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Abstract The velocity of any Keplerian orbiter is well known, but its time
derivative is a centripetal acceleration, not an attractive one. Furthermore the
rectilinear accelerated trajectory of Newton’s attraction is not part of the Kep-
lerian conics. Newton’s postulate of attraction is therefore not consistent with
Kepler’s laws. We demonstrate this geometric reality by the factual kinematics
and expose its consequences from the bodies falling, to the rotation speed of
the galaxies, passing through Einstein’s equivalence principle or the stability
of the solar system.
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1 Introduction

Newton’s postulate of attraction makes the apple falling from the tree with a
rectilinear accelerated motion towards the center of the Earth. However the
apple is a Keplerian orbiter, but the rectilinear accelerated trajectory is not
part of the Keplerian conics[1]. Newton’s interpretation of the gravitation is
therefore in conflict with Kepler’s laws.

We will demonstrate here that the kinematics of the Keplerian velocity
solves this conflict but this leads to a new interpretation of the gravitation :
it does not cause the attraction but the rotation, and the apple falls from the
tree on an ellipse, so sharp that it can be confused with a straight line.

To intend so, let us first remind that it has been widely demonstrated
in the literature that the velocity of a Keplerian orbiter is the simple addi-
tion of a uniform rotation velocity and a uniform translation velocity, both
coplanar[2–8]. Usually this property is described in the context of an hodo-
graphic representation of the motion, which makes it rather impractical to
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manipulate mathematically. We can however give a simple and trivial kine-
matic expression of this orbital velocity :

v = vR + vT (1)

with vR = ‖vR‖ = cst and vT = ‖vT ‖ = cst

where vR is the rotation velocity and vT is the translation velocity. Take care,
in this expression the index R means “rotation” but not “radial”, while the
index T stands for “translation” but not “tangential”. The figure 1 shows these
two velocities on a typical Keplerian orbit.

This definition of the orbital velocity is an unmistakable geometric reality,
as the authors demonstrated, yet it conflicts with Newton’s postulate of at-
traction, as far as its time derivative is a centripetal acceleration, but not an
attractive one. And this is problematic because if words have meaning, a cen-
tripetal acceleration causes a rotation while an attractive acceleration causes
a translation.

Without entering the full demonstration that we will run further, let us
already give an overview of its consequences. We will show that the conic
eccentricity e of any Keplerian motion is simply the ratio between vT and vR
from the definition 1 : e = vT /vR. From this we see that if the eccentricity
is null, it means that vT is null, and consequently the motion is a uniform
rotation. This is the case for instance of the International Space Station (ISS),
at a first approximation. Now if we slow down the spaceship by the means
of an engine, we will show that vT is not null any more and the ISS can not
remain on its circular orbit, it enters an ellipse (0 < e < 1) which focus is
at Earth’s center of mass. The higher the slow down will be, the higher vT

will be and therefore the eccentricity of the orbit, flattening the ellipse. This
behavior is well known by the space agencies because it is used to return to
Earth the astronauts from a space flight, or to land a rover on Mars[9].

Now imagine that we could slow down the ISS strongly enough to have vT
close but lower to vR, in order to have an eccentricity close but slightly lower
to 1 (e = 0.9999...). In these conditions the ellipse is strongly flattened and can
appear as a straight line if the observer does not have measurement means that
are precise enough. The ISS would then look like the apple falling from the
tree, straight to the ground at a first approximation. From all this we see that
the gravitation does not cause the attraction, but the rotation. What looks
like an attraction is a gravitational rotation slowed down by some mechanical
constraints. The consequence is that the mechanical and the gravitational
accelerations are of different natures, the first causing a translation, the second
a rotation, they cannot be equivalent, even locally. We will demonstrate this
point in detail, that conflicts with Einstein’s equivalence principle.

Before entering the demonstration of all this by the means of the kinemat-
ics, we must point out something important. The definition 1 of the orbital
velocity is purely kinematic, it embeds no physical parameter like the mass for
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Fig. 1 The velocity of a Keplerian orbiter v on a fixed orbit is always the sum of a uniform
rotation velocity vR, perpendicular to the vector radius, and a uniform translation velocity
vT , which direction is always perpendicular to the main axis of the conic. Both are coplanar
and have a constant norm all along the trajectory.

instance. However its derivative with respect to time leads to Newton’s acceler-
ation that embeds the physical factor GM [10], G being the universal constant
of gravitation and M the mass causing the gravitation. Consequently to the
factor GM must correspond a kinematic factor, and we will demonstrate that
it is LvR, L being the norm of the kinematic angular momentum (L = r× v)
and vR the norm of the rotation velocity from the definition 1. We will see that
using the factor LvR instead of GM provides a solution to explain the rotation
speed of the galaxies, without dark matter, and suggests that the Keplerian
motion could be at work at other scales than the only astronomic one.

