., Wu, Y., and Mugemanyi, S. False data injection attack detection in power systems based on

cyber-physical attack genes. Frontiers in Energy Research 9 (2021), 57.
[86] Rahman, M. A., and Mohsenian-Rad, H. False data injection attacks with incomplete information against smart power grids. In IEEE Global

Communications Conference (GLOBECOM) (2012), pp. 3153–3158.
[87] Ramos, S., Pianese, F., Leach, T., and Oliveras, E. A great disturbance in the crypto: Understanding cryptocurrency returns under attacks.

Blockchain: Research and Applications (2021), 100021.
[88] Rathod, N., and Motwani, P. D. Security threats on blockchain and its countermeasures. IRJET Journal 5 (November 2018), 1637–1642.
[89] Ravindra, V., and Grama, A. De-anonymization attacks on neuroimaging datasets. In Proceedings of the 2021 International Conference on

Management of Data (New York, NY, USA, 2021), SIGMOD/PODS ’21, Association for Computing Machinery, pp. 2394––2398.
[90] Rosenfeld, M. Analysis of hashrate-based double-spending.
[91] Saad, M., Kim, J., Nyang, D., and Mohaisen, D. Contra-*: Mechanisms for countering spam attacks on blockchain memory pools, 05 2020.
[92] Saad, M., Njilla, L., Kamhoua, C., and Mohaisen, A. Countering selfish mining in blockchains.
[93] Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., and Mohaisen, D. Exploring the attack surface of blockchain: A

comprehensive survey. IEEE Communications Surveys Tutorials 22, 3 (2020), 1977–2008.
[94] Samreen, N. F., and Alalf, M. H. Smartscan: An approach to detect denial of service vulnerability in ethereum smart contracts.
[95] Samreen, N. F., and Alalfi, M. H. Reentrancy vulnerability identification in ethereum smart contracts. In 2020 IEEE International Workshop on

Blockchain Oriented Software Engineering (IWBOSE) (2020), IEEE, pp. 22–29.
[96] Samreen, N. F., and Alalfi, M. H. A survey of security vulnerabilities in ethereum smart contracts. ArXiv abs/2105.06974 (2021).
[97] Sayeed, S., and Marco-Gisbert, H. Assessing blockchain consensus and security mechanisms against the 51Applied Sciences 9, 9 (2019).
[98] Schrijvers, O., Bonneau, J., Boneh, D., and Roughgarden, T. Incentive compatibility of bitcoin mining pool reward functions. pp. 477–498.
[99] Shi, H., Wang, S., Hu, Q., Cheng, X., Zhang, J., and Yu, J. Fee-free pooled mining for countering pool-hopping attack in blockchain. IEEE

Transactions on Dependable and Secure Computing 18, 04 (July 2021), 1580–1590.
[100] Singh, S., Hosen, A., and Yoon, B. Blockchain security attacks, challenges, and solutions for the future distributed iot network. IEEE Access (2021),

13938–13959.
[101] Singh, S. K., Salim, M. M., Cho, M., Cha, J., Pan, Y., and Park, J. H. Smart contract-based pool hopping attack prevention for blockchain networks.

Symmetry 11, 7 (2019).
[102] Son, S., and Shmatikov, V. The hitchhiker’s guide to dns cache poisoning. In SecureComm (2010).
[103] Sonnino, A., Bano, S., Al-Bassam, M., and Danezis, G. Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers.

In 2020 IEEE European Symposium on Security and Privacy (EuroS P) (2020), pp. 294–308.
[104] Stevens, M., Bursztein, E., Karpman, P., Albertini, A., and Markov, Y. The first collision for full sha-1. In CRYPTO (2017).
[105] Sun, H., Ruan, N., and Su, C. How to model the bribery attack: A practical quantification method in blockchain. In Computer Security – ESORICS

2020 (Cham, 2020), L. Chen, N. Li, K. Liang, and S. Schneider, Eds., Springer International Publishing, pp. 569–589.
[106] Suri, N. Distributed systems security knowledge area issue 1 . 0.
[107] Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M. J., and Ford, B. Scalable bias-resistant distributed randomness.

In 2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 444–460.
[108] Szalachowski, P. Towards more reliable bitcoin timestamps. ArXiv abs/1803.09028 (2018).
[109] Szalachowski, P., Reijsbergen, D., Homoliak, I., and Sun, S. StrongChain: Transparent and collaborative Proof-of-Work consensus. In 28th

USENIX Security Symposium (USENIX Security 19) (Santa Clara, CA, Aug. 2019), USENIX Association, pp. 819–836.
[110] Torres, C., Schütte, J., and State, R. Osiris: Hunting for integer bugs in ethereum smart contracts, 12 2018.
[111] Tosh, D., Shetty, S., Liang, X., Kamhoua, C., Kwiat, K., and Njilla, L. Security implications of blockchain cloud with analysis of block

withholding attack.