In the present work we use no postulate, nor hypothesis, we only report
the factual reality of the Keplerian kinematics. We will first demonstrate that
from the definition 1 of the Keplerian velocity we can get the three laws of
Kepler as well as the mathematical structure of Newton’s acceleration. This
will provide us a complete set of kinematic equations that will be used as a
frame of reference to explore some important consequences, that we started
to expose above, and cannot be ignored because they are imposed by the
kinematics.

2 Kinematics analysis

Let us first be more precise about the kinematic definition of the Keplerian
velocity 1 coming from the literature. The translation and rotation velocities
are coplanar. The rotation velocity vR is the vector multiplication of the fre-
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quency of rotation ω, always perpendicular to the plane of rotation, with the
vector radius r :

vR = ω × r (2)

Starting from this we are going to demonstrate the existence of Kepler’s laws
as well as Newton’s acceleration, or at least its mathematical structure.

The first consequence of the expression 1 is the validity of the following
one by derivation with respect to time of vR (ω̇ and ω being colinear) :

ω̇r = −ωṙ (3)

The expressions 2 and 3 can help us calculate the derivative with respect to
time of the orbital velocity, i.e. the acceleration, which is also simply the deriva-
tive of the rotation velocity, because the translation velocity is a constant. The
acceleration will therefore be :

a = ω̇ × r + ω × v = −ω

r2
× [r× (r× v)] (4)

Now defining the massless angular momentum like R.H. Battin[9] did as

L = r× v (5)

the final expression of the acceleration is given by :

a = −LvR
r3

r (6)

Therefore the acceleration and the vector radius are colinear and this forces
the angular momentum to be constant, as awaited for a central field motion :

L = constant (7)

Note that the expression 6 of the acceleration has the same mathematical
structure as Newton’s gravitational acceleration, but it is centripetal.

Now from this we observe that the vector product of the rotation velocity
with the angular momentum leads trivially to :

vR × L = v2R

(
1 +

vR.vT

v2R

)
r (8)

The scalar version of this equation is therefore :

L

vR
=

(
1 +

vT
vR

cos θ

)
r or p = (1 + e cos θ) r (9)

This is the equation of a conic where p = L/vR is the semi latus rectum,
e = vT /vR is the eccentricity and θ is the true anomaly, i.e. the angle between
vT and vR which is also the angle between the direction of the perigee and
the vector radius. This is the expression of Kepler’s first law.
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Note that the eccentricity vector is given by :

e =
vT × L

LvR
(10)

Therefore the translation velocity is always perpendicular to the main axis of
the conic, which direction is the one of the vector eccentricity. The figure 1
exhibits both the rotation and the translation velocities at different positions
on a conic.

Let us now notice that the scalar multiplication of the total velocity and
the vector radius leads to :

r.v = r.vT = rṙ thus ṙ = vT sinθ (11)

Using this last expression it is trivial to show that the angular momentum can
be presented as the multiplication of the square of the vector radius and the
derivative with respect to time of the true anomaly :

L = r2θ̇ (12)

This last expression is very well known, being described for instance by L.
Landau and E. Lifchitz in their course “Mechanics”[1]. It shows that the areal
velocity, defined as f = r2θ̇/2, must be a constant as far as the angular mo-
mentum also is. Therefore the expression 12 is nothing else but the second law
of Kepler.

Note that the time derivative of the true anomaly θ̇ and the frequency of
rotation ω are related by the following formula :

θ̇ = ω(1 + ecosθ) or rθ̇ = pω (13)

Now integrating the expression 12 over a complete period T of revolution
for an ellipse, as described by L. Landau and E. Lifchitz[1], and knowing that
L and vR are two constants, we are trivially led to the following formula :

LvR = 4π2 a
3

T 2
= k = constant (14)

This is the expression of the third law of Kepler, where a is the semi-major
axis of the ellipse.

The simplicity of the above kinematics can be useful in many cases to
simplify some gravitational calculations, as orbits or space rendezvous. All
that we presented here is very trivial in terms of kinematics, but it had to be
setup in order to expose simply some important consequences of the structure
1 of the Keplerian velocity.
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3 Consequences

3.1 Newton’s acceleration

Newton postulated his gravitational acceleration in order to explain Kepler’s
laws, therefore his acceleration must be consistent with the kinematics of the
Keplerian motion, i.e. with the velocity defined by 1. The condition to fit both
the acceleration 6 and the third law of Kepler 14 with Newton’s postulate is
to verify :

LvR = GM (15)

where G is the universal constant of gravitation and M is the mass of the body
causing the gravitation.

However the Keplerian acceleration 6 is centripetal, but not attractive as
postulated by Newton, even if the global mathematical structure of his accel-
eration is indeed consistent with the kinematics.

3.2 Galileo’s principle of equivalence

The definition 1 of the Keplerian velocity is mass independent, as expected for
a motion in a gravitational field, that Galileo has shown to be mass indepen-
dent[11].

3.3 Mechanical energy

Calculating the square of the expression 1, with respect to the results of the
kinematics analysis, it is trivial to define a kinematic energy, i.e. a massless
energy as follows :

EM =
1

2
v2 − LvR

r
=

1

2
v2R(e2 − 1) (16)

Multiplying this last expression by the mass of the orbiter, and considering
the formula 15, we get directly the usual expression of the mechanical energy
as described in classical mechanics[1], with its kinetic and potential parts.

3.4 Falling bodies

What we call a falling body is a body that is accelerated on a straight line
towards the center of the planet. Usually this experiment starts with a fixed
body that is freed to fall at a time, so let us take the example of the apple
falling from the tree.
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At start the apple is fixed to the tree and therefore has no orbital velocity,
but it is however a Keplerian orbiter. The only way to achieve this from the
definition 1 is to have :

vR = −vT (17)

This means that the apple is indeed submitted to the gravitational rotation
velocity vR from the Earth, but it can not move because the translation veloc-
ity vT opposes to it. From 14 and 15 we get the rotation velocity vR = GM/L,
were M is Earth’s mass, i.e. if the mass M exists then vR exists, and the apple
cannot get rid of it. If vT would be null, the apple would orbit around the
Earth at nearly vR ≈ 7.9103m/s, but it is not, because vT is as big as vR, but
of opposite direction, this is the only way to have a null orbital velocity.

But what is vT ? Exactly as vR is the integral of the gravitational ac-
celeration 6, vT is simply the integral of the acting accelerations that are not
gravitational, like frictions for instance. Actually the apple is not alone to wish
to gravitate freely around the planet, the tree would also like to, as well as the
ground, and so on. There are so much particles that would like to gravitate
around Earth’s mass center that there is a traffic jam and all the particles are
blocking each other, constituting the Earth.

Let the initial translation momentum of the apple on the tree be PT =
mvT = −mvR, now if the apple disconnect from the tree, in a fraction of a sec-
ond, it can not get rid of this tremendous initial momentum (vR ≈ 7.9103m/s
multiplied by the mass of the apple), otherwise the apple would be submitted
to a tremendous force that would smash it. Actually the apple can only get rid
of a very small portion of its translation momentum to get : PT = −mvR(1−ε),
where ε is very small. But meanwhile vR still exists and acts, consequently
the orbital velocity is not null any more v = vR + vT 6= 0, i.e. the apple
falls on a Keplerian conic which eccentricity is very close but lower to 1 :
e = vT /vR = 1 − ε = 0.99999... Such a conic is a very sharp ellipse which
focus is at Earth’s center and apogee is at the altitude of the branch of the
tree, with a minor axis which dimension is barely measurable because the mass
of the apple is so small in regard of Earth’s mass. Such a trajectory can be
confused with a straight line, but this is an illusion. Actually the earth would
be transparent with all its mass concentrated on a single mathematical point,
Newton’s postulate would make the apple falling until it get stuck on this
point while the kinematics forecast that the apple would orbit around this
point, before going back to its starting position.

3.5 Mechanical versus gravitational accelerations

Let us consider an orbiter on a perfect circular orbit, so having vT = 0.
Its acceleration is of course given by the expression 6. Let us now apply a
mechanical force F provided by an engine, the total acceleration will then
become :

a = −LvR
r3

r +
F

m
(18)
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where m is the mass of the orbiter. Integrating this expression must lead to
the expression 1 of the velocity. We shall therefore verify :

v = vR + vT with vT =

∫
F

m
dt and vR = ω × r (19)

At this point it is important to note that the mechanical acceleration can only
provide a translation. Indeed a force must have a physical connection to the
axis of rotation to cause a rotation, but the mechanical force provided by the
engine has no physical connection to Earth’s mass center, and thus to the
gravitational axis of rotation.