A Hundred Attacks in Distributed Systems 37

[112] Tsankov, P., Dan, A. M., Drachsler-Cohen, D., Gervais, A., Buenzli, F., and Vechev, M. T. Securify: Practical security analysis of smart
contracts. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018).

[113] Vokerla, R. R., Shanmugam, B., Azam, S., Karim, A., Boer, F. D., Jonkman, M., and Faisal, F. An overview of blockchain applications and attacks.
In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). (2019), pp. 1–6.

[114] Wang, D., and Wang., P. Offline dictionary attack on password authentication schemes using smart cards. 16th International Conference on
Information Security 7807 (January 2015), 221—-237.

[115] WANG, I., LI, M., andHONG LI, Y. H., XIAO, K., and WANG, C. A blockchain based privacy-preserving incentive mechanism in crowdsensing
applications. IEEE Access 6 (April 2018), 17545–17556.

[116] Wang, Q., Ji, T., Guo, Y., Yu, L., Chen, X., and Li, P. Trafficchain: A blockchain-based secure and privacy-preserving traffic map. IEEE Access 8
(2020), 60598–60612.

[117] Wang, X., Chellappan, S., Boyer, P., and Xuan, D. On the effectiveness of secure overlay forwarding systems under intelligent distributed dos
attacks. IEEE Transactions on Parallel and Distributed Systems 17 (July 2006), 619––632.

[118] Wang, X., Zha, X., Yu, G., and Ni., W. Attack and defence of ethereum remote apis.
[119] Wang, Y., and Li, G. Detect triangle attack on blockchain by trace analysis. In 2019 IEEE 19th International Conference on Software Quality,

Reliability and Security Companion (QRS-C) (2019), pp. 316–321.
[120] Wondracek, G., Holz, T., Kirda, E., and Kruegel, C. A practical attack to de-anonymize social network users. In 2010 IEEE Symposium on

Security and Privacy (2010), pp. 223–238.
[121] Wu, M., Miller, R. C., and Little, G. Web wallet: Preventing phishing attacks by revealing user intentions. In Proceedings of the Second Symposium

on Usable Privacy and Security (New York, NY, USA, 2006), SOUPS ’06, Association for Computing Machinery, pp. 102––113.
[122] York, D. Chapter 3 - eavesdropping and modification. In Seven Deadliest Unified Communications Attacks, D. York, Ed. Syngress, Boston, 2010,

pp. 41–69.
[123] Zamani, E., He, Y., and Phillips, M. On the security risks of the blockchain. Journal of Computer Information Systems (2018).
[124] Zhang, P., Xiao, F., and Luo, X. A framework and dataset for bugs in ethereum smart contracts, 09 2020.
[125] Zhang, S., and Lee, J. H. Mitigations on sybil-based double-spend attacks in bitcoin. IEEE Consumer Electronics Magazine 10, 5 (September 2021),

23–28.
[126] Zhou, Z., Zhang, C., Wang, J., Gu, B., Mumtaz, S., Rodriguez, J., and Zhao, X. Energy-efficient resource allocation for energy harvesting-based

cognitive machine-to-machine communications. IEEE Trans. Cognit. Commun. Networking (2019), 595–607.

	Abstract
	Contents
	1 Introduction
	2 Attacks and Vulnerabilities
	2.1 Service
	2.1.1 Attack 1: Double-Spending
	2.1.2 Attack 2: Race
	2.1.3 Attack 3: Finney
	2.1.4 Attack 4: Vector76
	2.1.5 Attack 5: Nothing-At-Stake
	2.1.6 Attack 6: Goldfinger
	2.1.7 Attack 7: Refusal To Sign

	2.2 Network
	2.2.1 Attack 8: Routing
	2.2.2 Attack 9: BGP Hijack
	2.2.3 Attack 10: Module-Enabling
	2.2.4 Attack 11: Piracy
	2.2.5 Attack 12: Steal Mining Reward

	2.3 DNS
	2.3.1 Attack 13: DNS
	2.3.2 Attack 14: DNS Hijacking
	2.3.3 Attack 15: DNS tunneling
	2.3.4 Attack 16: DNS Cache Poisoning

	2.4 DoS
	2.4.1 Attack 17: DDoS
	2.4.2 Attack 18: DoS
	2.4.3 Attack 19: DoS Attacks On Connectivity
	2.4.4 Attack 20: DoS Attacks On Local Resources
	2.4.5 Attack 21: Smart Contract DoS
	2.4.6 Attack 22: Resource Exhaustion