As far as the engine has been used vT cannot remain null, and therefore
the mechanically accelerated orbiter cannot remain on a circular orbit because
the eccentricity of its conic is not null any more (e = vT /vR 6= 0), whatever
the direction or the intensity of engine’s thrust. This is a reason why the
calculations of space rendezvous are so complex to solve. No engine has ever
been able to simulate the gravitational rotation, as short and tiny the thrust
of the engine was. Provided that the spaceship is in a gravitational field, no
successive short mechanical thrust can simulate a circular, nor conic, orbit
around the Keplerian focus[9].

Exactly as we described for the falling bodies, we have to make a clear
distinction between the gravitational acceleration and the mechanical one.
The first provides the rotation and the second the translation. These two
accelerations are therefore of different natures, in no way we can say that they
are equivalent, even locally.

This fact conflicts with Einstein’s principle of equivalence, at least as de-
scribed in his articles of 1907 and 1911. Indeed in 1907 Einstein explained[12]
: ”We consider two frames of reference, Σ1 and Σ2. Let Σ1 be accelerated in
the direction of its X coordinate axis, and let γ be the (time-constant) value of
its acceleration. Suppose that Σ2 is at rest, but located in a homogeneous grav-
itational field, which imparts to all objects an acceleration γ in the direction
of the X axis. As far as we know, the physical laws with respect to Σ1 do not
differ from those with respect to Σ2; this derives from the fact that all bodies
are accelerated in the same way in the gravitational field. We therefore have no
reason to suppose in the state of our experience that the reference frames Σ1
and Σ2 differ in any way, and we will therefore assume in what follows
the total physical equivalence between the gravitational field and
the corresponding acceleration of the frame considered.”. As far as
the gravitation would cause the attraction, this presumption could be correct
indeed, but since the gravitation causes the rotation while the machanical ac-
celeration causes a translation, it can not be correct. No attractive acceleration
could ever be equivalent to a centripetal acceleration.

In 1911 Einstein added[13] : ”By theoretically considering processes that
take place relative to a uniformly accelerated reference frame, we obtain infor-
mation on the occurrence of localized processes in a homogeneous gravitational
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field. The principle of equivalence does not affirm that it is possible to produce
any gravitational field (for example that associated with the Earth) by means
of the acceleration of a reference frame. It only asserts that the properties of
a physical space, as they present themselves to us from the point of view of
an accelerated frame of reference, constitute a particular case of the
gravitational field.”. Here again, this could only be true if the graviation
would cause the attraction, but is not correct as far as it causes the rota-
tion. An attractive acceleration can not be a particular case of a centripetal
acceleration.

If we remind Einstein’s thought experiment of the observer in a lift cabin[14],
who would like to know if the acceleration he is feeling is provided by some
mechanical means or by his position on a planet, he will be able to distin-
guish both situations, contrarily to what Einstein postulated. In the first case
a ball dropped to the floor will fall on a straight line, in the second case on
an ellipse. However the more massive the planet will be, the more precise his
measurement means must be.

3.6 Stability of the solar system

As long as the Sun will have a mass M , it will provide a rotation velocity
vR = GM/L to all the bodies in its gravitational field. If no mechanical force
provides a vT superior or equal to vR, the body will eternally be trapped into
Sun’s field. The situation of a planet is somehow similar to the one of an
electron in an atom : until you provide at least the ionization energy to the
electron, it remains trapped into the atom.

The only way to eject a body from Sun’s influence, is to provide it vT ≥ vR,
and in this case the trajectory becomes a parabola (e = 1) or an hyperbola
(e > 1), which focus is still the Sun. But of course ejecting a planet like the
Earth, moreover Jupiter, will require a tremendous force to increase vT enough
to be superior or equal to vR. Such an event could always happen at long term,
but it would require some very exceptional circumstances.

Now that the solar system is stable, what currently happens are relatively
light chocks usually coming from the crash of asteroids on the planets. Each one
causes a slight modification of the translation velocity, so a slight modification
of the orbit eccentricity, the orbit is deformed but is still stable. Therefore
there is no evidence that the solar system could become chaotic[15] at short
nor long term. The gravitation creating the rotation ensures the stability.

3.7 Rotation of the galaxies

Vera Rubin has shown that the stars inside the disks of the galaxies have a
velocity incompatible with the Newton’s theory of the gravitation[16]. The fig-
ure 2 gives a typical example of what is expected from the Newton’s postulate
and what is actually measured for spiral galaxies[21].
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Fig. 2 Typical velocity of the stars in a spiral galactic disk with respect to their distance
to the center of the galaxy. The doted curve A is the one expected with Newton’s theory,
the plain curve B is what is actually measured.

At a first approximation we can consider that the stars in the spiral galac-
tic disk have a circular orbit and their velocity is given by the third law of
Kepler 14 : v =

√
k/r. For Newton the numerator k = GM = constant, and

consequently the velocity must decrease when the distance r increases. But
for the kinematics k = LvR = Lωr, therefore v =

√
Lω and the velocity can

remain constant whatever the distance, at the condition that Lω also is.

As far as Lω has the dimension of a massless energy (energy divided by the
mass of the orbiter), if the stars of the galactic disk are populating the same
massless energy level E = Lω, they will have the same velocity independently
of their distance to the center of the galaxy, and the curve B of the figure 2
can be explained.

The kinematics can therefore explain the experimental measures without
dark matter, but considering that the galaxies are structured around some
energy levels that are mathematically analogous to a macroscopic version of
the Planck-Einstein relation[17] E = hν.

4 Discussion

Considering the kinematics of the Keplerian velocity we were able to demon-
strate that the gravitation causes the rotation but not the attraction, a body
falls on an ellipse but not a straight line, the mechanical and gravitational
accelerations are of different natures, the solar system must be stable, the ro-
tation of the galaxies can be explained if the stars in the disk occupy the same
massless energy level. It is important to note that to achieve so we used no
postulate, nor hypothesis, but only the pure factual kinematics.

The results that we get open some new perspectives, especially when con-
sidering the Newton’s “universal” constant G. Newton did not know the exis-
tence of the electric charge, neither of the galaxies, nor of the atoms. What he
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called “universe” contained only the macroscopic bodies of the solar system.
It would then be anachronistic to consider that his definition of what is “uni-
versal” also applies to what he did not even suspected. Sure G is a universal
constant in his restricted universe, but is it still at any scale in our nowadays
universe ?

Indeed we can notice that Coulomb’s acceleration has the same mathemat-
ical structure as Newton’s acceleration, but Coulomb’s factor[18] −q2/4πε0 re-
places the factor GM . From a kinematic point of view if we have LvR = GM
at an astronomic scale, nothing is opposed to have LvR = −q2/4πε0 at an
atomic one. Indeed LvR is a kinematic factor without any physical constraint,
at the contrary of the factors postulated by Newton and Coulomb. So we may
wonder if Kepler’s laws could also be at work at an atomic scale.

Here we have to remind Rutherford’s proposal to describe the electron
around the proton like a planet around the Sun[19], and the criticisms against
his model : the electron being in rotation it is submitted to a centripetal
acceleration, and therefore as a charged particle it must emit photons, so lose
energy, making the atom unstable. But this argument was unfair because if
the electron is really like a planet, it must be in weightlessness, therefore it
feels no acceleration and emits nothing, like the astronauts inside the ISS, it
is then on a stable trajectory similar to those necessary to Bohr’s model[18].
We are then led to wonder if a quantum version of the Keplerian motion could
explain the electrons behavior in the atoms at some extent. This perspective
has to be investigated.

The General Relativity (GR) also uses the factor GM , and reduces to
Newton’s theory for low masses and velocities[20]. It might then be interesting
to introduce the factor LvR instead of GM in the GR, in order to see if it could
work at other scales than the astronomic one. Furthermore the only theory
that we own to explain the weightlessness is the GR, so if we have to consider
an electron in weightlessness around the proton, the GR might be useful. This
perspective has also to be investigated.

Even if we dared here to criticize the postulates of Newton and Einstein,
constructively we hope, we also propose that answering to this criticisms by
respecting the kinematics, could lead to improve and extend their theories.
In no way at all a kinematic demonstration could ever be a theory of the
gravitation, so what we exposed here can not compete with Newton’s and
Einstein’s theories, this is not our point at all. What we point out is that our
current theories of the gravitation must be consistent with the kinematics of
the Keplerian motion, thus with the orbital velocity 1, but they are not so far.
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