	2.5 Gas
	2.5.1 Attack 23: Gas Limit Block Stuffing
	2.5.2 Attack 24: Forcible Balance Transfer

	2.6 Adversarial Centralization of Consensus Power
	2.6.1 Attack 25: Byzantine
	2.6.2 Attack 26: Collusion 51%
	2.6.3 Attack 27: Consensus 34%
	2.6.4 Attack 28: Punitive And Feather Forking
	2.6.5 Attack 29: Bribery
	2.6.6 Attack 30: Consensus Delay

	2.7 Time
	2.7.1 Attack 31: Timejacking
	2.7.2 Attack 32: Time-Validation
	2.7.3 Attack 33: Time-Spoofing

	2.8 Iterative False Generation
	2.8.1 Attack 34: Sybil
	2.8.2 Attack 35: Spam
	2.8.3 Attack 36: Peer Flooding
	2.8.4 Attack 37: Peer Flooding Attack Slowloris Variant

	2.9 Disconnecting Node
	2.9.1 Attack 38: Eclipse
	2.9.2 Attack 39: Triangle
	2.9.3 Attack 40: Partitioning
	2.9.4 Attack 41: Balance

	2.10 Change Block
	2.10.1 Attack 42: Tampering
	2.10.2 Attack 43: Modification
	2.10.3 Attack 44: Transaction Malleability

	2.11 History
	2.11.1 Attack 45: Grinding
	2.11.2 Attack 46: Keeping Secrets Exploit
	2.11.3 Attack 47: Front-running
	2.11.4 Attack 48: Long Range
	2.11.5 Attack 49: Stake Bleeding
	2.11.6 Attack 50: Alternative History

	2.12 Identity
	2.12.1 Attack 51: Replay
	2.12.2 Attack 52: Impersonation
	2.12.3 Attack 53: Identity Revealing
	2.12.4 Attack 54: Deanonymization

	2.13 Key Attack
	2.13.1 Attack 55: Hashing Operation Vulnerability
	2.13.2 Attack 56: Cryptography Key Vulnerability
	2.13.3 Attack 57: Certificate Authority

	2.14 Reputation-based
	2.14.1 Attack 58: Hiding Blocks
	2.14.2 Attack 59: Whitewashing

	2.15 Mining Pool
	2.15.1 Attack 60: Pool Hopping
	2.15.2 Attack 61: Selfish Mining
	2.15.3 Attack 62: Baseline
	2.15.4 Attack 63: Fork-After-Withhold (FAW)
	2.15.5 Attack 64: Liveness
	2.15.6 Attack 65: Block Withholding
	2.15.7 Attack 66: Block Reordering
	2.15.8 Attack 67: Block Discarding Attack and Difficulty Raising

	2.16 Wallet
	2.16.1 Attack 68: Wallet Theft
	2.16.2 Attack 69: Wallet Malware
	2.16.3 Attack 70: Wallet Phishing
	2.16.4 Attack 71: Etherdelta
	2.16.5 Attack 72: Attacks On Cold Wallets
	2.16.6 Attack 73: Attacks On Hot Wallets
	2.16.7 Attack 74: Passphrase Extraction
	2.16.8 Attack 75: Passphrase Sniffing
	2.16.9 Attack 76: Packet Sniffing
	2.16.10 Attack 77: Brute Force
	2.16.11 Attack 78: Dictionary
	2.16.12 Attack 79: Private key Recovery
	2.16.13 Attack 80: Dusting
	2.16.14 Attack 81: Refund

	2.17 Splitting
	2.17.1 Attack 82: Orphaned Blocks

	2.18 Design Flaw
	2.18.1 Attack 83: Re-entrancy

	2.19 Code Flaw
	2.19.1 Attack 84: Coindash
	2.19.2 Attack 85: Overflow
	2.19.3 Attack 86: Underflow
	2.19.4 Attack 87: Cryptojacking
	2.19.5 Attack 88: False Data Injection
	2.19.6 Attack 89: Man In The Middle
	2.19.7 Attack 90: SQL-Injection

	2.20 Smart Contracts And Ethereum Virtual Machine (EVM)
	2.20.1 Attack 91: Tx.Origin
	2.20.2 Attack 92: Fake Receipt
	2.20.3 Attack 93: Fake EOS
	2.20.4 Attack 94: Selfdestruction
	2.20.5 Attack 95: Immutable Defects
	2.20.6 Attack 96: Cryptocurrency Lost In Transfer
	2.20.7 Attack 97: Bugs
	2.20.8 Attack 98: Short Address

	2.21 Attacks on Shards
	2.21.1 Attack 99: Single Shard Takeover (aka 1% Attack)
	2.21.2 Attack 100: Transaction Forging

	2.22 Other Attacks

	3 Discussion
	References

